Moab Ball Balance Sample Bonsai Brain- Al Solution Spec

Project start/end dates: Click here to enter a date.

Authors: John Alexander

Customer		Moab Device Ball Balance
Project Objective	What task/process are you looking to improve using deep reinforcement learning?	 The device (shown in Figure 1) has three arms powered by servo motors and runs off a Baspberry Pi 4. These arms work in tandem to control the angle of the transparent plate to keep the ball balanced. The Moab device tracks and maps the ball movement onto a standard 2D coordinate system (shown in Figure 2) using computer vision. Looking at the front the of the device, the -xaxis runs flet-to-right, and the -xaxis runs front-to-back, with the plate center at location (0, 0), and a radius of r. The trained AI must learn how to adjust the angle of the plate to balance a ball.
Business value	value of improving the	Improved balancing reduces energy consumption and wear on motors

	control/optimization of this system?	Reduced time to balance leads to more efficient demos
Optimization Goal	What Key Performance Indicators (KPI) define the control or optimization of this system?	Goal (KPI)UnitsDescriptionSettling timesecondsAmount of time it takes the ball to reach the center of the plate and stay there
Current Methods	How do you currently control or optimize the system?	MethodLevelHuman OperatorExpert SystemKXControl Theory (PID, MPC)Low-Level Control: PIDAdvanced Process Control (APC)Optimization Techniques

			Limitation Ability to control well across	Description							
			scenarios / conditions								
			Multiple or changing optimization goals								
			Human Operator / Engineer Limitations	Limitation Details Difficulty managing many variables and dimensions. Difficulty in the standard dimensions.							
				Conditions							
	What are the			Large performance . discrepancy between novice and expert operators							
Current Methods	rent Methods challenges and limitations of the current method(s)?			Inconsistency across expert operators							
			Uncertainty in the measurement of the inputs or the process make it difficult to control or optimize.								
			Time to develop control or optimization system is prohibitive								
Machine Teaching Strategy	Concept Decon	oncept Decomposition - Monolithic									

	Inpu	t - Ball F	 Ball position preprocessing Ball Position tracking 									
		provi prepi	provided by image preprocessor									
	Concept 1: Move 1 • The traine	o Center ed AI must learn l he ball position (he ball position)	now to adjus (x, y) will rea will not get r	ot the plate ch the plate near the pla	pitch and roll to balance a ball using e center at (0, 0) and stay there. te edge at ((x, y) - (0, 0) << r).	g the following	objectives (as referenced in Figure 2):					
	What actions will the brain need to output	Level Supervis X Low-leve	Num Actic ory el 2	ber of ons	Description The brain will provide supervisory s Low-level control will remain with t	set points. the servo contro	ollers.					
Control Actions	to control or optimize your system?	Name input_pitch	Data Type Decimal	Units radians	Control Frequency 30 Hz: 0.0333333333333333333	Operating Range [min, max] [-1,1]	Description Change in pitch of the full plate rotation range					
		input_roll	Decimal	radians	s(p) 30 Hz: 0.033333333333333 s(p)	[-1,1]	supported by the hardware.at each timestep Change in roll of the full plate rotation range supported by the hardware.at each timestep					

<mark>Constraints</mark>	What constraints are placed on the control actions by the system or the process?							
		Name	Data Type	Source	Units	Measurement Frequency	Operating Range [min, max]	Description
		ball_x	Decimal	Simulation	meters	[frequency]	[-0.3825 <i>,</i> 0.3825]	position of ball from center of plate along x-axis
		ball_y	Decimal	Simulation	meters	[frequency]	[-0.3825 <i>,</i> 0.3825]	position of ball from center of plate along y-axis
		ball_vel_x	Decimal	Simulation	meters/sec	[frequency]	[-6.0, 6.0]	X-velocity of ball
		ball_vel_y	Decimal	Simulation	meters/sec	[frequency]	[-6.0, 6.0]	Y- velocity of ball
Environment States	What information do we need to pass to the brain about the system and its environment for the brain to learn to control or optimize the system?							

