Source code for autogen_ext.tools.langchain._langchain_adapter
from __future__ import annotations
import asyncio
import inspect
from typing import TYPE_CHECKING, Any, Callable, Dict, Type, cast
from autogen_core import CancellationToken
from autogen_core.tools import BaseTool
from pydantic import BaseModel, Field, create_model
if TYPE_CHECKING:
from langchain_core.tools import Tool as LangChainTool
[docs]
class LangChainToolAdapter(BaseTool[BaseModel, Any]):
"""Allows you to wrap a LangChain tool and make it available to AutoGen.
.. note::
This class requires the :code:`langchain` extra for the :code:`autogen-ext` package.
Args:
langchain_tool (LangChainTool): A LangChain tool to wrap
"""
def __init__(self, langchain_tool: LangChainTool):
self._langchain_tool: LangChainTool = langchain_tool
# Extract name and description
name = self._langchain_tool.name
description = self._langchain_tool.description or ""
# Determine the callable method
if hasattr(self._langchain_tool, "func") and callable(self._langchain_tool.func):
assert self._langchain_tool.func is not None
self._callable: Callable[..., Any] = self._langchain_tool.func
elif hasattr(self._langchain_tool, "_run") and callable(self._langchain_tool._run): # pyright: ignore
self._callable: Callable[..., Any] = self._langchain_tool._run # type: ignore
else:
raise AttributeError(
f"The provided LangChain tool '{name}' does not have a callable 'func' or '_run' method."
)
# Determine args_type
if self._langchain_tool.args_schema: # pyright: ignore
args_type = self._langchain_tool.args_schema # pyright: ignore
else:
# Infer args_type from the callable's signature
sig = inspect.signature(cast(Callable[..., Any], self._callable)) # type: ignore
fields = {
k: (v.annotation, Field(...))
for k, v in sig.parameters.items()
if k != "self" and v.kind not in (inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD)
}
args_type = create_model(f"{name}Args", **fields) # type: ignore
# Note: type ignore is used due to a LangChain typing limitation
# Ensure args_type is a subclass of BaseModel
if not issubclass(args_type, BaseModel):
raise ValueError(f"Failed to create a valid Pydantic v2 model for {name}")
# Assume return_type as Any if not specified
return_type: Type[Any] = object
super().__init__(args_type, return_type, name, description)
[docs]
async def run(self, args: BaseModel, cancellation_token: CancellationToken) -> Any:
# Prepare arguments
kwargs = args.model_dump()
# Determine if the callable is asynchronous
if inspect.iscoroutinefunction(self._callable):
result = await self._callable(**kwargs)
else:
# Run in a thread to avoid blocking the event loop
result = await asyncio.to_thread(self._call_sync, kwargs)
return result
def _call_sync(self, kwargs: Dict[str, Any]) -> Any:
return self._callable(**kwargs)