1 /* 2 * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSet.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "jfr/jfrEvents.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "opto/addnode.hpp" 41 #include "opto/block.hpp" 42 #include "opto/c2compiler.hpp" 43 #include "opto/callGenerator.hpp" 44 #include "opto/callnode.hpp" 45 #include "opto/castnode.hpp" 46 #include "opto/cfgnode.hpp" 47 #include "opto/chaitin.hpp" 48 #include "opto/compile.hpp" 49 #include "opto/connode.hpp" 50 #include "opto/convertnode.hpp" 51 #include "opto/divnode.hpp" 52 #include "opto/escape.hpp" 53 #include "opto/idealGraphPrinter.hpp" 54 #include "opto/loopnode.hpp" 55 #include "opto/machnode.hpp" 56 #include "opto/macro.hpp" 57 #include "opto/matcher.hpp" 58 #include "opto/mathexactnode.hpp" 59 #include "opto/memnode.hpp" 60 #include "opto/mulnode.hpp" 61 #include "opto/narrowptrnode.hpp" 62 #include "opto/node.hpp" 63 #include "opto/opcodes.hpp" 64 #include "opto/output.hpp" 65 #include "opto/parse.hpp" 66 #include "opto/phaseX.hpp" 67 #include "opto/rootnode.hpp" 68 #include "opto/runtime.hpp" 69 #include "opto/stringopts.hpp" 70 #include "opto/type.hpp" 71 #include "opto/vectornode.hpp" 72 #include "runtime/arguments.hpp" 73 #include "runtime/sharedRuntime.hpp" 74 #include "runtime/signature.hpp" 75 #include "runtime/stubRoutines.hpp" 76 #include "runtime/timer.hpp" 77 #include "utilities/align.hpp" 78 #include "utilities/copy.hpp" 79 #include "utilities/macros.hpp" 80 #include "utilities/resourceHash.hpp" 81 82 83 // -------------------- Compile::mach_constant_base_node ----------------------- 84 // Constant table base node singleton. 85 MachConstantBaseNode* Compile::mach_constant_base_node() { 86 if (_mach_constant_base_node == NULL) { 87 _mach_constant_base_node = new MachConstantBaseNode(); 88 _mach_constant_base_node->add_req(C->root()); 89 } 90 return _mach_constant_base_node; 91 } 92 93 94 /// Support for intrinsics. 95 96 // Return the index at which m must be inserted (or already exists). 97 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 98 class IntrinsicDescPair { 99 private: 100 ciMethod* _m; 101 bool _is_virtual; 102 public: 103 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 104 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 105 ciMethod* m= elt->method(); 106 ciMethod* key_m = key->_m; 107 if (key_m < m) return -1; 108 else if (key_m > m) return 1; 109 else { 110 bool is_virtual = elt->is_virtual(); 111 bool key_virtual = key->_is_virtual; 112 if (key_virtual < is_virtual) return -1; 113 else if (key_virtual > is_virtual) return 1; 114 else return 0; 115 } 116 } 117 }; 118 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 119 #ifdef ASSERT 120 for (int i = 1; i < _intrinsics->length(); i++) { 121 CallGenerator* cg1 = _intrinsics->at(i-1); 122 CallGenerator* cg2 = _intrinsics->at(i); 123 assert(cg1->method() != cg2->method() 124 ? cg1->method() < cg2->method() 125 : cg1->is_virtual() < cg2->is_virtual(), 126 "compiler intrinsics list must stay sorted"); 127 } 128 #endif 129 IntrinsicDescPair pair(m, is_virtual); 130 return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 131 } 132 133 void Compile::register_intrinsic(CallGenerator* cg) { 134 if (_intrinsics == NULL) { 135 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL); 136 } 137 int len = _intrinsics->length(); 138 bool found = false; 139 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 140 assert(!found, "registering twice"); 141 _intrinsics->insert_before(index, cg); 142 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 143 } 144 145 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 146 assert(m->is_loaded(), "don't try this on unloaded methods"); 147 if (_intrinsics != NULL) { 148 bool found = false; 149 int index = intrinsic_insertion_index(m, is_virtual, found); 150 if (found) { 151 return _intrinsics->at(index); 152 } 153 } 154 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 155 if (m->intrinsic_id() != vmIntrinsics::_none && 156 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 157 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 158 if (cg != NULL) { 159 // Save it for next time: 160 register_intrinsic(cg); 161 return cg; 162 } else { 163 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 164 } 165 } 166 return NULL; 167 } 168 169 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined 170 // in library_call.cpp. 171 172 173 #ifndef PRODUCT 174 // statistics gathering... 