Deploy with confidence: Power Platform
pipelines & ALM

Master the deployment of your Microsoft Copilot Studio agents across environments using
Power Platform pipelines. Learn the complete lifecycle from development to production.

Lab Details

Level Persona Duration Purpose

After completing this
lab, participants will
be able to deploy
Microsoft Copilot
Studio solutions
across environments
using Power Platform
pipelines, understand
post-deployment

300 Maker/Admin 30 minutes confllguratlon
requirements, and
manage source
control integration.
They will learn to
identify solution-
aware vs non-
solution-aware
settings and establish
robust deployment
practices.

Deploy with confidence: Power Platform pipelines & ALM Page 1 of 16

Table of Contents

* Why Master ALM Deployment?

« Introduction

» Core Concepts Overview

« Documentation and Additional Training Links
» Prerequisites

o Summary of Targets

» Use Cases Covered

« Instructions by Use Case

o Use Case #1: Create Power Platform pipelines for deployment
o Use Case #2: Deploy and configure post-deployment steps

o Use Case #3: Commit changes and understand source control structure

Why Master ALM Deployment?

Ready to move beyond development? You've built amazing agents in your dev environment,
but now you need to deploy them safely and consistently to test and production environments.

Think of deployment pipelines as your quality assurance assembly line: - Without pipelines:
Manual exports, forgotten configurations, “it worked in dev” syndrome - With pipelines:
Automated, consistent, auditable deployments with proper validation

Common deployment challenges solved by proper ALM: - “My agent works perfectly in dev
but breaks in production” - “I forgot to configure the authentication settings after deployment” -
“Someone deployed directly to production and bypassed testing” - “I can't track what changed
between versions”

Deploy with confidence: Power Platform pipelines & ALM Page 2 of 16

This lab transforms deployment from a risky manual process into a confident, repeatable
workflow!

Introduction

Application Lifecycle Management (ALM) deployment ensures your solutions move safely and
consistently from development through testing to production. This lab builds on ALM foundations

to implement automated deployment pipelines and understand the complete deployment
lifecycle.

Real-world example: Your customer service agent is ready for production, but deployment
involves: 1. Exporting the solution as managed 2. Importing to test environment for validation 3.
Configuring environment-specific settings 4. Testing functionality end-to-end 5. Promoting to
production with proper approvals 6. Configuring production-specific security and channels

With Power Platform pipelines, this becomes an automated, governed process with built-in
approvals and validation!

Deploy with confidence: Power Platform pipelines & ALM Page 3 of 16

Core Concepts Overview

Concept Why it matters

Democratized ALM automation that brings CI/CD capabilities
into the service in a manner that's approachable for all

Power Platform pipelines makers, admins, and developers. Significantly reduces effort
and domain knowledge previously required for healthy ALM
processes.

Sequential deployment environments (Development - Test —
Production) that solutions must pass through in order,
preventing bypass of QA processes and ensuring proper
validation at each stage.

Pipeline stages

Option to deploy using service principal identity instead of the
Service principal deployments user maker’s identity for consistent ownership and automation
scenarios.

Exported solutions that remain unchanged throughout the
Solution artifacts pipeline, ensuring the same tested artifact moves through all
stages without tampering or modification.

Managed solutions are read-only deployments for downstream

Managed vs Unmanaged))
environments (test/prod). Unmanaged solutions should be

Solutions _
used only in development.

Some Copilot Studio settings travel with solutions, others
require manual post-deployment configuration. Understanding
this distinction is critical for successful deployments.

Solution-aware vs Non-
solution-aware

Governance feature that enforces managed solution
Managed Environments deployments and prevents unauthorized customizations in
target environments.

Deploy with confidence: Power Platform pipelines & ALM Page 4 of 16

Documentation and Additional Training Links

» Overview of pipelines in Power Platform (https:/learn.microsoft.com/power-platform/alm/pipelines)

« Export and import agents using solutions (https://learn.microsoft.com/microsoft-copilot-

studio/authoring-solutions-import-export)
» Extend pipelines in Power Platform (https:/learn.microsoft.com/power-platform/alm/extend-pipelines)

» Managed environments and governance (https:/learn.microsoft.com/power-platform/admin/managed-

environment-overview)

» Overview of Git integration in Power Platform (https:/learn.microsoft.com/en-us/power-

platform/alm/git-integration/overview)

Prerequisites

» Completion of the Set yourself up for success (https://github.com/microsoft/mcs-
labs/tree/main/labs/setup-for-success) lab with a solution containing environment variables and
connection references.

