Set yourself up for success & discover
ALM best practices

Build agents with confidence. Deploy with control. Master the lifecycle of your Microsoft Copilot
Studio agents with best practices.

Set yourself up for success & discover ALM best practices Page 1 of 23

Lab Detalils

Level Persona Duration Purpose

After completing this
lab, participants will
be able to apply
Application Lifecycle
Management (ALM)
best practices to their
Microsoft Copilot
Studio solutions.
They will know how
to structure their work

) using solutions and

200 Maker 35 minutes))

publishers, configure
environment
variables and
connection
references for
deployment
readiness, and set up
Git-based source
control using Azure
DevOps—all without
writing code.

Table of Contents

« Why Start with ALM?
e Introduction

o Core Concepts Overview

Set yourself up for success & discover ALM best practices Page 2 of 23

» Documentation and Additional Training Links
» Prerequisites

» Summary of Targets

» Use Cases Covered

« Instructions by Use Case

o Use Case #1: Create a solution and custom publisher
o Use Case #2: Create environment variables and connection references

o Use Case #3: Set up Git source control

Why Start with ALM?

New to Power Platform or Copilot Studio? You might be eager to start building agents right
away, but taking a few minutes to set up Application Lifecycle Management (ALM) first will save
you hours of headaches later!

Think of ALM as preparing your kitchen before cooking a complex meal: - Without ALM:
Ingredients scattered across counters, no recipe plan, impromptu grocery trips mid-cooking -
With ALM: Ingredients organized, recipe prepared, everything measured and ready

Common beginner challenges solved by ALM: - “I built something great in dev, but can't
easily move it to production” - “Someone changed my agent and now it's broken - who did it and
how do | fix it?” - “I need to update my agent but I'm afraid of breaking what works” - “My team
members keep overwriting each other’s changes”

The few minutes ALM setup in this lab prevents all these problems!

Set yourself up for success & discover ALM best practices Page 3 of 23

Introduction

Application Lifecycle Management (ALM) ensures that your solutions evolve safely and
efficiently as they move from development to production. This lab will walk you through the
foundational best practices of ALM in Microsoft Copilot Studio—from structuring your solution to
managing configurations and source control.

Real-world example: Imagine you've built a great customer service agent in your development
environment. Without proper ALM: 1. Moving to production means manually recreating all your
work 2. If something breaks, you can’t easily roll back to a working version 3. When multiple
team members make changes, work gets overwritten

With the ALM practices in this lab, you'll avoid these pitfalls and set yourself up for success!

Set yourself up for success & discover ALM best practices Page 4 of 23

Core Concepts Overview

Concept

Solution

Publisher

Environment

Environment variable

Connection reference

Managed solution

Set yourself up for success & discover ALM best practices

Why it matters

A standard way in Microsoft Power Platform to package and
ship components—including Microsoft Copilot Studio agent
components like topics, knowledge sources, and tools—
across environments alongside flows, prompts, environment
variables, connection references, and any other solution-
aware component types.

A metadata element that identifies the creator of solution
components. Using a custom publisher improves traceability
and supports cleaner prefixes in naming conventions.

A workspace in Power Platform where no-code, low-code, or
pro-code artifacts—such as agents, flows, and data—reside.
ALM best practices typically involve multiple environments
(e.g., dey, test, prod) to manage lifecycle stages. For admins,
environments also provide governance controls to limit what
makers can do, which connectors or knowledge sources can
be used, and how assets are secured and deployed.

Areusable setting (like a URL, API key, or ID) that can vary
between environments without modifying individual
components. Supports automation and portability. For secrets,
use the Secret data type to retrieve values securely from
Azure Key Vault.

An abstraction that links connectors (e.g., SharePoint,
Dataverse, ServiceNow, etc.) to credentials and environment-
specific settings—allowing reuse and cleaner ALM processes.

A read-only version of a solution used for deployment to
downstream environments. Managed solutions support clean,
controlled, and incremental updates, can be uninstalled, and

Page 5 of 23

Concept Why it matters

prevent direct modifications to components in the target
environment.

Editable solution used in development. Changes can be
Unmanaged solution versioned and exported for deployment. Should not be used in
test or production.

A component or setting that is part of a solution and can be
Solution-aware deployed with it across environments. Not all Copilot Studio
settings are solution-aware.

The practice of tracking and managing changes to your assets
Source control over time. Git integration with Azure DevOps enables auditing,
collaboration, and versioning.

