Global Search
In [1]:
Copied!
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License.
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License.
In [2]:
Copied!
import os
import pandas as pd
import tiktoken
from graphrag.config.enums import ModelType
from graphrag.config.models.language_model_config import LanguageModelConfig
from graphrag.language_model.manager import ModelManager
from graphrag.query.indexer_adapters import (
read_indexer_communities,
read_indexer_entities,
read_indexer_reports,
)
from graphrag.query.structured_search.global_search.community_context import (
GlobalCommunityContext,
)
from graphrag.query.structured_search.global_search.search import GlobalSearch
import os
import pandas as pd
import tiktoken
from graphrag.config.enums import ModelType
from graphrag.config.models.language_model_config import LanguageModelConfig
from graphrag.language_model.manager import ModelManager
from graphrag.query.indexer_adapters import (
read_indexer_communities,
read_indexer_entities,
read_indexer_reports,
)
from graphrag.query.structured_search.global_search.community_context import (
GlobalCommunityContext,
)
from graphrag.query.structured_search.global_search.search import GlobalSearch
Global Search example¶
Global search method generates answers by searching over all AI-generated community reports in a map-reduce fashion. This is a resource-intensive method, but often gives good responses for questions that require an understanding of the dataset as a whole (e.g. What are the most significant values of the herbs mentioned in this notebook?).
LLM setup¶
In [3]:
Copied!
api_key = os.environ["GRAPHRAG_API_KEY"]
llm_model = os.environ["GRAPHRAG_LLM_MODEL"]
config = LanguageModelConfig(
api_key=api_key,
type=ModelType.OpenAIChat,
model=llm_model,
max_retries=20,
)
model = ModelManager().get_or_create_chat_model(
name="global_search",
model_type=ModelType.OpenAIChat,
config=config,
)
token_encoder = tiktoken.encoding_for_model(llm_model)
api_key = os.environ["GRAPHRAG_API_KEY"]
llm_model = os.environ["GRAPHRAG_LLM_MODEL"]
config = LanguageModelConfig(
api_key=api_key,
type=ModelType.OpenAIChat,
model=llm_model,
max_retries=20,
)
model = ModelManager().get_or_create_chat_model(
name="global_search",
model_type=ModelType.OpenAIChat,
config=config,
)
token_encoder = tiktoken.encoding_for_model(llm_model)
Load community reports as context for global search¶
- Load all community reports in the
community_reports
table from GraphRAG, to be used as context data for global search. - Load entities from the
entities
tables from GraphRAG, to be used for calculating community weights for context ranking. Note that this is optional (if no entities are provided, we will not calculate community weights and only use the rank attribute in the community reports table for context ranking) - Load all communities in the
communities
table from the GraphRAG, to be used to reconstruct the community graph hierarchy for dynamic community selection.
In [4]:
Copied!
# parquet files generated from indexing pipeline
INPUT_DIR = "./inputs/operation dulce"
COMMUNITY_TABLE = "communities"
COMMUNITY_REPORT_TABLE = "community_reports"
ENTITY_TABLE = "entities"
# community level in the Leiden community hierarchy from which we will load the community reports
# higher value means we use reports from more fine-grained communities (at the cost of higher computation cost)
COMMUNITY_LEVEL = 2
# parquet files generated from indexing pipeline
INPUT_DIR = "./inputs/operation dulce"
COMMUNITY_TABLE = "communities"
COMMUNITY_REPORT_TABLE = "community_reports"
ENTITY_TABLE = "entities"
# community level in the Leiden community hierarchy from which we will load the community reports
# higher value means we use reports from more fine-grained communities (at the cost of higher computation cost)
COMMUNITY_LEVEL = 2
In [5]:
Copied!
