
Deploy with confidence: Power Platform
pipelines & ALM

Master the deployment of your Microsoft Copilot Studio agents across environments using
Power Platform pipelines. Learn the complete lifecycle from development to production.

Lab Details

Level Persona Duration Purpose

300 Maker/Admin 30 minutes

After completing this
lab, participants will
be able to deploy
Microsoft Copilot
Studio solutions
across environments

using Power Platform
pipelines, understand
post-deployment
configuration
requirements, and
manage source
control integration.
They will learn to

identify solution-
aware vs non-
solution-aware
settings and establish
robust deployment
practices.

Deploy with confidence: Power Platform pipelines & ALM Page 1 of 16

Table of Contents

Why Master ALM Deployment?

Introduction

Core Concepts Overview

Documentation and Additional Training Links

Prerequisites

Summary of Targets

Use Cases Covered

Instructions by Use Case

Use Case #1: Create Power Platform pipelines for deployment

Use Case #2: Deploy and configure post-deployment steps

Use Case #3: Commit changes and understand source control structure

Why Master ALM Deployment?

Ready to move beyond development? You’ve built amazing agents in your dev environment,

but now you need to deploy them safely and consistently to test and production environments.

Think of deployment pipelines as your quality assurance assembly line: - Without pipelines:

Manual exports, forgotten configurations, “it worked in dev” syndrome - With pipelines:
Automated, consistent, auditable deployments with proper validation

Common deployment challenges solved by proper ALM: - “My agent works perfectly in dev
but breaks in production” - “I forgot to configure the authentication settings after deployment” -

“Someone deployed directly to production and bypassed testing” - “I can’t track what changed
between versions”

Deploy with confidence: Power Platform pipelines & ALM Page 2 of 16

This lab transforms deployment from a risky manual process into a confident, repeatable
workflow!

Introduction

Application Lifecycle Management (ALM) deployment ensures your solutions move safely and
consistently from development through testing to production. This lab builds on ALM foundations

to implement automated deployment pipelines and understand the complete deployment
lifecycle.

Real-world example: Your customer service agent is ready for production, but deployment
involves: 1. Exporting the solution as managed 2. Importing to test environment for validation 3.

Configuring environment-specific settings 4. Testing functionality end-to-end 5. Promoting to
production with proper approvals 6. Configuring production-specific security and channels

With Power Platform pipelines, this becomes an automated, governed process with built-in
approvals and validation!

Deploy with confidence: Power Platform pipelines & ALM Page 3 of 16

Core Concepts Overview

Concept Why it matters

Power Platform pipelines

Democratized ALM automation that brings CI/CD capabilities
into the service in a manner that’s approachable for all
makers, admins, and developers. Significantly reduces effort

and domain knowledge previously required for healthy ALM
processes.

Pipeline stages

Sequential deployment environments (Development → Test →
Production) that solutions must pass through in order,
preventing bypass of QA processes and ensuring proper
validation at each stage.

Service principal deployments
Option to deploy using service principal identity instead of the
user maker’s identity for consistent ownership and automation
scenarios.

Solution artifacts
Exported solutions that remain unchanged throughout the
pipeline, ensuring the same tested artifact moves through all
stages without tampering or modification.

Managed vs Unmanaged
Solutions

Managed solutions are read-only deployments for downstream
environments (test/prod). Unmanaged solutions should be

used only in development.

Solution-aware vs Non-
solution-aware

Some Copilot Studio settings travel with solutions, others
require manual post-deployment configuration. Understanding
this distinction is critical for successful deployments.

Managed Environments
Governance feature that enforces managed solution
deployments and prevents unauthorized customizations in
target environments.

