GraphRAG

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License.

'\nCopyright (c) Microsoft Corporation.\n'

import os

import pandas as pd
import tiktoken

from graphrag.query.indexer_adapters import read_indexer_entities, read_indexer_reports
from graphrag.query.llm.oai.chat_openai import ChatOpenAI
from graphrag.query.llm.oai.typing import OpenaiApiType
from graphrag.query.structured_search.global_search.community_context import (
    GlobalCommunityContext,
)
from graphrag.query.structured_search.global_search.search import GlobalSearch

Global Search example

Global search method generates answers by searching over all AI-generated community reports in a map-reduce fashion. This is a resource-intensive method, but often gives good responses for questions that require an understanding of the dataset as a whole (e.g. What are the most significant values of the herbs mentioned in this notebook?).

LLM setup

api_key = os.environ["GRAPHRAG_API_KEY"]
llm_model = os.environ["GRAPHRAG_LLM_MODEL"]

llm = ChatOpenAI(
    api_key=api_key,
    model=llm_model,
    api_type=OpenaiApiType.OpenAI,  # OpenaiApiType.OpenAI or OpenaiApiType.AzureOpenAI
    max_retries=20,
)

token_encoder = tiktoken.get_encoding("cl100k_base")

Load community reports as context for global search

# parquet files generated from indexing pipeline
INPUT_DIR = "./inputs/operation dulce"
COMMUNITY_REPORT_TABLE = "create_final_community_reports"
ENTITY_TABLE = "create_final_nodes"
ENTITY_EMBEDDING_TABLE = "create_final_entities"

# community level in the Leiden community hierarchy from which we will load the community reports
# higher value means we use reports from more fine-grained communities (at the cost of higher computation cost)
COMMUNITY_LEVEL = 2
entity_df = pd.read_parquet(f"{INPUT_DIR}/{ENTITY_TABLE}.parquet")
report_df = pd.read_parquet(f"{INPUT_DIR}/{COMMUNITY_REPORT_TABLE}.parquet")
entity_embedding_df = pd.read_parquet(f"{INPUT_DIR}/{ENTITY_EMBEDDING_TABLE}.parquet")

reports = read_indexer_reports(report_df, entity_df, COMMUNITY_LEVEL)
entities = read_indexer_entities(entity_df, entity_embedding_df, COMMUNITY_LEVEL)
print(f"Total report count: {len(report_df)}")
print(
    f"Report count after filtering by community level {COMMUNITY_LEVEL}: {len(reports)}"
)
report_df.head()

Build global context based on community reports

context_builder = GlobalCommunityContext(
    community_reports=reports,
    entities=entities,  # default to None if you don't want to use community weights for ranking
    token_encoder=token_encoder,
)

Perform global search

context_builder_params = {
    "use_community_summary": False,  # False means using full community reports. True means using community short summaries.
    "shuffle_data": True,
    "include_community_rank": True,
    "min_community_rank": 0,
    "community_rank_name": "rank",
    "include_community_weight": True,
    "community_weight_name": "occurrence weight",
    "normalize_community_weight": True,
    "max_tokens": 12_000,  # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)
    "context_name": "Reports",
}

map_llm_params = {
    "max_tokens": 1000,
    "temperature": 0.0,
    "response_format": {"type": "json_object"},
}

reduce_llm_params = {
    "max_tokens": 2000,  # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 1000-1500)
    "temperature": 0.0,
}
search_engine = GlobalSearch(
    llm=llm,
    context_builder=context_builder,
    token_encoder=token_encoder,
    max_data_tokens=12_000,  # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)
    map_llm_params=map_llm_params,
    reduce_llm_params=reduce_llm_params,
    allow_general_knowledge=False,  # set this to True will add instruction to encourage the LLM to incorporate general knowledge in the response, which may increase hallucinations, but could be useful in some use cases.
    json_mode=True,  # set this to False if your LLM model does not support JSON mode.
    context_builder_params=context_builder_params,
    concurrent_coroutines=32,
    response_type="multiple paragraphs",  # free form text describing the response type and format, can be anything, e.g. prioritized list, single paragraph, multiple paragraphs, multiple-page report
)
result = await search_engine.asearch(
    "What is the major conflict in this story and who are the protagonist and antagonist?"
)

print(result.response)
# inspect the data used to build the context for the LLM responses
result.context_data["reports"]
# inspect number of LLM calls and tokens
print(f"LLM calls: {result.llm_calls}. LLM tokens: {result.prompt_tokens}")