Get Final Trained Models
get_trained_models(run_info)
run info using the set_run_info()
function
table of final trained models
# \donttest{
data_tbl <- timetk::m4_monthly %>%
dplyr::rename(Date = date) %>%
dplyr::mutate(id = as.character(id)) %>%
dplyr::filter(
id == "M2",
Date >= "2012-01-01",
Date <= "2015-06-01"
)
run_info <- set_run_info()
#> Finn Submission Info
#> • Experiment Name: finn_fcst
#> • Run Name: finn_fcst-20241029T144902Z
#>
prep_data(run_info,
input_data = data_tbl,
combo_variables = c("id"),
target_variable = "value",
date_type = "month",
forecast_horizon = 3,
recipes_to_run = "R1"
)
#> ℹ Prepping Data
#> ✔ Prepping Data [424ms]
#>
prep_models(run_info,
models_to_run = c("arima", "ets"),
num_hyperparameters = 1
)
#> ℹ Creating Model Workflows
#> ✔ Creating Model Workflows [94ms]
#>
#> ℹ Creating Model Hyperparameters
#> ✔ Creating Model Hyperparameters [92ms]
#>
#> ℹ Creating Train Test Splits
#> ℹ Turning ensemble models off since no multivariate models were chosen to run.
#> ℹ Creating Train Test Splits
#> ✔ Creating Train Test Splits [388ms]
#>
train_models(run_info,
run_global_models = FALSE,
run_local_models = TRUE
)
#> ℹ Training Individual Models
#> ✔ Training Individual Models [14.4s]
#>
final_models(run_info,
average_models = FALSE
)
#> ℹ Selecting Best Models
#> ✔ Selecting Best Models [292ms]
#>
models_tbl <- get_trained_models(run_info)
# }