Deploy with confidence: Power Platform pipelines & ALM Page 4 of 16

Documentation and Additional Training Links

Overview of pipelines in Power Platform (https://learn.microsoft.com/power-platform/alm/pipelines)

Export and import agents using solutions (https://learn.microsoft.com/microsoft-copilot-

studio/authoring-solutions-import-export)

Extend pipelines in Power Platform (https://learn.microsoft.com/power-platform/alm/extend-pipelines)

Managed environments and governance (https://learn.microsoft.com/power-platform/admin/managed-

environment-overview)

Overview of Git integration in Power Platform (https://learn.microsoft.com/en-us/power-

platform/alm/git-integration/overview)

Prerequisites

Completion of the Set yourself up for success (https://github.com/microsoft/mcs-

labs/tree/main/labs/setup-for-success) lab with a solution containing environment variables and

connection references.

Access to multiple Power Platform environments (DEV, PROD). These are provided in the

lab setup.

Azure DevOps project with Git integration already established.

PROD environments must be enabled as Managed Environments (enforced in lab setup).

Summary of Targets

In this lab, you’ll implement a complete ALM deployment process for Microsoft Copilot Studio

using Power Platform pipelines. By the end of the lab, you will:

Deploy with confidence: Power Platform pipelines & ALM Page 5 of 16

https://learn.microsoft.com/power-platform/alm/pipelines
https://learn.microsoft.com/microsoft-copilot-studio/authoring-solutions-import-export
https://learn.microsoft.com/microsoft-copilot-studio/authoring-solutions-import-export
https://learn.microsoft.com/power-platform/alm/extend-pipelines
https://learn.microsoft.com/power-platform/admin/managed-environment-overview
https://learn.microsoft.com/power-platform/admin/managed-environment-overview
https://learn.microsoft.com/en-us/power-platform/alm/git-integration/overview
https://learn.microsoft.com/en-us/power-platform/alm/git-integration/overview
https://github.com/microsoft/mcs-labs/tree/main/labs/setup-for-success
https://github.com/microsoft/mcs-labs/tree/main/labs/setup-for-success

Create and configure Power Platform pipelines for automated deployment across
environments.

Deploy solutions from DEV to PROD environments using managed solutions.

Identify and complete post-deployment configuration steps for non-solution-aware settings.

Experience the benefits of Managed Environment governance in preventing unauthorized
customizations.

Commit changes to source control and understand the structure of unpacked solutions.

Use Cases Covered

Step Use Case Value added Effort

1
Create Power Platform
pipelines for
deployment

Automate with confidence – Set

up governed, repeatable
deployment workflows that
democratize ALM for all makers
while maintaining security and
control through platform
governance.

10 min

2
Commit changes and
understand source

control structure

Track and structure – Use Git
integration to maintain
deployment history and
understand how solution
components are organized in
source control.

5 min

Deploy with confidence: Power Platform pipelines & ALM Page 6 of 16

Instructions by Use Case

Use Case #1: Create Power Platform pipelines for
deployment

Set up automated deployment pipelines that democratize ALM while maintaining proper

governance and security through platform controls.

Use case Value added Estimated effort

Create Power

Platform pipelines
for deployment

Automate with confidence –
Set up governed,
repeatable deployment

workflows that democratize
ALM for all makers while
maintaining security and
control.

10 minutes

Summary of tasks

In this section, you’ll learn how to create Power Platform pipelines, configure deployment

stages, and set up automated deployments for controlled releases.

Scenario: You have a solution ready in DEV and need to establish an automated process to

deploy it to a PROD environment with minimal effort and maximum consistency.

Objective

Create a deployment pipeline that automates solution deployment across environments with

proper validation and governance controls.

Deploy with confidence: Power Platform pipelines & ALM Page 7 of 16

Step-by-step instructions

Get a PROD environment

1. Start by requesting a PROD envrionment to be created for your user. Use the Workshop
Agent to request this environment, which will be automatically created for you. This will
then take a couple of minutes to provision and to show up.

the agent. Tell the agent to “Provision a PROD environment”. You are limited to a single
PROD environment for the duration workshop.