<mark>Deep</mark>

For each concept that we will train using Deep Reinforcement Learning, we outline the sequential decision.

Concept	Action	State: How does the Environment change when the control actions are taken?	Reward	Configuration : What do we need to vary in the training to ensure that the brain works well across scenarios?
Move To Center	Adjust plate pitch and roll	Each time a decision is made the ball position and velocity changes	 Avoid Fall Off Plate - Ball's distance from the center must not reach values above 80% of the plate radius. Drive Center Of Plate - Ball's X and Y coordinates (state.ball_x and state.ball_y) must stay within CloseEnough radial distance from the plate center. 	 Initial ball conditions (initial_x, initial_y) Initial ball velocity conditions (initial_vel_x, initial_vel_y) Initial plate conditions (initial_pitch, initial_roll) Optional for Robustness: Ball properties (shell and radius)

		Deep Reinforcen variables in the c	nent Learning (DR configuration scen	L) can produce brain(s) that control well across a wide range of scenarios and is particularly suitable for situations where the distribution of the arios is unknown and / or non-linear.				
		Configuration Variable	Range [min, maxl	Description				
		initial_x:	[-0.05625, 0.05625]	Ball X position				
		initial_y:	[-0.05625, 0.05625]	Ball Y position				
Configuration	What scenarios should the trained	initial_vel_x:	[-0.02, 0.02]	Ball X velocity				
Scenarios	brain be able to control across?	initial_vel_y:	[-0.02, 0.02]	Ball Y velocity				
		initial_pitch	[-0.2, 0.2]	Plate pitch				
		initial_roll	[-0.2, 0.2]	Plate roll				
		Training Episode	e Length: 250 cont	rol actions				
		Benchmark Epis	ode Length: 180	control actions				
		KDI	Ball in center of	nlate				
<mark>Success Criteria</mark>	What criteria will we use to determine the success of the project and how will we measure that success criteria?	Benchmark Comparison	The brain will be	e compared to a PID controller				

		Benchmark Scenarios	Configuration Variable	Units	Priority	Range or Description	
		Benchmark Procedure	Proced ⊠ Simulat x□ A/B Test Live System	ure ion sting on stem	Duration [Benchma [A/B Test	ark Duration in Simulation] ting on Live System]	
		Optimization Improvement Return on Investment (ROI)	[success criteria	expressed expressed	in % improve in return on	ement over current methods] investment (ROI)]	
		Project Readout and Deliverables	expected delive	erables besi	des the brain	n(s) and a PowerPoint readout report]	
Circulation			Delivery	/ Date	[Sim Deliv	ivery Date]	
Simulation		Readiness	Validatio	n Date	[Sim Valio	dation Date]	
			Sim Bu	ilder	[Sim Build	der]	
			Integratio Microsoft Teaching	on with Machine Service	SDK3		

		Vendor		
	F	Product (Versio	on)	N/A, custom sim
Туре	S	oftware Langu API Interface	age	Python
		Speed		Less than 1 second per iteration
		Method	Descri	intion
Modeling Method		Physics Based (First Principles) Discrete Event Surrogate Model from Data	Pythor Pythor The an model absolu possib model The m actions model Model The m actions model State	n simulator of Moab mount (number of rows) of data required to create a simulation I from data varies, but use the following rule of thumb as an ute minimum: the number of possible states x the number of ble actions. For example, if there are 10 possible actions and 100 ble states, you'd need 1,000 rows of data at minimum to build a i. I Accuracy & Robustness model should be validated across the ranges for each of the control is and environment states listed above. Enter the accuracy of the I for each of the features. ture Accuracy e row for each control action and [% Error] ironment state] Space Completion Procedure Rows of Data State Space Parameter Sweep [data volume]
	Can w	e exchange me	essages	Synthetic State Space Estimation[data volume](input and output) with the simulation model at the simulated
Connection	contro	ol frequency?		
	Is a hi	gh-level contro	l system	n diagram from sensors to actuators available?

