hummingbird.ml._topology¶
Converters for topology IR are stored in this file.
- class hummingbird.ml._topology.Topology(input_container)[source]¶
Bases:
object
- declare_logical_operator(alias, model=None)[source]¶
This function is used to declare new logical operator.
- declare_logical_variable(original_input_name, type=None)[source]¶
This function creates a new logical variable within the topology. If original_input_name has been used to create other variables, the new variable will hide all other variables created using original_input_name.
- property input_container¶
Returns the input container wrapping the original input model.
- topological_operator_iterator()[source]¶
This is an iterator of all operators in the Topology object. Operators are returned in a topological order.
- property variables¶
Returns all the logical variables of the topology.
- hummingbird.ml._topology._compile_to_tvm(topology, executor, trace_input, target, ctx, config, extra_config)[source]¶
- hummingbird.ml._topology._get_trace_input_from_test_input(input, remainder_size=None, extra_config={})[source]¶
Utility function used to properly put the inputs into a format understandable by torch. If remainder_size is provided, also return inputs for a remainder model (see below).
- hummingbird.ml._topology._jit_trace(executor, trace_input, device, extra_config)[source]¶
Function used to convert an input pytorch model into torchscript.
- hummingbird.ml._topology.convert(topology, backend, test_input, device, extra_config={})[source]¶
This function is used to convert a Topology object into a backend model.
- Args:
topology: The Topology object that will be converted into a backend model backend: Which backend the model should be run on test_input: Inputs for PyTorch model tracing device: Which device the translated model will be run on extra_config: Extra configurations to be used by individual operator converters
- Returns:
A model implemented in the selected backend