Skip to content

Parameterization

To handle environment-specific values committed to git, use a parameter.yml file. This file supports programmatically changing values based on the environment field passed into the FabricWorkspace object. If the environment value is not found in the parameter.yml file, any dependent replacements will be skipped. This file should sit in the root of the repository_directory folder specified in the FabricWorkspace object.

Example of parameter.yml location based on provided repository directory:

from fabric_cicd import FabricWorkspace
workspace = FabricWorkspace(
    workspace_id="your-workspace-id",
    repository_directory="C:/dev/workspace",
    item_type_in_scope=["Notebook"]
)
C:/dev/workspace
    /HelloWorld.Notebook
        ...
    /GoodbyeWorld.Notebook
        ...
    /parameter.yml

Raise a feature request for additional parameterization capabilities.

Inputs

find_replace

For generic find-and-replace operations. This will replace every instance of a specified string in every file. Specify the find value as the key and the replace value for each environment.

Note: A common use case for this function is to replace connection strings, e.g., find and replace a connection GUID referenced in a data pipeline.

find_replace:
    <find-this-value>:
        <environment-1>: <replace-with-this-value>
        <environment-2>: <replace-with-this-value>

spark_pool

Environments attached to custom spark pools need to be parameterized because the instance-pool-id in the Sparkcompute.yml file isn't supported in the create/update environment APIs. Provide the instance-pool-id as the key, and the pool type and name as the values.

Environment parameterization (PPE/PROD) is not supported. If needed, raise a feature request.

spark_pool:
    <instance-pool-id>:
        type: <Capacity-or-Workspace>
        name: <pool-name>

Sample File

An exhaustive example of all capabilities currently supported in the parameter.yml file.

find_replace:
    "123e4567-e89b-12d3-a456-426614174000": # lakehouse GUID to be replaced
        PPE: "f47ac10b-58cc-4372-a567-0e02b2c3d479" # PPE lakehouse GUID
        PROD: "9b2e5f4c-8d3a-4f1b-9c3e-2d5b6e4a7f8c" # PROD lakehouse GUID
    "8f5c0cec-a8ea-48cd-9da4-871dc2642f4c": # workspace ID to be replaced
        PPE: "d4e5f6a7-b8c9-4d1e-9f2a-3b4c5d6e7f8a" # PPE workspace ID
        PROD: "a1b2c3d4-e5f6-7a8b-9c0d-1e2f3a4b5c6d" # PROD workspace ID

spark_pool:
    "72c68dbc-0775-4d59-909d-a47896f4573b": # spark_pool_instance_id to be replaced
        type: "Capacity" # target spark pool type, only supports Capacity or Workspace
        name: "CapacityPool_Large" # target spark pool name
    "e7b8f1c4-4a6e-4b8b-9b2e-8f1e5d6a9c3d": # spark_pool_instance_id to be replaced
        type: "Workspace" # target spark pool type, only supports Capacity or Workspace
        name: "WorkspacePool_Medium" # target spark pool name

Examples

Notebooks

A Notebook is attached to a Lakehouse which resides in different workspaces. The Workspace and Lakehouse GUIDs in the Notebook need to be updated to ensure the Notebook points to the correct Lakehouse once deployed.

In the notebook-content.py file, the default_lakehouse 123e4567-e89b-12d3-a456-426614174000, and default_lakehouse_workspace_id 8f5c0cec-a8ea-48cd-9da4-871dc2642f4c must be replaced with the corresponding GUIDs of the Lakehouse in the target environment (PPE/Prod/etc).

This replacement is managed by the find_replace input in the parameter.yml file where fabric-cicd finds every instance of the string within the repository files and replaces it with the string for the deployed environment.

parameter.yml file

find_replace:
    "123e4567-e89b-12d3-a456-426614174000": # lakehouse GUID to be replaced
        PPE: "f47ac10b-58cc-4372-a567-0e02b2c3d479" # PPE lakehouse GUID
        PROD: "9b2e5f4c-8d3a-4f1b-9c3e-2d5b6e4a7f8c" # PROD lakehouse GUID
    "8f5c0cec-a8ea-48cd-9da4-871dc2642f4c": # workspace ID to be replaced
        PPE: "d4e5f6a7-b8c9-4d1e-9f2a-3b4c5d6e7f8a" # PPE workspace ID
        PROD: "a1b2c3d4-e5f6-7a8b-9c0d-1e2f3a4b5c6d" # PROD workspace ID

notebook-content.py file

# Fabric notebook source

# METADATA ********************

# META {
# META   "kernel_info": {
# META     "name": "synapse_pyspark"
# META   },
# META   "dependencies": {
# META     "lakehouse": {
# META       "default_lakehouse": "123e4567-e89b-12d3-a456-426614174000",
# META       "default_lakehouse_name": "Example_LH",
# META       "default_lakehouse_workspace_id": "8f5c0cec-a8ea-48cd-9da4-871dc2642f4c"
# META     },
# META     "environment": {
# META       "environmentId": "a277ea4a-e87f-8537-4ce0-39db11d4aade",
# META       "workspaceId": "00000000-0000-0000-0000-000000000000"
# META     }
# META   }
# META }

# CELL ********************

df = spark.sql("SELECT * FROM Example_LH.Table1 LIMIT 1000")
display(df)

# METADATA ********************

# META {
# META   "language": "python",
# META   "language_group": "synapse_pyspark"
# META }

Environments

An Environment is attached to a Capacity level Custom Pool. Source control for Environments does not output the right fields necessary to deploy, so the Spark Pool needs to be parameterized. For now, the recommendation is to maintain the same pool name in all environments. Defining different names per environment is currently not supported in the parameter.yml file.

In the Sparkcompute.yaml file, the referenced instance_pool_id 72c68dbc-0775-4d59-909d-a47896f4573b points to a capacity custom pool named CapacityPool_Large of pool type Capacity.

This replacement is managed by the spark_pool input in the parameter.yml file where fabric-cicd finds every instance of the instance_pool_id and replaces it with the pool type and pool name.

parameter.yml file

spark_pool:
    "72c68dbc-0775-4d59-909d-a47896f4573b": # spark_pool_instance_id to be replaced
        type: "Capacity" # target spark pool type, only supports Capacity or Workspace
        name: "CapacityPool_Large" # target spark pool name

Sparkcompute.yml

enable_native_execution_engine: false
instance_pool_id: 72c68dbc-0775-4d59-909d-a47896f4573b
driver_cores: 16
driver_memory: 112g
executor_cores: 16
executor_memory: 112g
dynamic_executor_allocation:
    enabled: false
    min_executors: 31
    max_executors: 31
runtime_version: 1.3