Source code for autogen_ext.tools.langchain._langchain_adapter

from __future__ import annotations

import asyncio
import inspect
from typing import TYPE_CHECKING, Any, Callable, Dict, Type, cast

from autogen_core import CancellationToken
from autogen_core.tools import BaseTool
from pydantic import BaseModel, Field, create_model

if TYPE_CHECKING:
    from langchain_core.tools import BaseTool as LangChainTool


[docs] class LangChainToolAdapter(BaseTool[BaseModel, Any]): """Allows you to wrap a LangChain tool and make it available to AutoGen. .. note:: This class requires the :code:`langchain` extra for the :code:`autogen-ext` package. .. code-block:: bash pip install -U "autogen-ext[langchain]" Args: langchain_tool (LangChainTool): A LangChain tool to wrap Examples: Use the `PythonAstREPLTool` from the `langchain_experimental` package to create a tool that allows you to interact with a Pandas DataFrame. .. code-block:: python import asyncio import pandas as pd from langchain_experimental.tools.python.tool import PythonAstREPLTool from autogen_ext.tools.langchain import LangChainToolAdapter from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_agentchat.messages import TextMessage from autogen_agentchat.agents import AssistantAgent from autogen_agentchat.ui import Console from autogen_core import CancellationToken async def main() -> None: df = pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv") # type: ignore tool = LangChainToolAdapter(PythonAstREPLTool(locals={"df": df})) model_client = OpenAIChatCompletionClient(model="gpt-4o") agent = AssistantAgent( "assistant", tools=[tool], model_client=model_client, system_message="Use the `df` variable to access the dataset.", ) await Console( agent.on_messages_stream( [TextMessage(content="What's the average age of the passengers?", source="user")], CancellationToken() ) ) asyncio.run(main()) This example demonstrates how to use the `SQLDatabaseToolkit` from the `langchain_community` package to interact with an SQLite database. It uses the :class:`~autogen_agentchat.team.RoundRobinGroupChat` to iterate the single agent over multiple steps. If you want to one step at a time, you can just call `run_stream` method of the :class:`~autogen_agentchat.agents.AssistantAgent` class directly. .. code-block:: python import asyncio import sqlite3 import requests from autogen_agentchat.agents import AssistantAgent from autogen_agentchat.conditions import TextMentionTermination from autogen_agentchat.teams import RoundRobinGroupChat from autogen_agentchat.ui import Console from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_ext.tools.langchain import LangChainToolAdapter from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit from langchain_community.utilities.sql_database import SQLDatabase from langchain_openai import ChatOpenAI from sqlalchemy import Engine, create_engine from sqlalchemy.pool import StaticPool def get_engine_for_chinook_db() -> Engine: url = "https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql" response = requests.get(url) sql_script = response.text connection = sqlite3.connect(":memory:", check_same_thread=False) connection.executescript(sql_script) return create_engine( "sqlite://", creator=lambda: connection, poolclass=StaticPool, connect_args={"check_same_thread": False}, ) async def main() -> None: # Create the engine and database wrapper. engine = get_engine_for_chinook_db() db = SQLDatabase(engine) # Create the toolkit. llm = ChatOpenAI(temperature=0) toolkit = SQLDatabaseToolkit(db=db, llm=llm) # Create the LangChain tool adapter for every tool in the toolkit. tools = [LangChainToolAdapter(tool) for tool in toolkit.get_tools()] # Create the chat completion client. model_client = OpenAIChatCompletionClient(model="gpt-4o") # Create the assistant agent. agent = AssistantAgent( "assistant", model_client=model_client, tools=tools, # type: ignore model_client_stream=True, system_message="Respond with 'TERMINATE' if the task is completed.", ) # Create termination condition. termination = TextMentionTermination("TERMINATE") # Create a round-robin group chat to iterate the single agent over multiple steps. chat = RoundRobinGroupChat([agent], termination_condition=termination) # Run the chat. await Console(chat.run_stream(task="Show some tables in the database")) if __name__ == "__main__": asyncio.run(main()) """ def __init__(self, langchain_tool: LangChainTool): self._langchain_tool: LangChainTool = langchain_tool # Extract name and description name = self._langchain_tool.name description = self._langchain_tool.description or "" # Determine the callable method if hasattr(self._langchain_tool, "func") and callable(self._langchain_tool.func): # type: ignore assert self._langchain_tool.func is not None # type: ignore self._callable: Callable[..., Any] = self._langchain_tool.func # type: ignore elif hasattr(self._langchain_tool, "_run") and callable(self._langchain_tool._run): # type: ignore self._callable: Callable[..., Any] = self._langchain_tool._run # type: ignore else: raise AttributeError( f"The provided LangChain tool '{name}' does not have a callable 'func' or '_run' method." ) # Determine args_type if self._langchain_tool.args_schema: # pyright: ignore args_type = self._langchain_tool.args_schema # pyright: ignore else: # Infer args_type from the callable's signature sig = inspect.signature(cast(Callable[..., Any], self._callable)) # type: ignore fields = { k: (v.annotation, Field(...)) for k, v in sig.parameters.items() if k != "self" and v.kind not in (inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD) } args_type = create_model(f"{name}Args", **fields) # type: ignore # Note: type ignore is used due to a LangChain typing limitation # Ensure args_type is a subclass of BaseModel if not issubclass(args_type, BaseModel): raise ValueError(f"Failed to create a valid Pydantic v2 model for {name}") # Assume return_type as Any if not specified return_type: Type[Any] = object super().__init__(args_type, return_type, name, description)
[docs] async def run(self, args: BaseModel, cancellation_token: CancellationToken) -> Any: # Prepare arguments kwargs = args.model_dump() # Determine if the callable is asynchronous if inspect.iscoroutinefunction(self._callable): return await self._callable(**kwargs) else: # Run in a thread to avoid blocking the event loop return await asyncio.to_thread(self._call_sync, kwargs)
def _call_sync(self, kwargs: Dict[str, Any]) -> Any: return self._callable(**kwargs)