Source code for autogen_agentchat.agents._code_executor_agent

import logging
import re
from typing import (
    AsyncGenerator,
    List,
    Optional,
    Sequence,
    Union,
)

from autogen_core import CancellationToken, Component, ComponentModel
from autogen_core.code_executor import CodeBlock, CodeExecutor
from autogen_core.memory import Memory
from autogen_core.model_context import (
    ChatCompletionContext,
    UnboundedChatCompletionContext,
)
from autogen_core.models import (
    AssistantMessage,
    ChatCompletionClient,
    CreateResult,
    LLMMessage,
    SystemMessage,
    UserMessage,
)
from pydantic import BaseModel
from typing_extensions import Self

from .. import EVENT_LOGGER_NAME
from ..base import Response
from ..messages import (
    BaseAgentEvent,
    BaseChatMessage,
    CodeExecutionEvent,
    CodeGenerationEvent,
    HandoffMessage,
    MemoryQueryEvent,
    ModelClientStreamingChunkEvent,
    TextMessage,
    ThoughtEvent,
)
from ..utils import remove_images
from ._base_chat_agent import BaseChatAgent

event_logger = logging.getLogger(EVENT_LOGGER_NAME)


class CodeExecutorAgentConfig(BaseModel):
    """Configuration for CodeExecutorAgent"""

    name: str
    code_executor: ComponentModel
    model_client: ComponentModel | None = None
    description: str | None = None
    sources: List[str] | None = None
    system_message: str | None = None
    model_client_stream: bool = False
    model_context: ComponentModel | None = None


[docs] class CodeExecutorAgent(BaseChatAgent, Component[CodeExecutorAgentConfig]): """(Experimental) An agent that generates and executes code snippets based on user instructions. .. note:: This agent is experimental and may change in future releases. It is typically used within a team with another agent that generates code snippets to be executed or alone with `model_client` provided so that it can generate code based on user query, execute it and reflect on the code result. When used with `model_client`, it will generate code snippets using the model and execute them using the provided `code_executor`. The model will also reflect on the code execution results. The agent will yield the final reflection result from the model as the final response. When used without `model_client`, it will only execute code blocks found in :class:`~autogen_agentchat.messages.TextMessage` messages and returns the output of the code execution. .. note:: Using :class:`~autogen_agentchat.agents.AssistantAgent` with :class:`~autogen_ext.tools.code_execution.PythonCodeExecutionTool` is an alternative to this agent. However, the model for that agent will have to generate properly escaped code string as a parameter to the tool. Args: name (str): The name of the agent. code_executor (CodeExecutor): The code executor responsible for executing code received in messages (:py:class:`~autogen_ext.code_executors.docker.DockerCommandLineCodeExecutor` recommended. See example below) model_client (ChatCompletionClient, optional): The model client to use for inference and generating code. If not provided, the agent will only execute code blocks found in input messages. model_client_stream (bool, optional): If `True`, the model client will be used in streaming mode. :meth:`on_messages_stream` and :meth:`BaseChatAgent.run_stream` methods will also yield :class:`~autogen_agentchat.messages.ModelClientStreamingChunkEvent` messages as the model client produces chunks of response. Defaults to `False`. description (str, optional): The description of the agent. If not provided, :class:`~autogen_agentchat.agents.CodeExecutorAgent.DEFAULT_AGENT_DESCRIPTION` will be used. system_message (str, optional): The system message for the model. If provided, it will be prepended to the messages in the model context when making an inference. Set to `None` to disable. Defaults to :class:`~autogen_agentchat.agents.CodeExecutorAgent.DEFAULT_SYSTEM_MESSAGE`. This is only used if `model_client` is provided. sources (Sequence[str], optional): Check only messages from the specified agents for the code to execute. This is useful when the agent is part of a group chat and you want to limit the code execution to messages from specific agents. If not provided, all messages will be checked for code blocks. This is only used if `model_client` is not provided. .. note:: It is recommended that the `CodeExecutorAgent` agent uses a Docker container to execute code. This ensures that model-generated code is executed in an isolated environment. To use Docker, your environment must have Docker installed and running. Follow the installation instructions for `Docker <https://docs.docker.com/get-docker/>`_. .. note:: The