» Access to multiple Power Platform environments (DEV, PROD). These are provided in the
lab setup.

» Azure DevOps project with Git integration already established.

» PROD environments must be enabled as Managed Environments (enforced in lab setup).

Summary of Targets

In this lab, you'll implement a complete ALM deployment process for Microsoft Copilot Studio
using Power Platform pipelines. By the end of the lab, you will:

Deploy with confidence: Power Platform pipelines & ALM Page 5 of 16

https://learn.microsoft.com/power-platform/alm/pipelines
https://learn.microsoft.com/microsoft-copilot-studio/authoring-solutions-import-export
https://learn.microsoft.com/microsoft-copilot-studio/authoring-solutions-import-export
https://learn.microsoft.com/power-platform/alm/extend-pipelines
https://learn.microsoft.com/power-platform/admin/managed-environment-overview
https://learn.microsoft.com/power-platform/admin/managed-environment-overview
https://learn.microsoft.com/en-us/power-platform/alm/git-integration/overview
https://learn.microsoft.com/en-us/power-platform/alm/git-integration/overview
https://github.com/microsoft/mcs-labs/tree/main/labs/setup-for-success
https://github.com/microsoft/mcs-labs/tree/main/labs/setup-for-success

» Create and configure Power Platform pipelines for automated deployment across

environments.

o Deploy solutions from DEV to PROD environments using managed solutions.

 Identify and complete post-deployment configuration steps for non-solution-aware settings.

» Experience the benefits of Managed Environment governance in preventing unauthorized

customizations.

« Commit changes to source control and understand the structure of unpacked solutions.

Use Cases Covered

Step Use Case

Create Power Platform
1 pipelines for
deployment

Commit changes and
2 understand source

control structure

Deploy with confidence: Power Platform pipelines & ALM

Value added

Automate with confidence — Set
up governed, repeatable
deployment workflows that
democratize ALM for all makers
while maintaining security and
control through platform
governance.

Track and structure — Use Git
integration to maintain
deployment history and
understand how solution
components are organized in
source control.

Effort

10 min

5 min

Page 6 of 16

Instructions by Use Case

Use Case #1: Create Power Platform pipelines for
deployment

Set up automated deployment pipelines that democratize ALM while maintaining proper
governance and security through platform controls.

Use case Value added Estimated effort

Automate with confidence —
Set up governed,

Create Power repeatable deployment
Platform pipelines workflows that democratize 10 minutes
for deployment ALM for all makers while

maintaining security and

control.

Summary of tasks

In this section, you'll learn how to create Power Platform pipelines, configure deployment
stages, and set up automated deployments for controlled releases.

Scenario: You have a solution ready in DEV and need to establish an automated process to
deploy it to a PROD environment with minimal effort and maximum consistency.

Objective

Create a deployment pipeline that automates solution deployment across environments with
proper validation and governance controls.

Deploy with confidence: Power Platform pipelines & ALM Page 7 of 16

Step-by-step instructions

Get a PROD environment

x*
<

Tip: If you haven’'t done so already, you need to request a PROD environment to be
created for your user. This is a one-time setup step that will allow you to create
pipelines for deployment.

1. Start by requesting a PROD envrionment to be created for your user. Use the Workshop
Agent to request this environment, which will be automatically created for you. This will
then take a couple of minutes to provision and to show up.

!
IMPORTANT: Access the workshop agent in the same location as when you created
your training user account. You will need the workshop code and your training user’s
email address if you previously closed

the agent. Tell the agent to “Provision a PROD environment”. You are limited to a single
PROD environment for the duration workshop.