Continuous Integration / Continuous Deployment. Automates
Clicb the process of testing and deploying solutions using tools like
Azure DevOps pipelines or GitHub Actions.

Documentation and Additional Training Links

o ALM overview - Microsoft Power Platform (https://learn.microsoft.com/power-platform/alm/alm-

overview)
o Publish and deploy your agent (https://learn.microsoft.com/copilot-studio/publish-deploy)
« Webinar: Microsoft Copilot Studio ALM (https://aka.ms/MCSALMWebinar)

« Environment variables in solutions (https://learn.microsoft.com/power-apps/maker/data-

platform/environmentvariables)

« Connection references in a solution (https://learn.microsoft.com/power-apps/maker/data-

platform/create-connection-reference)

» Dataverse Git integration overview (https://learn.microsoft.com/power-platform/alm/git-version-control)

Set yourself up for success & discover ALM best practices Page 6 of 23

https://learn.microsoft.com/power-platform/alm/alm-overview
https://learn.microsoft.com/power-platform/alm/alm-overview
https://learn.microsoft.com/copilot-studio/publish-deploy
https://aka.ms/MCSALMWebinar
https://learn.microsoft.com/power-apps/maker/data-platform/environmentvariables
https://learn.microsoft.com/power-apps/maker/data-platform/environmentvariables
https://learn.microsoft.com/power-apps/maker/data-platform/create-connection-reference
https://learn.microsoft.com/power-apps/maker/data-platform/create-connection-reference
https://learn.microsoft.com/power-platform/alm/git-version-control

Prerequisites

» Access to Microsoft Copilot Studio.

» A Microsoft Power Platform environment with at least an Environment Maker security role.

» Access to an Azure DevOps organization, project, and branch using the same tenant
credentials as Microsoft Copilot Studio.

Summary of Targets

In this lab, you'll configure your ALM foundation for working with Microsoft Copilot Studio like a
pro. By the end of the lab, you will:

Create and configure a structured solution for your customizations.

Set up a custom publisher to track ownership and maintain ALM hygiene.

Add environment variables and connection references for better portability.

Learn how to source control your Microsoft Copilot Studio project in a Git repo.

Understand which Microsoft Copilot Studio settings require manual post-deployment steps.

Set yourself up for success & discover ALM best practices Page 7 of 23

Use Cases Covered

Step Use Case

Create a solution and

1 .
custom publisher
Create environment

2 variables and
connection references

3 Set up Git source

control

Instructions by Use Case

Value added

Structure your success —
Group, manage, and deploy all
your agent components with
clarity and control.

Adapt with flexibility —
Environment variables future-
proof your agents for seamless

multi-environment deployments.

Manage credentials and
services cleanly across dev,
test, and prod.

Track and evolve — Use Git to
version, review, and automate
deployment of your agent
assets.

Effort

5 min

5 min

10 min

Use Case #1: Create a solution and custom publisher

Use a structured container to group all agents components for better lifecycle management.

Set yourself up for success & discover ALM best practices

Page 8 of 23

Use case Value added Estimated effort

Structure your success —
Group, manage, and deploy _

and custom 10 minutes
all your agent components

with clarity and control.

Create a solution

publisher

Summary of tasks

In this section, you'll learn how to access the Solutions area of Copilot Studio, create a new
solution, new publisher, and set the solution as default.

Scenario: Properly setup your development environment so that you can later easily package
and deploy your agents to other environments.

Objective

Set up your development environment by creating a solution and custom publisher in Microsoft
Copilot Studio.

Step-by-step instructions

Open the Solutions area
1. Go to the copilotstudio.microsoft.com (https://copilotstudio.microsoft.com/).

2. Confirm you are in the correct environment (top-right corner).

Create a solution

3. In the left navigation (under the ... menu), select Solutions

Set yourself up for success & discover ALM best practices Page 9 of 23

https://copilotstudio.microsoft.com/

::: @ Copilot Studio

G] Explore
Home
® | &
Create
Solutions
o @
Agents

i—u Power Platform

Flows
o+
: @ P
Tooks
I o Power Apps Power Automate Power Bl

alt text

4. Select New solution.

5. Enter a display name.

L

Tip: * Avoid names like DEV , TEST , PROD , POC , MVP or anything tied to a project

lifecycle phase. * Use a descriptive, project-based name. * For example, if this is
specific to this training and lab, use Training Workshop Agents

Create a publisher

6. If this is your first solution, click + New publisher to create one.

Set yourself up for success & discover ALM best practices Page 10 of 23

=
<

Tip: * You may use your organization’s name. * While the Display name may contain
spaces, the Name can’t contain special characters and spaces. * Define a short prefix
for use in technical names.