code executor only processes code that is properly formatted in markdown code blocks using triple backticks. For example: .. code-block:: text ```python print("Hello World") ``` # or ```sh echo "Hello World" ``` In this example, we show how to set up a `CodeExecutorAgent` agent that uses the :py:class:`~autogen_ext.code_executors.docker.DockerCommandLineCodeExecutor` to execute code snippets in a Docker container. The `work_dir` parameter indicates where all executed files are first saved locally before being executed in the Docker container. .. code-block:: python import asyncio from autogen_agentchat.agents import CodeExecutorAgent from autogen_agentchat.messages import TextMessage from autogen_ext.code_executors.docker import DockerCommandLineCodeExecutor from autogen_core import CancellationToken async def run_code_executor_agent() -> None: # Create a code executor agent that uses a Docker container to execute code. code_executor = DockerCommandLineCodeExecutor(work_dir="coding") await code_executor.start() code_executor_agent = CodeExecutorAgent("code_executor", code_executor=code_executor) # Run the agent with a given code snippet. task = TextMessage( content='''Here is some code ```python print('Hello world') ``` ''', source="user", ) response = await code_executor_agent.on_messages([task], CancellationToken()) print(response.chat_message) # Stop the code executor. await code_executor.stop() asyncio.run(run_code_executor_agent()) In the following example, we show how to setup `CodeExecutorAgent` without `model_client` parameter for executing code blocks generated by other agents in a group chat using :py:class:`~autogen_ext.code_executors.docker.DockerCommandLineCodeExecutor` .. code-block:: python import asyncio from autogen_ext.code_executors.docker import DockerCommandLineCodeExecutor from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_agentchat.agents import AssistantAgent, CodeExecutorAgent from autogen_agentchat.conditions import MaxMessageTermination from autogen_agentchat.teams import RoundRobinGroupChat from autogen_agentchat.ui import Console termination_condition = MaxMessageTermination(3) async def main() -> None: model_client = OpenAIChatCompletionClient(model="gpt-4o") # define the Docker CLI Code Executor code_executor = DockerCommandLineCodeExecutor(work_dir="coding") # start the execution container await code_executor.start() code_executor_agent = CodeExecutorAgent("code_executor_agent", code_executor=code_executor) coder_agent = AssistantAgent("coder_agent", model_client=model_client) groupchat = RoundRobinGroupChat( participants=[coder_agent, code_executor_agent], termination_condition=termination_condition ) task = "Write python code to print Hello World!" await Console(groupchat.run_stream(task=task)) # stop the execution container await code_executor.stop() asyncio.run(main()) .. code-block:: text ---------- user ---------- Write python code to print Hello World! ---------- coder_agent ---------- Certainly! Here's a simple Python code to print "Hello World!": ```python print("Hello World!") ``` You can run this code in any Python environment to display the message. ---------- code_executor_agent ---------- Hello World! In the following example, we show how to setup `CodeExecutorAgent` with `model_client` that can generate its own code without the help of any other agent and executing it in :py:class:`~autogen_ext.code_executors.docker.DockerCommandLineCodeExecutor` .. code-block:: python import asyncio from autogen_ext.code_executors.docker import DockerCommandLineCodeExecutor from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_agentchat.agents import CodeExecutorAgent from autogen_agentchat.conditions import TextMessageTermination from autogen_agentchat.ui import Console termination_condition = TextMessageTermination("code_executor_agent") async def main() -> None: model_client = OpenAIChatCompletionClient(model="gpt-4o") # define the Docker CLI Code Executor code_executor = DockerCommandLineCodeExecutor(work_dir="coding") # start the execution container await code_executor.start() code_executor_agent = CodeExecutorAgent( "code_executor_agent", code_executor=code_executor, model_client=model_client ) task = "Write python code to print Hello World!" await Console(code_executor_agent.run_stream(task=task)) # stop the execution container await code_executor.stop() asyncio.run(main()) .. code-block:: text ---------- user ---------- Write python code to print Hello World! ---------- code_executor_agent ---------- Certainly! Here is a simple Python code to print "Hello World!" to the console: ```python print("Hello World!") ``` Let's execute it to confirm