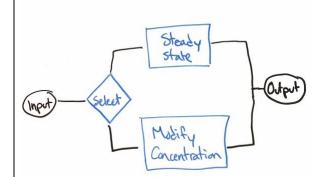
Chemical Process Optimization Sample Bonsai Brain- AI Solution Spec

Project start/end dates: Click here to enter a date.

Authors: Denise Feirstien

Rows/questions highlighted in yellow are required before project can begin.

Customer		Continuous Stirred Tank Reactor Optimization
Project Objective	What task/process are you looking to improve using deep reinforcement learning?	 A Continuous Stirred Tank Reactor (CSTR) is essentially a tank that has a stirring apparatus to continuously mix reactants inside. There can be a number of inlets feeding the reactor, and an outlet removing the reacted product. The reactor operates continuously, so during steady-state operation, we are continuously ending it reactants and removing product with a fixed conversion rate. This simple reactor is used in several applications, including chemical production and food and beverage manufacturing. In this sample, we are looking at an exothermic reaction, that produces heat, meaning the reactor temperature must be controlled to prevent thermal runaway, when the reactor becomes uncontrollably hot. The CSTR needs to operate under transient and steady state conditions. During continuous steady-state operation, the CSTR is producing a specified product. When the CSTR is state is difficult to control to reach the target concentration of the product while preventing thermal runaway. The transient state is difficult to control to reach the target concentration of the product while preventing thermal runaway. The objective of this Sample project is to train a brain(s) to provide coolant control settings for the CSTR to prevent thermal runaway during transition of residual concentration. Figure 1: CSTR Schematic


Business Value	What is the business value of improving the control/optimization of this system?	 Lower cooling costs Prevent thermal runawa Increase production by i 	y ncreasing conversion rate (decreasing residual concentration)
	What Key	Goal (KPI) Units	Description
Optimization Goal	Performance Indicators (KPI) define the control or optimization of this	Minimize RMS error None from reference Cr and Tr	Root mean squared (rms) error calculates the error from the reference at each timestep and aggregates the results throughout the chemical process (episode). Minimize root mean square of error (Reference residual concentration – actual residual concentration)
	system?	avoid thermal K runaway (>400K)	Avoid reactor temperature exceeding 400 K
		Method	Level
	How do you currently control or	Human Operator Expert System	
Current Methods	optimize the system?	Control Theory (PID, MPC) Advanced Process Control (APC) Optimization Techniques	Low-Level Control: Gain Scheduled PI, MPC C)

		Adap	tive PID does not perform well	when sensor noise is present		
			Limitation	Description		
			Ability to control well across scenarios / conditions	-	PI controller is only designed for one speci	fic transition
			Multiple or changing optimization goals			
Limitations of Current Methods	What are the challenges and limitations of the current method(s)?		Human Operator / Engineer Limitations	Limitation Difficulty managing many variables and dimensions. Difficulty adapting to changing conditions Large performance discrepancy between novice and expert operators Inconsistency across expert operators Adaptive PI fails to prevent thermal rur	Details	
			measurement of the inputs or the process make it difficult to control or optimize. Time to develop control or optimization system is prohibitive			
	Heuristics		nt variable list] trend in Th	is is what we think it means.	This is what you should do (to	

Concept Network Decomposition

The first two heuristics above point to a decomposition that leverages two explainable strategies.

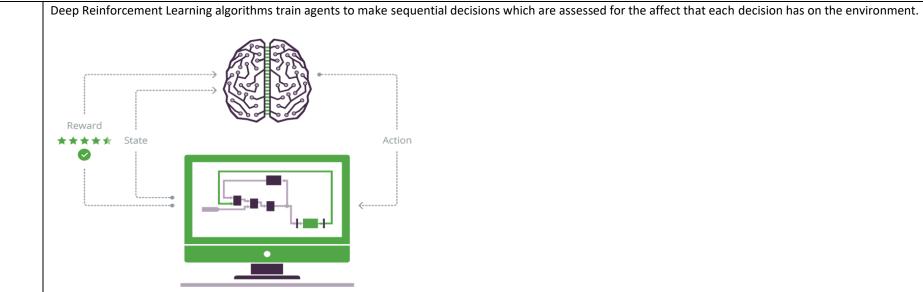
This architecture provides an additional layer of explain-ability so that the brain reports which strategy it is deploying in addition to the control actions.

Concept 1: Steady State

• This concept learns to maintain reactor temperature while the reactor produces a constant residual concentration of 8.57 kmol/m3

Concept 2: Modify Concentration

• This concept learns to regulate the reactor temperature during transition


Selector Concept: Select Strategy

• This concept decides which strategy to deploy.