Access Power Platform pipelines

1. Navigate to the Copilot Studio home page at https://copilotstudio.microsoft.com/

2. Go to the Solutions menu (located in the left-hand menu under the ellipsis ...) of your
DEV environment

3. Select the solution you had created previously for your labs

Deploy with confidence: Power Platform pipelines & ALM Page 8 of 16

4. In the left navigation, select Pipelines.

5. Select + Create new pipeline.

Configure pipeline basics

6. Enter a Name for your pipeline, e.g., <your user name> Pipeline .

7. Set a Description to explain the pipeline’s purpose (e.qg.,
agents from DEV to PROD).

Automated deployment of

Set up deployment stage

8. Select the PROD environment as the Target environment.

9. Save the pipeline configuration.

i 4@ Copilot Studio

& 2 (W
= —+ Create pipeline Add stage [Delete pipeline () Refresh Vianage pipelines & View deployments
< Back to solutions. @ Successtully added your pipeline stage.
Training Workshop Age...
Pipelines

Overview

As your app advances, you'll start sharing it to be used in your organization. As it gets widely adopted, it's important to practice healthy

"= Objects application lfecycle management by buiding securely in an isolated location so the people using your app don't run into issues while
you work on it. Once everything is ready, you'll move it to a more permanent place and share there. Learn more
O History N PR i
Target Environments in pipelines must be enabled as Managed Environments. Lear more
| & Pipelines
Pipeli
B Source control ipeline

Copilot Studio Agents Deployment

+ Create new pipeline

Details Run history

TEST - User UZJSKICS
@ TEST - User UZISKICS

PROD
Development

(© PROD - User UZJSKICS

7 Go to this environment 7 Go to this environment
Securely test and verify in isolation. After
you've got everything working properly,
it's time to deploy. Learn more

TEST - User UZJSKICS

Solution version

1000 % %

alt text

Test your pipeline

13. In the PROD card, select Deploy here.

Deploy with confidence: Power Platform pipelines & ALM Page 9 of 16

=
s

Tip: - The wizard then makes sure that each environment variable has a value set in
the target environment, and that all connection references are valid. If any of these
checks fail, you will be prompted to fix them before proceeding. - If the deployment
fails because of missing dependencies make sure to go back to your solution
explorer, click on the 3-dots next to each agents > Advanced > Add required objects
and try re-deploying the solution.

14. In Copilot Studio, switch to the PROD environment.

15. See what the agents look like in the PROD environment. When entering a topic, see how
customizations are locked because the solution is managed.

Congratulations! You’ve created your deployment pipeline!

Test your understanding

Key takeaways:

» Democratized ALM — Pipelines make sophisticated deployment processes accessible to
all makers without requiring deep ALM knowledge.

» Automatic governance — Solutions are automatically exported as managed for target
environments, preventing unauthorized changes.

« Sequential validation — Solutions must pass through pipeline stages in order, ensuring
proper testing and approval workflows.

« Built-in safeguards — Pipeline artifacts can’'t be tampered with, ensuring the same tested
solution moves through all stages.

Lessons learned & troubleshooting tips:

Deploy with confidence: Power Platform pipelines & ALM Page 10 of 16

» Target environments must be Managed Environments for governance enforcement.

» Pipelines are only visible from development environments, not target environments.

Use Case #2: Commit changes and understand source
control structure

Use Git integration to track deployment changes and understand how Power Platform solution
components are organized in source control.

Use case Value added Estimated effort

Track and structure — Use

Commit changes Git integration to maintain
and understand deployment history and .
] 5 minutes
source control understand how solution
structure components are organized

in source control.

Summary of tasks

In this section, you'll commit your deployment artifacts to source control and explore how Power
Platform solutions are structured in Git repositories.

Scenario: Document your deployment process and understand how solution components are
versioned and tracked in source control for future pipeline extensions.

Objective

Commit deployment artifacts to Git and understand the structure of unpacked Power Platform
solutions in source control.

Deploy with confidence: Power Platform pipelines & ALM Page 11 of 16

Step-by-step instructions

Access source control in Copilot Studio

1. Return to your DEV environment in Copilot Studio (https:/copilotstudio.microsoft.com/).

2. Open your solution and navigate to Source control.

3. Review any uncommitted changes from pipeline configuration or deployment preparation.

Commit pipeline deployment changes

4. Select any modified components that should be committed.

5. Add a meaningful commit message: “Pipeline deployment: Production-ready configuration
with automated ALM”

6. Select Commit to save changes to your branch.

Explore solution structure in Azure DevOps

7. Navigate to your Azure DevOps project and browse to Repos.

8. Explore the Solutions folder structure:

Solutions/
F— [SolutionName]/

— botcomponents/

— bots/

— connectionreferences/
— environmentvariabledefinitions/
— publishers/

L— solutions/

Deploy with confidence: Power Platform pipelines & ALM

Page 12 of 16

https://copilotstudio.microsoft.com/

Understand component organization

9. Examine key folders:

o ConnectionReferences/: Contains connection reference definitions used by
connectors, flows, and tools.

