import asyncio
from typing import Any, Callable, List, Mapping, Sequence
from autogen_core import AgentRuntime, Component, ComponentModel
from pydantic import BaseModel
from ...base import ChatAgent, TerminationCondition
from ...messages import BaseAgentEvent, BaseChatMessage, HandoffMessage, MessageFactory
from ...state import SwarmManagerState
from ._base_group_chat import BaseGroupChat
from ._base_group_chat_manager import BaseGroupChatManager
from ._events import GroupChatTermination
class SwarmGroupChatManager(BaseGroupChatManager):
"""A group chat manager that selects the next speaker based on handoff message only."""
def __init__(
self,
name: str,
group_topic_type: str,
output_topic_type: str,
participant_topic_types: List[str],
participant_names: List[str],
participant_descriptions: List[str],
output_message_queue: asyncio.Queue[BaseAgentEvent | BaseChatMessage | GroupChatTermination],
termination_condition: TerminationCondition | None,
max_turns: int | None,
message_factory: MessageFactory,
emit_team_events: bool,
) -> None:
super().__init__(
name,
group_topic_type,
output_topic_type,
participant_topic_types,
participant_names,
participant_descriptions,
output_message_queue,
termination_condition,
max_turns,
message_factory,
emit_team_events,
)
self._current_speaker = self._participant_names[0]
async def validate_group_state(self, messages: List[BaseChatMessage] | None) -> None:
"""Validate the start messages for the group chat."""
# Check if any of the start messages is a handoff message.
if messages:
for message in messages:
if isinstance(message, HandoffMessage):
if message.target not in self._participant_names:
raise ValueError(
f"The target {message.target} is not one of the participants {self._participant_names}. "
"If you are resuming Swarm with a new HandoffMessage make sure to set the target to a valid participant as the target."
)
return
# Check if there is a handoff message in the thread that is not targeting a valid participant.
for existing_message in reversed(self._message_thread):
if isinstance(existing_message, HandoffMessage):
if existing_message.target not in self._participant_names:
raise ValueError(
f"The existing handoff target {existing_message.target} is not one of the participants {self._participant_names}. "
"If you are resuming Swarm with a new task make sure to include in your task "
"a HandoffMessage with a valid participant as the target. For example, if you are "
"resuming from a HandoffTermination, make sure the new task is a HandoffMessage "
"with a valid participant as the target."
)
# The latest handoff message should always target a valid participant.
# Do not look past the latest handoff message.
return
async def reset(self) -> None:
self._current_turn = 0
self._message_thread.clear()
if self._termination_condition is not None:
await self._termination_condition.reset()
self._current_speaker = self._participant_names[0]
async def select_speaker(self, thread: Sequence[BaseAgentEvent | BaseChatMessage]) -> List[str] | str:
"""Select a speaker from the participants based on handoff message.
Looks for the last handoff message in the thread to determine the next speaker.
.. note::
This method always returns a single speaker.
"""
if len(thread) == 0:
return [self._current_speaker]
for message in reversed(thread):
if isinstance(message, HandoffMessage):
self._current_speaker = message.target
# The latest handoff message should always target a valid participant.
assert self._current_speaker in self._participant_names
return [self._current_speaker]
return self._current_speaker
async def save_state(self) -> Mapping[str, Any]:
state = SwarmManagerState(
message_thread=[msg.dump() for msg in self._message_thread],
current_turn=self._current_turn,
current_speaker=self._current_speaker,
)
return state.model_dump()
async def load_state(self, state: Mapping[str, Any]) -> None:
swarm_state = SwarmManagerState.model_validate(state)
self._message_thread = [self._message_factory.create(message) for message in swarm_state.message_thread]
self._current_turn = swarm_state.current_turn
self._current_speaker = swarm_state.current_speaker
class SwarmConfig(BaseModel):
"""The declarative configuration for Swarm."""
participants: List[ComponentModel]
termination_condition: ComponentModel | None = None
max_turns: int | None = None
emit_team_events: bool = False
[docs]
class Swarm(BaseGroupChat, Component[SwarmConfig]):
"""A group chat team that selects the next speaker based on handoff message only.
The first participant in the list of participants is the initial speaker.
The next speaker is selected based on the :class:`~autogen_agentchat.messages.HandoffMessage` message
sent by the current speaker. If no handoff message is sent, the current speaker
continues to be the speaker.
Args:
participants (List[ChatAgent]): The agents participating in the group chat. The first agent in the list is the initial speaker.
termination_condition (TerminationCondition, optional): The termination condition for the group chat. Defaults to None.