the output. ---------- code_executor_agent ---------- Hello World! ---------- code_executor_agent ---------- The code has been executed successfully, and it printed "Hello World!" as expected. If you have any more requests or questions, feel free to ask! """ DEFAULT_TERMINAL_DESCRIPTION = "A computer terminal that performs no other action than running Python scripts (provided to it quoted in ```python code blocks), or sh shell scripts (provided to it quoted in ```sh code blocks)." DEFAULT_AGENT_DESCRIPTION = "A Code Execution Agent that generates and executes Python and shell scripts based on user instructions. Python code should be provided in ```python code blocks, and sh shell scripts should be provided in ```sh code blocks for execution. It ensures correctness, efficiency, and minimal errors while gracefully handling edge cases." DEFAULT_SYSTEM_MESSAGE = "You are a Code Execution Agent. Your role is to generate and execute Python code based on user instructions, ensuring correctness, efficiency, and minimal errors. Handle edge cases gracefully." NO_CODE_BLOCKS_FOUND_MESSAGE = "No code blocks found in the thread. Please provide at least one markdown-encoded code block to execute (i.e., quoting code in ```python or ```sh code blocks)." component_config_schema = CodeExecutorAgentConfig component_provider_override = "autogen_agentchat.agents.CodeExecutorAgent" def __init__( self, name: str, code_executor: CodeExecutor, *, model_client: ChatCompletionClient | None = None, model_context: ChatCompletionContext | None = None, model_client_stream: bool = False, description: str | None = None, system_message: str | None = DEFAULT_SYSTEM_MESSAGE, sources: Sequence[str] | None = None, ) -> None: if description is None: if model_client is None: description = CodeExecutorAgent.DEFAULT_TERMINAL_DESCRIPTION else: description = CodeExecutorAgent.DEFAULT_AGENT_DESCRIPTION super().__init__(name=name, description=description) self._code_executor = code_executor self._sources = sources self._model_client_stream = model_client_stream self._model_client = None if model_client is not None: self._model_client = model_client if model_context is not None: self._model_context = model_context else: self._model_context = UnboundedChatCompletionContext() self._system_messaages: List[SystemMessage] = [] if system_message is None: self._system_messages = [] else: self._system_messages = [SystemMessage(content=system_message)] @property def produced_message_types(self) -> Sequence[type[BaseChatMessage]]: """The types of messages that the code executor agent produces.""" return (TextMessage,)
[docs] async def on_messages(self, messages: Sequence[BaseChatMessage], cancellation_token: CancellationToken) -> Response: async for message in self.on_messages_stream(messages, cancellation_token): if isinstance(message, Response): return message raise AssertionError("The stream should have returned the final result.")
[docs] async def on_messages_stream( self, messages: Sequence[BaseChatMessage], cancellation_token: CancellationToken ) -> AsyncGenerator[BaseAgentEvent | BaseChatMessage | Response, None]: """ Process the incoming messages with the assistant agent and yield events/responses as they happen. """ # Gather all relevant state here agent_name = self.name model_context = self._model_context system_messages = self._system_messages model_client = self._model_client model_client_stream = self._model_client_stream execution_result: CodeExecutionEvent | None = None if model_client is None: # default behaviour for backward compatibility # execute generated code if present code_blocks: List[CodeBlock] = await self.extract_code_blocks_from_messages(messages) if not code_blocks: yield Response( chat_message=TextMessage( content=self.NO_CODE_BLOCKS_FOUND_MESSAGE, source=agent_name, ) ) return execution_result = await self.execute_code_block(code_blocks, cancellation_token) yield Response(chat_message=TextMessage(content=execution_result.to_text(), source=execution_result.source)) return # STEP 1: Add new user/handoff messages to the model context await self._add_messages_to_context( model_context=model_context, messages=messages, ) # STEP 2: Update model context with any relevant memory inner_messages: List[BaseAgentEvent | BaseChatMessage] = [] for event_msg in await self._update_model_context_with_memory( memory=None, model_context=model_context, agent_name=agent_name, ): inner_messages.append(event_msg) yield event_msg # STEP 3: Run the first inference model_result = None async for inference_output in self._call_llm( model_client=model_client, model_client_stream=model_client_stream, system_messages=system_messages, model_context=model_context, agent_name=agent_name, cancellation_token=cancellation_token, ): if