	What actions will the brain need to	Level	Number of Actions	Description	
Control Actions	output to control or optimize your	Supervisory		The brain will provide supervisory set points.	
	system?	Low-level	1	Low-level control will remain with the APC controllers.]
				e brain will provide supervisory control actions, is there a low-level system (APC, MPC, ex vith the simulator and documented in the Simulation section below.	tc.) that must be included in the training loop? If yes, this

		Name	Data Type	Units	Control Frequency	Operating Range [min, max]	Description	
		dTc	Decimal	K/min	0.5 min	[-5, 5]	Change in coolant temperature at each timestep	
		reward scenar	io.		matter of minutes for most of the steady states and settle to steady s	-	the crusher and 15 minutes to get an average fragment the control frequency.	ntation time. We do not have a delayed
Constraints	What constraints are placed on the control actions by the system or the process?			•	an change no more tha ure is 297.9798 K for an ini		therefore dTc is constrained to [-5, 5] (for Ts= ntration of 8.57 kmol/m3	0.5min)

		Name	Data Type	Source	Units	Measurement Frequency	Operating Range [min, max]	Description
		Cr	Decimal	Simulation	Kmol/m3	[frequency]	[0.1, 12]	This is the actual residual concentration produced by the reactor
		Tr	Decimal	Simulation	Kelvin	[frequency]	[10, 800]	This is the actual reactor Temperature
		Cref	Decimal	Simulation	Kmol/m3	[frequency]	[0.1, 12]	The reference residual concentration is the desired concentration at every time step
		Tref	Decimal	Simulation	Kelvin	[frequency]	[10, 800]	The reference reactor temperature is the desired reactor temperature at every time step
	What information	dTc	Decimal	Simulation	Kmol/m3	[frequency]	[-287.9798, 502.0202]	The change of coolant temperature from initial coolant temperature (at the beginning of simulation)
Environment	do we need to pass to the brain about the system and its	Тс	Decimal	Simulation	Kelvin	[frequency]	[10, 800]	The coolant temperature of the reactor cooling jacket. At each timestep, Tc = dTc + initial coolant temperature (297.9798 K)
States	environment for the brain to learn to control or optimize the system?							

Deep Reinforcement Learning

For each concept that we will train using Deep Reinforcement Learning, we outline the sequential decision

Concept	Action	State : How does the Environment change when the control actions are taken?	Reward	Configuration : What do we need to vary in the training to ensure that the brain works well across scenarios?
Steady State	Change coolant temperature	Each time a decision is made to the coolant temperature, the Cr and Tr change.	 Minimize error of Cr Avoid thermal runaway 	• Noise
Modify Concentration	Change coolant temperature	Each time a decision is made to the coolant temperature, the Cr and Tr change.	 Minimize error of Cr Avoid thermal runaway 	• Noise
Selector	Change coolant temperature	Each time a decision is made to the coolant temperature, the Cr and Tr change.	 Minimize error of Cr Avoid thermal runaway 	 Noise When transition from Steady State to Transient conditions occurs

				L) can produce brain(s) that control well across a wide range of scenarios and is particularly suitable for situations where the distribution of the narios is unknown and / or non-linear.
		Configuration Variable	Range [min, max]	Description
		Noise	[0, 100]	Amount of gaussian noise added to the Cr and Tr of the system
Configuration Scenarios	What scenarios should the trained brain be able to control across?	Cref signal	[1, 5]	The Cref signal defines the desired trajectory of the Cref and Tref for an episode. The following 5 singals are defined:1: Concentration transition> 8.57 to 2.000 over [0, 0, 26, 90] (minutes) – 0 delay2: Concentration transition> 8.57 to 2.000 over [0, 10, 36, 90] (minutes) – 10 min delay3: Concentration transition> 8.57 to 2.000 over [0, 20, 46, 90] (minutes) – 20 min delay4: Concentration transition> 8.57 to 2.000 over [0, 30, 56, 90] (minutes) – 30 min delay5: Steady State> 8.57
			-	trol actions (90 minutes simulated) control actions (90 minutes simulated)
		KPI	Error of Residua	Il Concentration (RMS of error from reference), Thermal Runaway condition
<mark>Success Criteria</mark>	What criteria will we use to determine the success of the project and how will	Benchmark Comparison		e compared to a gain-scheduled PI controller
	we measure that success criteria?	Benchmark Scenarios	Configuration Variable Noise Reference Single	UnitsPriorityRange or Description%10%, 5%, and 10% noisenone1Benchmark will only be run for Cref single 2