community_df = pd.read_parquet(f"{INPUT_DIR}/{COMMUNITY_TABLE}.parquet")
entity_df = pd.read_parquet(f"{INPUT_DIR}/{ENTITY_TABLE}.parquet")
report_df = pd.read_parquet(f"{INPUT_DIR}/{COMMUNITY_REPORT_TABLE}.parquet")
communities = read_indexer_communities(community_df, report_df)
reports = read_indexer_reports(report_df, community_df, COMMUNITY_LEVEL)
entities = read_indexer_entities(entity_df, community_df, COMMUNITY_LEVEL)
print(f"Total report count: {len(report_df)}")
print(
f"Report count after filtering by community level {COMMUNITY_LEVEL}: {len(reports)}"
)
report_df.head()
community_df = pd.read_parquet(f"{INPUT_DIR}/{COMMUNITY_TABLE}.parquet")
entity_df = pd.read_parquet(f"{INPUT_DIR}/{ENTITY_TABLE}.parquet")
report_df = pd.read_parquet(f"{INPUT_DIR}/{COMMUNITY_REPORT_TABLE}.parquet")
communities = read_indexer_communities(community_df, report_df)
reports = read_indexer_reports(report_df, community_df, COMMUNITY_LEVEL)
entities = read_indexer_entities(entity_df, community_df, COMMUNITY_LEVEL)
print(f"Total report count: {len(report_df)}")
print(
f"Report count after filtering by community level {COMMUNITY_LEVEL}: {len(reports)}"
)
report_df.head()
Total report count: 2 Report count after filtering by community level 2: 2
Out[5]:
id | human_readable_id | community | level | parent | children | title | summary | full_content | rank | rating_explanation | findings | full_content_json | period | size | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 6c3a555680d647ac8be866a129c7b0ea | 0 | 0 | 0 | -1 | [] | Operation: Dulce and Dulce Base Exploration | The community revolves around 'Operation: Dulc... | # Operation: Dulce and Dulce Base Exploration\... | 8.5 | The impact severity rating is high due to the ... | [{'explanation': 'Operation: Dulce is a signif... | {\n "title": "Operation: Dulce and Dulce Ba... | 2025-03-04 | 7 |
1 | 0127331a1ea34b8ba19de2c2a4cb3bc9 | 1 | 1 | 0 | -1 | [] | Paranormal Military Squad and Operation: Dulce | The community centers around the Paranormal Mi... | # Paranormal Military Squad and Operation: Dul... | 8.5 | The impact severity rating is high due to the ... | [{'explanation': 'Agent Alex Mercer is a key f... | {\n "title": "Paranormal Military Squad and... | 2025-03-04 | 9 |
Build global context based on community reports¶
In [6]:
Copied!
context_builder = GlobalCommunityContext(
community_reports=reports,
communities=communities,
entities=entities, # default to None if you don't want to use community weights for ranking
token_encoder=token_encoder,
)
context_builder = GlobalCommunityContext(
community_reports=reports,
communities=communities,
entities=entities, # default to None if you don't want to use community weights for ranking
token_encoder=token_encoder,
)
Perform global search¶
In [7]:
Copied!
context_builder_params = {
"use_community_summary": False, # False means using full community reports. True means using community short summaries.
"shuffle_data": True,
"include_community_rank": True,
"min_community_rank": 0,
"community_rank_name": "rank",
"include_community_weight": True,
"community_weight_name": "occurrence weight",
"normalize_community_weight": True,
"max_tokens": 12_000, # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)
"context_name": "Reports",
}
map_llm_params = {
"max_tokens": 1000,
"temperature": 0.0,
"response_format": {"type": "json_object"},
}
reduce_llm_params = {
"max_tokens": 2000, # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 1000-1500)
"temperature": 0.0,
}
context_builder_params = {
"use_community_summary": False, # False means using full community reports. True means using community short summaries.