isinstance(inference_output, CreateResult): model_result = inference_output else: # Streaming chunk event yield inference_output assert model_result is not None, "No model result was produced." # --- NEW: If the model produced a hidden "thought," yield it as an event --- if model_result.thought: thought_event = ThoughtEvent(content=model_result.thought, source=agent_name) yield thought_event inner_messages.append(thought_event) # Add the assistant message to the model context (including thought if present) await model_context.add_message( AssistantMessage( content=model_result.content, source=agent_name, thought=getattr(model_result, "thought", None), ) ) code_blocks = self._extract_markdown_code_blocks(str(model_result.content)) if not code_blocks: yield Response( chat_message=TextMessage( content=str(model_result.content), source=agent_name, ) ) return # NOTE: error: Argument of type "str | List[FunctionCall]" cannot be assigned to parameter "content" of type "str" in function "__init__". # For now we can assume that there are no FunctionCalls in the response because we are not providing tools to the CodeExecutorAgent. # So, for now we cast model_result.content to string inferred_text_message: CodeGenerationEvent = CodeGenerationEvent( content=str(model_result.content), code_blocks=code_blocks, source=agent_name, ) yield inferred_text_message execution_result = await self.execute_code_block(inferred_text_message.code_blocks, cancellation_token) # Add the code execution result to the model context await model_context.add_message( UserMessage( content=execution_result.result.output, source=agent_name, ) ) yield execution_result # always reflect on the execution result async for reflection_response in CodeExecutorAgent._reflect_on_code_block_results_flow( system_messages=system_messages, model_client=model_client, model_client_stream=model_client_stream, model_context=model_context, agent_name=agent_name, inner_messages=inner_messages, ): yield reflection_response # last reflection_response is of type Response so it will finish the routine
[docs] async def extract_code_blocks_from_messages(self, messages: Sequence[BaseChatMessage]) -> List[CodeBlock]: # Extract code blocks from the messages. code_blocks: List[CodeBlock] = [] for msg in messages: if self._sources is None or msg.source in self._sources: if isinstance(msg, TextMessage): code_blocks.extend(self._extract_markdown_code_blocks(msg.content)) # TODO: handle other message types if needed return code_blocks
[docs] async def execute_code_block( self, code_blocks: List[CodeBlock], cancellation_token: CancellationToken ) -> CodeExecutionEvent: # Execute the code blocks. result = await self._code_executor.execute_code_blocks(code_blocks, cancellation_token=cancellation_token) if result.output.strip() == "": # No output result.output = f"The script ran but produced no output to console. The POSIX exit code was: {result.exit_code}. If you were expecting output, consider revising the script to ensure content is printed to stdout." elif result.exit_code != 0: # Error result.output = f"The script ran, then exited with an error (POSIX exit code: {result.exit_code})\nIts output was:\n{result.output}" return CodeExecutionEvent(result=result, source=self.name)
[docs] async def on_reset(self, cancellation_token: CancellationToken) -> None: """Its a no-op as the code executor agent has no mutable state.""" pass
def _extract_markdown_code_blocks(self, markdown_text: str) -> List[CodeBlock]: pattern = re.compile(r"```(?:\s*([\w\+\-]+))?\n([\s\S]*?)```") matches = pattern.findall(markdown_text) code_blocks: List[CodeBlock] = [] for match in matches: language = match[0].strip() if match[0] else "" code_content = match[1] code_blocks.append(CodeBlock(code=code_content, language=language)) return code_blocks
[docs] def _to_config(self) -> CodeExecutorAgentConfig: return CodeExecutorAgentConfig( name=self.name, model_client=(self._model_client.dump_component() if self._model_client is not None else None), code_executor=self._code_executor.dump_component(), description=self.description, sources=list(self._sources) if self._sources is not None else None, system_message=( self._system_messages[0].content if self._system_messages and isinstance(self._system_messages[0].content, str) else None ), model_client_stream=self._model_client_stream, model_context=self._model_context.dump_component(), )