IMPORTANT: Avoid using the default publisher or the default solution. Custom
publishers ensure cleaner component names and better ALM hygiene.

Set and create

7. Check Set as your preferred solution (so any new component goes into it by default).

8. Click Create.

Congratulations! You’ve created your solution!

Test your understanding

Key takeaways:
» Solutions first — Solutions help manage your agent and related components across
environments.

» Lifecycle readiness — Structuring up front simplifies governance, updates, and
deployment.

+ Naming matters — Use clean, environment-agnostic names.

Set yourself up for success & discover ALM best practices Page 11 of 23

Lessons learned & troubleshooting tips:

« Avoid names like Dev or Test inyour solution name—they’re misleading.
» If save fails, ensure publisher name is unique and valid.

» Keep solution names business-focused, not technical-phase focused.
Challenge: Apply this to your own use case

» What would you name your solution?
» How might you use solutions to organize future agent components?

» Try making another solution for a separate department or use case.

Use Case #2: Create environment variables and
connection references

Use reusable variables and connection abstractions for seamless multi-environment

deployments.

Use case Value added Estimated effort
Adapt with flexibility —
Environment variables

Create environment future-proof your agents for

variables and seamless multi-environment .

] 15 minutes
connection deployments. Manage
references credentials and services

cleanly across dey, test,
and prod.

Summary of tasks

Set yourself up for success & discover ALM best practices Page 12 of 23

In this section, you'll learn how to create environment variables and connection references in
your solution.

Scenario: Configure your environment by anticipating future elements that will need to be
updated as your solution moves from development to production.

Step-by-step instructions

1. Open the solution you created in Use Case #1.

2. Select + New, then go to More and choose Environment variable.

& Copilot Studio

= Objects <o —+ New ~ [-& Add existing ~ [Publish all customizations
< ‘):) Search ‘ & Agent 2
. B App > gents > All
= All (0)
A @ Agents (0) &o Automation > ha 1 «
I - P apps () = Card
& Cards (0) ;ﬁ‘ﬁﬁ Dashboard)
o o2 Cloud flows (0) [l Report
& £ Data Workspace (0) O Security 5
¢ B Tables (0) B Table >

e Meare > |’= Choice

% Component Library

¥ Connection Reference

A3 Connection Role

=

Environment variable

L Setting >
[® Templates >
[& Web resource

& Other >

Set yourself up for success & discover ALM best practices Page 13 of 23

alt text
3. In Name, enter: Custom Knowledge Endpoint

4. In Data Type, select Text.

5. Leave Default Value blank, but under Current Value, select + New Value.

IMPORTANT: * For configuration, use the provided values in the Lab Resources

(specific per training).

Y
L

Tip: * Notice how, under Advanced, you can set whether the current value can follow
through with your solution deployment, or if it should be reset each time the solution
is deployed to a new environment

6. Click Save.

=%
L

Tip: * Environment variables can also be of type Secret to retrieve secure values like
API keys from Azure Key Vault at runtime.

7. In the solution, select New, then go to More and choose Connection reference.

8. Use the connector name, MSN Weather , as the name. Optionally, prefix with your project

name.

Set yourself up for success & discover ALM best practices Page 14 of 23

=0
<

Tip: In other locales, the connector name may be localized. For example, in French, it
would be MSN Météo .

9. Select the connector MSN Weather.
10. In the connection dropdown, choose New connection if none exists.
11. Log in through Power Apps in a new tab if needed, then return to Copilot Studio.

12. Above the Connection dropdown, select Refresh and choose the newly created
connection.

Y

L

Tip: * If the Create button is grayed out, it's just because you pasted the display
name. Type an extra character in the display name field and remove it to be able to
create.

13. Repeat steps for the following connectors:

o Microsoft Copilot Studio

o Microsoft Dataverse (note: there are 2 connectors named Microsoft Dataverse, pick
the 2nd one in the list. When creating the connection, it should have a green logo, not

grey).
o Microsoft Entra ID
o Microsoft Teams
o O0ffice 365 Outlook
o ServiceNow

o SharePoint

Set yourself up for success & discover ALM best practices Page 15 of 23

[
IMPORTANT: * For ServiceNow configuration values, use the provided values in the
Lab Resources (specific per training). * For ServiceNow’s Instance configuration,
be sure to scroll down in the connection screen.