175 176 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0}; 177 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0}; 178 179 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 180 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 181 int oflags = _intrinsic_hist_flags[id]; 182 assert(flags != 0, "what happened?"); 183 if (is_virtual) { 184 flags |= _intrinsic_virtual; 185 } 186 bool changed = (flags != oflags); 187 if ((flags & _intrinsic_worked) != 0) { 188 juint count = (_intrinsic_hist_count[id] += 1); 189 if (count == 1) { 190 changed = true; // first time 191 } 192 // increment the overall count also: 193 _intrinsic_hist_count[vmIntrinsics::_none] += 1; 194 } 195 if (changed) { 196 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 197 // Something changed about the intrinsic's virtuality. 198 if ((flags & _intrinsic_virtual) != 0) { 199 // This is the first use of this intrinsic as a virtual call. 200 if (oflags != 0) { 201 // We already saw it as a non-virtual, so note both cases. 202 flags |= _intrinsic_both; 203 } 204 } else if ((oflags & _intrinsic_both) == 0) { 205 // This is the first use of this intrinsic as a non-virtual 206 flags |= _intrinsic_both; 207 } 208 } 209 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags); 210 } 211 // update the overall flags also: 212 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags; 213 return changed; 214 } 215 216 static char* format_flags(int flags, char* buf) { 217 buf[0] = 0; 218 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 219 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 220 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 221 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 222 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 223 if (buf[0] == 0) strcat(buf, ","); 224 assert(buf[0] == ',', "must be"); 225 return &buf[1]; 226 } 227 228 void Compile::print_intrinsic_statistics() { 229 char flagsbuf[100]; 230 ttyLocker ttyl; 231 if (xtty != NULL) xtty->head("statistics type='intrinsic'"); 232 tty->print_cr("Compiler intrinsic usage:"); 233 juint total = _intrinsic_hist_count[vmIntrinsics::_none]; 234 if (total == 0) total = 1; // avoid div0 in case of no successes 235 #define PRINT_STAT_LINE(name, c, f) \ 236 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 237 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) { 238 vmIntrinsics::ID id = (vmIntrinsics::ID) index; 239 int flags = _intrinsic_hist_flags[id]; 240 juint count = _intrinsic_hist_count[id]; 241 if ((flags | count) != 0) { 242 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 243 } 244 } 245 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf)); 246 if (xtty != NULL) xtty->tail("statistics"); 247 } 248 249 void Compile::print_statistics() { 250 { ttyLocker ttyl; 251 if (xtty != NULL) xtty->head("statistics type='opto'"); 252 Parse::print_statistics(); 253 PhaseCCP::print_statistics(); 254 PhaseRegAlloc::print_statistics(); 255 PhaseOutput::print_statistics(); 256 PhasePeephole::print_statistics(); 257 PhaseIdealLoop::print_statistics(); 258 if (xtty != NULL) xtty->tail("statistics"); 259 } 260 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) { 261 // put this under its own <statistics> element. 262 print_intrinsic_statistics(); 263 } 264 } 265 #endif //PRODUCT 266 267 void Compile::gvn_replace_by(Node* n, Node* nn) { 268 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 269 Node* use = n->last_out(i); 270 bool is_in_table = initial_gvn()->hash_delete(use); 271 uint uses_found = 0; 272 for (uint j = 0; j < use->len(); j++) { 273 if (use->in(j) == n) { 274 if (j < use->req()) 275 use->set_req(j, nn); 276 else 277 use->set_prec(j, nn); 278 uses_found++; 279 } 280 } 281 if (is_in_table) { 282 // reinsert into table 283 initial_gvn()->hash_find_insert(use); 284 } 285 record_for_igvn(use); 286 i -= uses_found; // we deleted 1 or more copies of this edge 287 } 288 } 289 290 291 static inline bool not_a_node(const Node* n) { 292 if (n == NULL) return true; 293 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 294 if (*(address*)n == badAddress) return true; // kill by Node::destruct 295 return false; 296 } 297 298 // Identify all nodes that are reachable from below, useful. 299 // Use breadth-first pass that records state in a Unique_Node_List, 300 // recursive traversal is slower. 