o EnvironmentVariables/: Contains environment variable definitions and values
o Workflows/: Contains Power Automate flows (if any)
o Other/Copilot/: Contains Copilot Studio agents and components

o SolutionPackagel: Contains the overall solution metadata

10. Open a component file to see the XML, YAML, or JSON structure that defines these

components.
11. Notice how this structure enables:

o Granular tracking of changes to individual components
o Easy integration with other CI/CD tools and processes

o Professional development workflows for larger teams

Review deployment history

12. Go to Repos > Commits to see your deployment history.
13. Compare commits to understand what changes between deployments.

14. Use the diff view to see exactly what components were modified.

Congratulations! You’ve mastered ALM deployment with pipelines and
source control!

Deploy with confidence: Power Platform pipelines & ALM Page 13 of 16

Test your understanding

Key takeaways:

» Professional ALM made accessible — Pipelines democratize sophisticated deployment
processes while maintaining professional standards.

« Source control enables extension — The Git integration provides the foundation for
advanced CI/CD scenarios when needed.

» Structured component organization — Understanding the folder structure helps with
troubleshooting and enables pipeline extensions.

Challenge: Apply this to your own use case

» Plan how you might extend pipelines with Power Platform CLI for advanced scenarios.
» Design branching strategies that work with pipeline deployment workflows.

» Consider how to integrate pipelines with existing organizational CI/CD processes.

Summary of learnings

ALM golden rules reinforced:

Work in the context of solutions — Pipelines require properly structured solutions for
deployment automation.

Create separate solutions only if you need to deploy components independently —
Pipelines work best with cohesive solution packaging.

Use a custom publisher and prefix — Maintains clear ownership in automated deployment
scenarios.

Use environment variables for settings and secrets that change across environments
— Pipelines validate and update these automatically during deployment.

Deploy with confidence: Power Platform pipelines & ALM Page 14 of 16

Export and deploy solutions as managed, unless setting up a dev environment -
Pipelines automatically handle this, ensuring governance and preventing unauthorized changes.

Don’t do customizations outside of dev — Managed Environments enforce this rule,
blocking unmanaged customizations in target environments.

Consider automating ALM for source control and automated deployments — Pipelines
provide this automation while remaining extensible for advanced scenarios.

IMPORTANT: Critical reminder about non-solution-aware settings:

These Copilot Studio settings require manual post-deployment configuration: * Azure
Application Insights settings * Manual authentication settings * Direct Line /
Web channel security settings * Deployed channels * Sharing (with other

makers, or with end-users)

Always include these in your post-deployment checklist!

i |

Note: Managed Environment governance in your lab: Your PROD environment
uses Managed Environment governance to enforce that solutions are managed and
unmanaged customizations are blocked. This ensures deployment integrity and
prevents unauthorized changes outside of the pipeline process.

Conclusions and recommendations

Pipeline deployment excellence principles:

» Democratize with governance — Use pipelines to make ALM accessible to all makers
while maintaining enterprise-grade security and control.

Deploy with confidence: Power Platform pipelines & ALM Page 15 of 16

» Validate early and often — Leverage pipeline pre-deployment validation to catch issues
before they impact target environments.

- Automate the repeatable, manage the exceptions — Let pipelines handle standard
deployment tasks while maintaining checklists for non-solution-aware settings.

« Extend when needed — Start with pipelines for core deployment, then extend with CLI and
CI/CD tools for advanced scenarios.

» Trust but verify — Use Managed Environments to enforce governance while providing
makers the flexibility to deploy through approved channels.

By mastering Power Platform pipelines, you've established a deployment process that combines
the accessibility makers need with the governance and automation enterprises require. Your
deployments are now predictable, auditable, and scalable—setting the foundation for confident
production releases at any scale.

Deploy with confidence: Power Platform pipelines & ALM Page 16 of 16