Get a production environment

14. In anticipation of a future ALM lab where we will deploy customizations from DEV to
PROD , request a production envrionment to be created for your user. Simply use the
Workshop Agent (the same that provided user credentials at the beginning of the training)
and ask Get a production environment . The environment will be automatically created
for you. This will take a few minutes to provision and to show up, but you will be notified in
your training tenant Outlook mailbox when it is ready.

|
IMPORTANT: - Access the workshop agent in the same location as when you created
your training user account. - You will need the workshop code and your training user’s
email address if you previously closed the agent. - You are limited to a single PROD
environment for the duration workshop.

Congratulations! You’ve created environment variables and
connection references!

Test your understanding

» Do you understand the value of using environment variables instead of hardcoding

Set yourself up for success & discover ALM best practices Page 16 of 23

values like URLs, API keys, or record IDs?

» Do you see the importance of using descriptive, well-scoped names for environment
variables (e.g. Base API URL , Support Team Email)?

» Have you identified which variables should change across environments (e.g. dev, test,
prod)?
Challenge: Apply this to your own use case
« List the environment variables your agent needs (e.g. external APl base URLSs, system
emails, etc.).
» Define clear naming conventions to help your team manage them consistently.

« Try creating a Secret-type environment variable that securely references a value in Azure
Key Vault (e.g. an API key or client secret).

Use Case #3: Set up Git source control

=
<

Tip: This lab is optional and won’t block your progress in future labs.

Connect your solution to Azure DevOps Git to track changes and prepare for CI/CD—no code

required.
Use case Value added Estimated effort
Track and evolve — Use Git
Set up Git source to version, review, and]
10 minutes
control automate deployment of

your agent assets.

Set yourself up for success & discover ALM best practices Page 17 of 23

Summary of tasks

In this section, you'll learn how to create a new project in Azure DevOps, how to instantiate the

main branch, and how to connect it to your developer environment.

Scenario: You want to track changes to your Copilot Studio agents in source control,

collaborate with your team, and prepare for automated deployment pipelines.

Step-by-step instructions

Setting up Azure DevOps

1.

2.

Navigate to my.visualstudio.com/subscriptions (https://my.visualstudio.com/subscriptions)

If not already signed in, log in with your fictitious user account.

. Select Join Visual Studio Dev Essentials
. Confirm

. Under Subscription | Program, select Visual Studio Dev Essentials

!
IMPORTANT: If you're landing into a Something went wrong! error, follow these
steps: 1. Go to aex.dev.azure.com (https://aex.dev.azure.com/). 2. If prompted, create new
organization (you can leave the default name) if prompted 3. Skip to step 6.

. Select Azure DevOps to open the Azure DevOps portal.
. In the Benefits tab, for Azure DevOps, select Get started.
. When prompted, select Continue.

. Name your organization (you can leave the default name) and select Continue.’

Set yourself up for success & discover ALM best practices Page 18 of 23

https://my.visualstudio.com/subscriptions
https://aex.dev.azure.com/

10. Create a new project by setting a project name. For example Agents
11. Select + Create project.
12. After project creation, go to Repos — Branches.

13. Select Initialize (at the bottom) to create the main branch with a README or .gitignore.

SRR

) Azure DevOps Co UserSBIVSQL3 / Repos / Branches
B userseivsais 4+ Windows Server 2019 support as Microsoft Hosted Imagesis being deprecated. C 2019 images in hould switch to Wind 2022 by 30th June 2025 to avoid disruption. For more information ke,
" the Brownout Schedule and how to identity the impacted pipelines, please follow the biog.
& overview .
User SBIYSQL3 is empty. Add some code!
B soaras
Clone to your computer
o
® o Bl ssi | o O OR @ CloneinVsCode
iles
6 @ Learn more about HTTPS
& Pushes =
| e (© Having problems suthenticating in 7 B sure to get the stet verson Git for Windeows o our pluginsfo ntel) Ecipse. Android Stugio o
O Tags
€3 Pullrequests Push an existing repository from command line
O Advanced Security p—
@ ripeiines git remote add origin o
htps:/ a
A Testrians
B Aieas Import a repository
Import
Initialize 8 main branch with a README or gitignore
e [©
@ Project settings «

&7 You've set up the Git repo! Now return to Microsoft Copilot Studio.