Access Power Platform pipelines

1. Navigate to the Copilot Studio home page at https://copilotstudio.microsoft.com/

2. Go to the Solutions menu (located in the left-hand menu under the ellipsis ...) of your
DEV environment

3. Select the solution you had created previously for your labs

💡

Tip: If you haven’t done so already, you need to request a PROD environment to be
created for your user. This is a one-time setup step that will allow you to create

pipelines for deployment.

⚠️

IMPORTANT: Access the workshop agent in the same location as when you created
your training user account. You will need the workshop code and your training user’s

email address if you previously closed

Deploy with confidence: Power Platform pipelines & ALM Page 8 of 16

4. In the left navigation, select Pipelines.

5. Select + Create new pipeline.

Configure pipeline basics

6. Enter a Name for your pipeline, e.g., <your user name> Pipeline .

7. Set a Description to explain the pipeline’s purpose (e.g., Automated deployment of

agents from DEV to PROD).

Set up deployment stage

8. Select the PROD environment as the Target environment.

9. Save the pipeline configuration.

alt text

Test your pipeline

13. In the PROD card, select Deploy here.

Deploy with confidence: Power Platform pipelines & ALM Page 9 of 16

14. In Copilot Studio, switch to the PROD environment.

15. See what the agents look like in the PROD environment. When entering a topic, see how
customizations are locked because the solution is managed.

Congratulations! You’ve created your deployment pipeline!

Test your understanding

Key takeaways:

Democratized ALM – Pipelines make sophisticated deployment processes accessible to

all makers without requiring deep ALM knowledge.

Automatic governance – Solutions are automatically exported as managed for target
environments, preventing unauthorized changes.

Sequential validation – Solutions must pass through pipeline stages in order, ensuring
proper testing and approval workflows.

Built-in safeguards – Pipeline artifacts can’t be tampered with, ensuring the same tested
solution moves through all stages.

Lessons learned & troubleshooting tips:

💡

Tip: - The wizard then makes sure that each environment variable has a value set in

the target environment, and that all connection references are valid. If any of these
checks fail, you will be prompted to fix them before proceeding. - If the deployment

fails because of missing dependencies make sure to go back to your solution
explorer, click on the 3-dots next to each agents > Advanced > Add required objects
and try re-deploying the solution.

Deploy with confidence: Power Platform pipelines & ALM Page 10 of 16

Target environments must be Managed Environments for governance enforcement.

Pipelines are only visible from development environments, not target environments.

Use Case #2: Commit changes and understand source
control structure

Use Git integration to track deployment changes and understand how Power Platform solution

components are organized in source control.

Use case Value added Estimated effort

Commit changes
and understand
source control
structure

Track and structure – Use

Git integration to maintain
deployment history and
understand how solution
components are organized
in source control.

5 minutes

Summary of tasks

In this section, you’ll commit your deployment artifacts to source control and explore how Power

Platform solutions are structured in Git repositories.

Scenario: Document your deployment process and understand how solution components are

versioned and tracked in source control for future pipeline extensions.

Objective

Commit deployment artifacts to Git and understand the structure of unpacked Power Platform

solutions in source control.

Deploy with confidence: Power Platform pipelines & ALM Page 11 of 16

Step-by-step instructions

Access source control in Copilot Studio

1. Return to your DEV environment in Copilot Studio (https://copilotstudio.microsoft.com/).

2. Open your solution and navigate to Source control.

3. Review any uncommitted changes from pipeline configuration or deployment preparation.

Commit pipeline deployment changes

4. Select any modified components that should be committed.

5. Add a meaningful commit message: “Pipeline deployment: Production-ready configuration

with automated ALM”

6. Select Commit to save changes to your branch.

Explore solution structure in Azure DevOps

7. Navigate to your Azure DevOps project and browse to Repos.

8. Explore the Solutions folder structure:

Solutions/

├── [SolutionName]/

│ ├── botcomponents/

│ ├── bots/

│ ├── connectionreferences/

│ ├── environmentvariabledefinitions/

│ ├── publishers/

│ └── solutions/

Deploy with confidence: Power Platform pipelines & ALM Page 12 of 16

https://copilotstudio.microsoft.com/

Understand component organization

9. Examine key folders:

ConnectionReferences/: Contains connection reference definitions used by

connectors, flows, and tools.