		Are there any other pieces required, beside the simulator, to run the training loop?	
		[Can this software connect for input and output on the inner loop?]	
		Can we input the configuration scenarios programmatically into the simulation model?	
	Configuration		
		[Lan we input configuration scenarios programmatically into the simulation model?]	ł
	Parallelization	can we run 10, 100 or 1000 copies of your simulation in the Azure cloud?	
	(Licensing)	[Can we run the simulation in the Azure Cloud?]	
	Simulation to	Has the simulation model been used to design a control system, an optimization system or used	
	Reality	by human operators in production to control the system. No.	
		What is the error percentage that describes the accuracy between the simulation model and the real system across all scenarios and equipment that will be controlled by the brain?	1
		[% error]	
		Do you plan any simulator upgrades, especially if it will need to be upgraded for use with Bonsai?	
			l
	Simulation	Are there any major accumptions in the sim that would change the sim dynamics as compared to	l
	validation	the real-world dynamics?	l
			l
		Can you provide the validation data against your sim?	
		Are there energial external libraries?	
		Are there special, external libraries?	
		Does the model connect to external data sources?	
			1
		How many workarounds are needed to setup the model to run headlessly, ideally using only	1
		parameters on the top level agent (Main)?	l

		Туре	Training D	ata	Model	Description							
					Accuracy								
		Liner Predictor	[training d	ata]	[model	[description]							
					accuracy]								
		ROM Bin Input	[training d	ata]	[model	[description]							
		Predictor			accuracy]								
		COB Bin	[training d	ata]	[model	[description]							
		Output			accuracy]								
	Will Machine	Predictor											
	Learning (ML)	Rock Hardness	Iness [training dat		[model	[description]							
Supplementary	models or other	Predictor			accuracy								
Decision Models	technology be used	Maximum	[training d	atal	Ímodel	[description]							
	to supplement the	Safe Crusher	[0.0111.0		accuracvl	[
	environment state from the simulator?	Gap Predictor			,,								
		· · · ·	•			- ·							
		Delivery I	Date	[Deliv	very Date]								
								Validation	Date	[Valid	dation Date]		
		Model Bu	Model Builder										
		Integratior Microsoft M Teaching So	Integration with Pythe Microsoft Machine Teaching Service		n SDK2								

		Is the If it do	the deployment interface and protocol defined and ready?								
Deployment	How will the brain interface with your system? (select & respond to one or		Decision Support	Human engineers, operators or analysts will continue to control and automate my system augmented by brain decisions. Cloud Deployment Edge Deployment Integration with OT environment will be through existing IoT/OPC Gateway Edge infrastructure enabled to host containers, within the IT environment. Decision Delivery Mechanism Description Spreadsheet or other Integration with current Integration with current Integration with current							
	multiple options below)		Direct Control	The brain will connect to the system directly to automate the control or optimization. Cloud Deployment Edge Deployment Embedded Deployment For Edge and Embedded Deployments: Device Type [Device Type] Number of Devices [Number of Devices] Device Lifecycle [Device Lifecycle] Docker Support [Docker Support] Processor [Processor] Connection Protocol [Connection Protocol] Integrator [Integrator] Integration Delivery Date [Integration Delivery Date]							

Team		Executive Sponsor	[Executive Sponsor Name]
		Machine Teacher	[Machine Teacher Name]
		Data Scientist (Optional)	[Data Scientist Name]
		Subject Matter Expert	[Subject Matter Expert Name]
		Simulation Expert	[Simulation Expert Name]
		Deployment Expert	[Deployment Expert Team]
		IT	[IT Contact Name]
		Project Team	0
		Services Partner	[Services Partner Team]
		Microsoft Applied AI Engineer	[Project Applied Al Engineer]
		Microsoft Technical Program Manager	[Project Technical Program Manager]
		Microsoft Account Team	[Account Executive, Account Technical Strategist Names]
		Microsoft CSA	[CSA Name]
Azure Infrastructure		Azure Subscription	[Subscription ID]
		Other Azure Services Required	[List of Azure Services]
		L	1

	Will Microsoft be given access to the customer's Azure subscription?