Without a termination condition, the group chat will run indefinitely.
max_turns (int, optional): The maximum number of turns in the group chat before stopping. Defaults to None, meaning no limit.
custom_message_types (List[type[BaseAgentEvent | BaseChatMessage]], optional): A list of custom message types that will be used in the group chat.
If you are using custom message types or your agents produces custom message types, you need to specify them here.
Make sure your custom message types are subclasses of :class:`~autogen_agentchat.messages.BaseAgentEvent` or :class:`~autogen_agentchat.messages.BaseChatMessage`.
emit_team_events (bool, optional): Whether to emit team events through :meth:`BaseGroupChat.run_stream`. Defaults to False.
Basic example:
.. code-block:: python
import asyncio
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.teams import Swarm
from autogen_agentchat.conditions import MaxMessageTermination
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent(
"Alice",
model_client=model_client,
handoffs=["Bob"],
system_message="You are Alice and you only answer questions about yourself.",
)
agent2 = AssistantAgent(
"Bob", model_client=model_client, system_message="You are Bob and your birthday is on 1st January."
)
termination = MaxMessageTermination(3)
team = Swarm([agent1, agent2], termination_condition=termination)
stream = team.run_stream(task="What is bob's birthday?")
async for message in stream:
print(message)
asyncio.run(main())
Using the :class:`~autogen_agentchat.conditions.HandoffTermination` for human-in-the-loop handoff:
.. code-block:: python
import asyncio
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.teams import Swarm
from autogen_agentchat.conditions import HandoffTermination, MaxMessageTermination
from autogen_agentchat.ui import Console
from autogen_agentchat.messages import HandoffMessage
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent = AssistantAgent(
"Alice",
model_client=model_client,
handoffs=["user"],
system_message="You are Alice and you only answer questions about yourself, ask the user for help if needed.",
)
termination = HandoffTermination(target="user") | MaxMessageTermination(3)
team = Swarm([agent], termination_condition=termination)
# Start the conversation.
await Console(team.run_stream(task="What is bob's birthday?"))
# Resume with user feedback.
await Console(
team.run_stream(
task=HandoffMessage(source="user", target="Alice", content="Bob's birthday is on 1st January.")
)
)
asyncio.run(main())
"""
component_config_schema = SwarmConfig
component_provider_override = "autogen_agentchat.teams.Swarm"
# TODO: Add * to the constructor to separate the positional parameters from the kwargs.
# This may be a breaking change so let's wait until a good time to do it.
def __init__(
self,
participants: List[ChatAgent],
termination_condition: TerminationCondition | None = None,
max_turns: int | None = None,
runtime: AgentRuntime | None = None,
custom_message_types: List[type[BaseAgentEvent | BaseChatMessage]] | None = None,
emit_team_events: bool = False,
) -> None:
super().__init__(
participants,
group_chat_manager_name="SwarmGroupChatManager",
group_chat_manager_class=SwarmGroupChatManager,
termination_condition=termination_condition,
max_turns=max_turns,
runtime=runtime,
custom_message_types=custom_message_types,
emit_team_events=emit_team_events,
)
# The first participant must be able to produce handoff messages.
first_participant = self._participants[0]
if HandoffMessage not in first_participant.produced_message_types:
raise ValueError("The first participant must be able to produce a handoff messages.")
def _create_group_chat_manager_factory(
self,
name: str,
group_topic_type: str,
output_topic_type: str,
participant_topic_types: List[str],
participant_names: List[str],
participant_descriptions: List[str],
output_message_queue: asyncio.Queue[BaseAgentEvent | BaseChatMessage | GroupChatTermination],
termination_condition: TerminationCondition | None,
max_turns: int | None,
message_factory: MessageFactory,
) -> Callable[[], SwarmGroupChatManager]:
def _factory() -> SwarmGroupChatManager:
return SwarmGroupChatManager(
name,
group_topic_type,
output_topic_type,
participant_topic_types,
participant_names,
participant_descriptions,
output_message_queue,
termination_condition,
max_turns,
message_factory,
self._emit_team_events,
)
return _factory
[docs]
def _to_config(self) -> SwarmConfig:
participants = [participant.dump_component() for participant in self._participants]
termination_condition = self._termination_condition.dump_component() if self._termination_condition else None
return SwarmConfig(
participants=participants,
termination_condition=termination_condition,
max_turns=self._max_turns,
emit_team_events=self._emit_team_events,
)
[docs]
@classmethod
def _from_config(cls, config: SwarmConfig) -> "Swarm":
participants = [ChatAgent.load_component(participant) for participant in config.participants]
termination_condition = (
TerminationCondition.load_component(config.termination_condition) if config.termination_condition else None
)
return cls(
participants,
termination_condition=termination_condition,
max_turns=config.max_turns,
emit_team_events=config.emit_team_events,
)