Connecting Microsoft Copilot Studio to Git
14. Go back to Microsoft Copilot Studio (https://copilotstudio.microsoft.com) and open the Solutions
page (still behind the ... menu).
15. In the menu, select Connect to Git.
16. Set Connection type to Solution .
17. Choose your organization and your newly created project and repository.

18. Set the Root Git folder to Solutions .

Set yourself up for success & discover ALM best practices Page 19 of 23

https://copilotstudio.microsoft.com/

19. Select Next, then pick the solution created in Use Case #1.

Environment t N
& Copilot Studio &8 DEv - User 69DMDUG3 & 7 (uw)
- Connect to Git X
Source control Connect this environment to a Git repository with Azure DevOps (ADO).

When ready, commit your changes to Git. Check for updates to pull others' changes into this Vil (©) connecting to Git will tur on Managed Environments for tis environment, Learn more

collaborate across environments, connect them to the same Git location. Learn more
a Connection type *

() Environment

@ solution

T

O Connect different solutions in this environment to different branches and folders in source control.
@ Solutions in this environment cannot be connected to different repositories.
e ‘ o

|

user69dmdug3 v ‘

Select an organization to connect to Git.

Connect this| project *

Back up your work, u | Agents o ‘
mprove security for thi
t0 a Git repository via | Select a project from your selected organization.

Repository *
e 8

Select a Git repository from your selected project

Root Git folder *

Solutions ‘

Enter an existing folder name from your selected Git repository or create a new one. This will be used to create a

L

alt text
20. When prompted for the branch, select Create new branch and name it dev .

21. Click Save and then Connect.

Observing the Git integration from Microsoft Copilot
Studio

22. Now, let’s see this action. Open the solution you created in Use Case #1.
23. In the left-hand navigation, navigate to Source control.

24. See how the various components you have added to your solution are now ready to be

committed to your source control. If don't see them all, select Refresh as they get detected
and added.

25. When ready, select Commit, add a comment describing the changes you're introducing

(e.g., New solution and environment variable).

Set yourself up for success & discover ALM best practices Page 20 of 23

nnnnnnnnnn

o0

e[

alt text

26. Once committed, you can navigate to your commit in Azure DevOps and see the
introduced, updated, or deleted components.

Congratulations! You've set up Git source control!

Test your understanding

» Can you see your solution files in Azure DevOps?
» Can you track history and commit changes?

« Can you create new branches for testing changes?
Challenge: Apply this to your own use case

» Explore branching strategies (e.g., main/dev/feature).
o How will your team review and merge changes?

» How could this integrate with deployment pipelines later?

Set yourself up for success & discover ALM best practices Page 21 of 23

Summary of learnings

True learning comes from doing, questioning, and reflecting—so let’s put your skills to the test.
To maximize the impact of your ALM setup in Copilot Studio:

» Use solutions as your foundation — Keep all your components within a solution to
simplify lifecycle management and ensure clean deployment.

» Name wisely — Adopt a consistent naming convention and always use a custom publisher
to avoid default clutter.

« Plan for portability — Use environment variables and connection references to ensure
your agent configurations adapt across dev, test, and production.

« Document post-deployment steps — Track settings that aren’t part of the solution (e.g.,
authentication, channels, sharing) so nothing is missed.

» Leverage source control — Use Git integration to track, audit, and collaborate—setting the
stage for CI/CD without complex tooling.

» Automate where it counts — Consider using pipelines with Azure DevOps or GitHub for
streamlined, repeatable deployments.

Conclusions and recommendations

ALM golden rules:

» Work in the context of solutions.

» Create separate solutions only if you need to deploy components independently.

» Use a custom publisher and prefix to maintain clarity and traceability.

« Use environment variables for settings and secrets that change across environments.
» Export and deploy solutions as managed, unless you're setting up a dev environment.

» Avoid customizing outside of dev.

Set yourself up for success & discover ALM best practices Page 22 of 23

« Consider automating ALM for source control and CI/CD pipelines.

By following these principles, you'll establish a robust, scalable foundation for managing Copilot
agents and Power Platform assets across their full lifecycle.

Set yourself up for success & discover ALM best practices Page 23 of 23