"shuffle_data": True,
"include_community_rank": True,
"min_community_rank": 0,
"community_rank_name": "rank",
"include_community_weight": True,
"community_weight_name": "occurrence weight",
"normalize_community_weight": True,
"max_tokens": 12_000, # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)
"context_name": "Reports",
}
map_llm_params = {
"max_tokens": 1000,
"temperature": 0.0,
"response_format": {"type": "json_object"},
}
reduce_llm_params = {
"max_tokens": 2000, # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 1000-1500)
"temperature": 0.0,
}
In [8]:
Copied!
search_engine = GlobalSearch(
model=model,
context_builder=context_builder,
token_encoder=token_encoder,
max_data_tokens=12_000, # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)
map_llm_params=map_llm_params,
reduce_llm_params=reduce_llm_params,
allow_general_knowledge=False, # set this to True will add instruction to encourage the LLM to incorporate general knowledge in the response, which may increase hallucinations, but could be useful in some use cases.
json_mode=True, # set this to False if your LLM model does not support JSON mode.
context_builder_params=context_builder_params,
concurrent_coroutines=32,
response_type="multiple paragraphs", # free form text describing the response type and format, can be anything, e.g. prioritized list, single paragraph, multiple paragraphs, multiple-page report
)
search_engine = GlobalSearch(
model=model,
context_builder=context_builder,
token_encoder=token_encoder,
max_data_tokens=12_000, # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)
map_llm_params=map_llm_params,
reduce_llm_params=reduce_llm_params,
allow_general_knowledge=False, # set this to True will add instruction to encourage the LLM to incorporate general knowledge in the response, which may increase hallucinations, but could be useful in some use cases.
json_mode=True, # set this to False if your LLM model does not support JSON mode.
context_builder_params=context_builder_params,
concurrent_coroutines=32,
response_type="multiple paragraphs", # free form text describing the response type and format, can be anything, e.g. prioritized list, single paragraph, multiple paragraphs, multiple-page report
)
In [9]:
Copied!
result = await search_engine.search("What is operation dulce?")
print(result.response)
result = await search_engine.search("What is operation dulce?")
print(result.response)
### Overview of Operation: Dulce Operation: Dulce is a significant mission undertaken by the Paranormal Military Squad, an elite group tasked with investigating alien technology and its implications for humanity. The operation's primary focus is on the Dulce base, a central element of the mission, which is associated with advanced alien technology. The exploration and uncovering of the secrets within the Dulce base are crucial to the mission's objectives and the overall success of Operation: Dulce [Data: Reports (0, 1)]. ### Key Personnel The mission involves key agents from the Paranormal Military Squad, including Alex Mercer, Taylor Cruz, Jordan Hayes, and Sam Rivera. Each of these agents plays a significant role in executing the operation, contributing their expertise and skills to navigate the complexities of the Dulce base [Data: Reports (1)]. ### Motivation and Challenges A strong sense of duty drives the individuals involved in Operation: Dulce. This motivation is essential as they undertake the mission and face the challenges of exploring the depths of the Dulce base. The complexity and importance of the operation require a dedicated and focused team to ensure its success [Data: Reports (0)].
In [10]:
Copied!
# inspect the data used to build the context for the LLM responses
result.context_data["reports"]
# inspect the data used to build the context for the LLM responses
result.context_data["reports"]
Out[10]:
id | title | occurrence weight | content | rank | |
---|---|---|---|---|---|
0 | 1 | Paranormal Military Squad and Operation: Dulce | 1.0 | # Paranormal Military Squad and Operation: Dul... | 8.5 |
1 | 0 | Operation: Dulce and Dulce Base Exploration | 1.0 | # Operation: Dulce and Dulce Base Exploration\... | 8.5 |
In [11]:
Copied!
# inspect number of LLM calls and tokens
print(
f"LLM calls: {result.llm_calls}. Prompt tokens: {result.prompt_tokens}. Output tokens: {result.output_tokens}."
)
# inspect number of LLM calls and tokens
print(
f"LLM calls: {result.llm_calls}. Prompt tokens: {result.prompt_tokens}. Output tokens: {result.output_tokens}."
)
LLM calls: 2. Prompt tokens: 3378. Output tokens: 513.