EnvironmentVariables/: Contains environment variable definitions and values

Workflows/: Contains Power Automate flows (if any)

Other/Copilot/: Contains Copilot Studio agents and components

SolutionPackage/: Contains the overall solution metadata

10. Open a component file to see the XML, YAML, or JSON structure that defines these

components.

11. Notice how this structure enables:

Granular tracking of changes to individual components

Easy integration with other CI/CD tools and processes

Professional development workflows for larger teams

Review deployment history

12. Go to Repos > Commits to see your deployment history.

13. Compare commits to understand what changes between deployments.

14. Use the diff view to see exactly what components were modified.

Congratulations! You’ve mastered ALM deployment with pipelines and
source control!

Deploy with confidence: Power Platform pipelines & ALM Page 13 of 16

Test your understanding

Key takeaways:

Professional ALM made accessible – Pipelines democratize sophisticated deployment
processes while maintaining professional standards.

Source control enables extension – The Git integration provides the foundation for

advanced CI/CD scenarios when needed.

Structured component organization – Understanding the folder structure helps with

troubleshooting and enables pipeline extensions.

Challenge: Apply this to your own use case

Plan how you might extend pipelines with Power Platform CLI for advanced scenarios.

Design branching strategies that work with pipeline deployment workflows.

Consider how to integrate pipelines with existing organizational CI/CD processes.

Summary of learnings

ALM golden rules reinforced:

✅ Work in the context of solutions – Pipelines require properly structured solutions for
deployment automation.

✅ Create separate solutions only if you need to deploy components independently –
Pipelines work best with cohesive solution packaging.

✅ Use a custom publisher and prefix – Maintains clear ownership in automated deployment
scenarios.

✅ Use environment variables for settings and secrets that change across environments
– Pipelines validate and update these automatically during deployment.

Deploy with confidence: Power Platform pipelines & ALM Page 14 of 16

✅ Export and deploy solutions as managed, unless setting up a dev environment –
Pipelines automatically handle this, ensuring governance and preventing unauthorized changes.

✅ Don’t do customizations outside of dev – Managed Environments enforce this rule,
blocking unmanaged customizations in target environments.

✅ Consider automating ALM for source control and automated deployments – Pipelines
provide this automation while remaining extensible for advanced scenarios.

Conclusions and recommendations

Pipeline deployment excellence principles:

Democratize with governance – Use pipelines to make ALM accessible to all makers
while maintaining enterprise-grade security and control.

⚠️

IMPORTANT: Critical reminder about non-solution-aware settings:

These Copilot Studio settings require manual post-deployment configuration: * Azure
Application Insights settings * Manual authentication settings * Direct Line /
Web channel security settings * Deployed channels * Sharing (with other
makers, or with end-users)

Always include these in your post-deployment checklist!

ℹ️

Note: Managed Environment governance in your lab: Your PROD environment

uses Managed Environment governance to enforce that solutions are managed and
unmanaged customizations are blocked. This ensures deployment integrity and

prevents unauthorized changes outside of the pipeline process.

Deploy with confidence: Power Platform pipelines & ALM Page 15 of 16

Validate early and often – Leverage pipeline pre-deployment validation to catch issues
before they impact target environments.

Automate the repeatable, manage the exceptions – Let pipelines handle standard
deployment tasks while maintaining checklists for non-solution-aware settings.

Extend when needed – Start with pipelines for core deployment, then extend with CLI and
CI/CD tools for advanced scenarios.

Trust but verify – Use Managed Environments to enforce governance while providing
makers the flexibility to deploy through approved channels.

By mastering Power Platform pipelines, you’ve established a deployment process that combines
the accessibility makers need with the governance and automation enterprises require. Your

deployments are now predictable, auditable, and scalable—setting the foundation for confident
production releases at any scale.

Deploy with confidence: Power Platform pipelines & ALM Page 16 of 16