[docs] @classmethod def _from_config(cls, config: CodeExecutorAgentConfig) -> Self: return cls( name=config.name, model_client=( ChatCompletionClient.load_component(config.model_client) if config.model_client is not None else None ), code_executor=CodeExecutor.load_component(config.code_executor), description=config.description, sources=config.sources, system_message=config.system_message, model_client_stream=config.model_client_stream, model_context=None, )
@staticmethod def _get_compatible_context(model_client: ChatCompletionClient, messages: List[LLMMessage]) -> Sequence[LLMMessage]: """Ensure that the messages are compatible with the underlying client, by removing images if needed.""" if model_client.model_info["vision"]: return messages else: return remove_images(messages) @classmethod async def _call_llm( cls, model_client: ChatCompletionClient, model_client_stream: bool, system_messages: List[SystemMessage], model_context: ChatCompletionContext, agent_name: str, cancellation_token: CancellationToken, ) -> AsyncGenerator[Union[CreateResult, ModelClientStreamingChunkEvent], None]: """ Perform a model inference and yield either streaming chunk events or the final CreateResult. """ all_messages = await model_context.get_messages() llm_messages = cls._get_compatible_context(model_client=model_client, messages=system_messages + all_messages) if model_client_stream: model_result: Optional[CreateResult] = None async for chunk in model_client.create_stream( llm_messages, tools=[], cancellation_token=cancellation_token ): if isinstance(chunk, CreateResult): model_result = chunk elif isinstance(chunk, str): yield ModelClientStreamingChunkEvent(content=chunk, source=agent_name) else: raise RuntimeError(f"Invalid chunk type: {type(chunk)}") if model_result is None: raise RuntimeError("No final model result in streaming mode.") yield model_result else: model_result = await model_client.create(llm_messages, tools=[], cancellation_token=cancellation_token) yield model_result @staticmethod async def _update_model_context_with_memory( memory: Optional[Sequence[Memory]], model_context: ChatCompletionContext, agent_name: str, ) -> List[MemoryQueryEvent]: """ If memory modules are present, update the model context and return the events produced. """ events: List[MemoryQueryEvent] = [] if memory: for mem in memory: update_context_result = await mem.update_context(model_context) if update_context_result and len(update_context_result.memories.results) > 0: memory_query_event_msg = MemoryQueryEvent( content=update_context_result.memories.results, source=agent_name, ) events.append(memory_query_event_msg) return events @staticmethod async def _add_messages_to_context( model_context: ChatCompletionContext, messages: Sequence[BaseChatMessage], ) -> None: """ Add incoming messages to the model context. """ for msg in messages: if isinstance(msg, HandoffMessage): for llm_msg in msg.context: await model_context.add_message(llm_msg) await model_context.add_message(msg.to_model_message()) @classmethod async def _reflect_on_code_block_results_flow( cls, system_messages: List[SystemMessage], model_client: ChatCompletionClient, model_client_stream: bool, model_context: ChatCompletionContext, agent_name: str, inner_messages: List[BaseAgentEvent | BaseChatMessage], ) -> AsyncGenerator[Response | ModelClientStreamingChunkEvent | ThoughtEvent, None]: """ If reflect_on_code_block_results=True, we do another inference based on tool results and yield the final text response (or streaming chunks). """ all_messages = system_messages + await model_context.get_messages() llm_messages = cls._get_compatible_context(model_client=model_client, messages=all_messages) reflection_result: Optional[CreateResult] = None if model_client_stream: async for chunk in model_client.create_stream(llm_messages): if isinstance(chunk, CreateResult): reflection_result = chunk elif isinstance(chunk, str): yield ModelClientStreamingChunkEvent(content=chunk, source=agent_name) else: raise RuntimeError(f"Invalid chunk type: {type(chunk)}") else: reflection_result = await model_client.create(llm_messages) if not reflection_result or not isinstance(reflection_result.content, str): raise RuntimeError("Reflect on tool use produced no valid text response.") # --- NEW: If the reflection produced a thought, yield it --- if reflection_result.thought: thought_event = ThoughtEvent(content=reflection_result.thought, source=agent_name) yield thought_event inner_messages.append(thought_event) # Add to context (including thought if present) await model_context.add_message( AssistantMessage( content=reflection_result.content, source=agent_name, thought=getattr(reflection_result, "thought", None), ) ) yield Response( chat_message=TextMessage( content=reflection_result.content, source=agent_name, models_usage=reflection_result.usage, ), inner_messages=inner_messages, )