	Benchmark Procedure	Procedure Simulation	Duration	
	Procedure		[Benchmark Duration in Simulation]	
		A/B Testing on	[A/B Testing on Live System]	
		Live System		
	Optimization Improvement	[success criteria expressed	in % improvement over current methods]	
	Return on Investment	[success criteria expressed	in return on investment (ROI)]	
	(ROI) Project Readout and Deliverables	[expected deliverables beside	des the brain(s) and a PowerPoint readout report]	
		Delivery Date	[Sim Delivery Date]	
		Validation Date	[Sim Validation Date]	
	Readiness	Sim Builder	[Sim Builder]	
Simulation		Integration with Microsoft Machine Teaching Service	SDK3	
		Vendor		
		Product (Version)	N/A, custom sim	
	Туре	Software Language API Interface	Python	
		Speed	Less than 1 second per iteration	

		Method	Description
Modeling Method		Method Physics Based (First Principles) Discrete Event Surrogate Model Model from Data	Description Mathwork Simulink model of CSTR The amount (number of rows) of data required to create a simulation model from data varies, but use the following rule of thumb as an absolute minimum: the number of possible states x the number of possible actions. For example, if there are 10 possible actions and 100 possible states, you'd need 1,000 rows of data at minimum to build a model. Model Accuracy & Robustness The model should be validated across the ranges for each of the control actions and environment states listed above. Enter the accuracy of the model for each of the features. Feature Accuracy [One row for each control action and environment state] [% Error] State Space Completion State Space Parameter Sweep
Connection	contro Is a hi Are th [Can	ol frequency? gh-level contro here any other this software co	Synthetic State Space Estimation [data volume] essages (input and output) with the simulation model at the simulated I system diagram from sensors to actuators available? bieces required, beside the simulator, to run the training loop?
Configuration Parallelization	[Can v	we input config	figuration scenarios programmatically into the simulation model? uration scenarios programmatically into the simulation model?] or 1000 copies of your simulation in the Azure cloud?
(Licensing)	[Can v	we run the simi	lation in the Azure Cloud?]

		Simulation to Reality	by human opera What is the erro real system acro [% error]	tors in producti r percentage the ss all scenarios	used to design a control system, an optimization system or used on to control the system. No. at describes the accuracy between the simulation model and the and equipment that will be controlled by the brain? ades, especially if it will need to be upgraded for use with Bonsa	
		Simulation Validation	the real-world d	vnamics? the validation c	ns in the sim that would change the sim dynamics as compared t data against your sim? ries?	2
					rnal data sources?	
			parameters on t		eded to setup the model to run headlessly, ideally using only ent (Main)?	
		Туре				
		Type Liner Predictor	parameters on t	he top level age Model	ent (Main)?	
	Will Machine Learning (ML)		parameters on the parameters o	Model Accuracy [model	Description	
Supplementary Decision Models		Liner Predictor ROM Bin Input	parameters on the parameters o	Model Accuracy [model accuracy] [model	Description [description]	
	Learning (ML) models or other decision-making technology be used	Liner Predictor ROM Bin Input Predictor COB Bin Output	parameters on the second secon	Model Accuracy [model accuracy] [model accuracy] [model [model	Image: Contract of the second seco	

Deli	very Date	[Delivery Date]
Valid	ation Date	[Validation Date]
Mod	lel Builder	
Micros	ration with oft Machine iing Service	Python SDK2

		Is the deployment interface and protocol defined and ready? If it does not exist, what is the delivery date?				
Deployment	How will the brain interface with your system? (select & respond to one or multiple options below)		Decision Support	Human engineers, operators or analysts will continue to control and automate my system augmented by brain decisions. Cloud Deployment Edge Deployment Integration with OT environment will be through existing IoT/OPC Gateway Edge infrastructure enabled to host containers, within the IT environment. Decision Delivery Mechanism Description Spreadsheet or other Integration with current Integration with current Integration with current		
			<mark>Direct</mark> Control	The brain will connect to the system directly to automate the control or optimization. Cloud Deployment Edge Deployment Embedded Deployment For Edge and Embedded Deployments: Device Type [Device Type] Number of Devices [Number of Devices] Device Lifecycle [Device Lifecycle] Docker Support [Docker Support] Processor [Processor] Connection Protocol [Connection Protocol] Integrator [Integration Delivery Date]		

Team		Executive Sponsor	[Executive Sponsor Name]
		Machine Teacher	[Machine Teacher Name]
		Data Scientist (Optional)	[Data Scientist Name]
		Subject Matter Expert	[Subject Matter Expert Name]
		Simulation Expert	[Simulation Expert Name]
		Deployment Expert	[Deployment Expert Team]
		IT	[IT Contact Name]
		Project Team	[]
		Services Partner	[Services Partner Team]
		Microsoft Applied AI Engineer	[Project Applied Al Engineer]
		Microsoft Technical Program Manager	[Project Technical Program Manager]
		Microsoft Account Team	[Account Executive, Account Technical Strategist Names]
		Microsoft CSA	[CSA Name]
Azure Infrastructure		Azure Subscription	[Subscription ID]
		Other Azure Services Required	[List of Azure Services]

Will Microsoft be given access to the customer's Azure subscription?	