301 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 302 int estimated_worklist_size = live_nodes(); 303 useful.map( estimated_worklist_size, NULL ); // preallocate space 304 305 // Initialize worklist 306 if (root() != NULL) { useful.push(root()); } 307 // If 'top' is cached, declare it useful to preserve cached node 308 if( cached_top_node() ) { useful.push(cached_top_node()); } 309 310 // Push all useful nodes onto the list, breadthfirst 311 for( uint next = 0; next < useful.size(); ++next ) { 312 assert( next < unique(), "Unique useful nodes < total nodes"); 313 Node *n = useful.at(next); 314 uint max = n->len(); 315 for( uint i = 0; i < max; ++i ) { 316 Node *m = n->in(i); 317 if (not_a_node(m)) continue; 318 useful.push(m); 319 } 320 } 321 } 322 323 // Update dead_node_list with any missing dead nodes using useful 324 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 325 void Compile::update_dead_node_list(Unique_Node_List &useful) { 326 uint max_idx = unique(); 327 VectorSet& useful_node_set = useful.member_set(); 328 329 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 330 // If node with index node_idx is not in useful set, 331 // mark it as dead in dead node list. 332 if (!useful_node_set.test(node_idx)) { 333 record_dead_node(node_idx); 334 } 335 } 336 } 337 338 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 339 int shift = 0; 340 for (int i = 0; i < inlines->length(); i++) { 341 CallGenerator* cg = inlines->at(i); 342 CallNode* call = cg->call_node(); 343 if (shift > 0) { 344 inlines->at_put(i-shift, cg); 345 } 346 if (!useful.member(call)) { 347 shift++; 348 } 349 } 350 inlines->trunc_to(inlines->length()-shift); 351 } 352 353 // Disconnect all useless nodes by disconnecting those at the boundary. 354 void Compile::remove_useless_nodes(Unique_Node_List &useful) { 355 uint next = 0; 356 while (next < useful.size()) { 357 Node *n = useful.at(next++); 358 if (n->is_SafePoint()) { 359 // We're done with a parsing phase. Replaced nodes are not valid 360 // beyond that point. 361 n->as_SafePoint()->delete_replaced_nodes(); 362 } 363 // Use raw traversal of out edges since this code removes out edges 364 int max = n->outcnt(); 365 for (int j = 0; j < max; ++j) { 366 Node* child = n->raw_out(j); 367 if (! useful.member(child)) { 368 assert(!child->is_top() || child != top(), 369 "If top is cached in Compile object it is in useful list"); 370 // Only need to remove this out-edge to the useless node 371 n->raw_del_out(j); 372 --j; 373 --max; 374 } 375 } 376 if (n->outcnt() == 1 && n->has_special_unique_user()) { 377 record_for_igvn(n->unique_out()); 378 } 379 } 380 // Remove useless macro and predicate opaq nodes 381 for (int i = C->macro_count()-1; i >= 0; i--) { 382 Node* n = C->macro_node(i); 383 if (!useful.member(n)) { 384 remove_macro_node(n); 385 } 386 } 387 // Remove useless CastII nodes with range check dependency 388 for (int i = range_check_cast_count() - 1; i >= 0; i--) { 389 Node* cast = range_check_cast_node(i); 390 if (!useful.member(cast)) { 391 remove_range_check_cast(cast); 392 } 393 } 394 // Remove useless expensive nodes 395 for (int i = C->expensive_count()-1; i >= 0; i--) { 396 Node* n = C->expensive_node(i); 397 if (!useful.member(n)) { 398 remove_expensive_node(n); 399 } 400 } 401 // Remove useless Opaque4 nodes 402 for (int i = opaque4_count() - 1; i >= 0; i--) { 403 Node* opaq = opaque4_node(i); 404 if (!useful.member(opaq)) { 405 remove_opaque4_node(opaq); 406 } 407 } 408 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 409 bs->eliminate_useless_gc_barriers(useful, this); 410 // clean up the late inline lists 411 remove_useless_late_inlines(&_string_late_inlines, useful); 412 remove_useless_late_inlines(&_boxing_late_inlines, useful); 413 remove_useless_late_inlines(&_late_inlines, useful); 414 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 415 } 416 417 // ============================================================================ 418 //------------------------------CompileWrapper--------------------------------- 419 class CompileWrapper : public StackObj { 420 Compile *const _compile; 421 public: 422 CompileWrapper(Compile* compile); 423 424 ~CompileWrapper(); 425 }; 426 427 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 428 // the Compile* pointer is stored in the current ciEnv: 429 ciEnv* env = compile->env(); 430 assert(env == ciEnv::current(), "must already be a ciEnv active"); 431 assert(env->compiler_data() == NULL, "compile already active?"); 432 env->set_compiler_data(compile); 433 assert(compile == Compile::current(), "sanity"); 434 435 compile->set_type_dict(NULL); 436 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 437 compile->clone_map().set_clone_idx(0); 438 compile->set_type_last_size(0); 439 compile->set_last_tf(NULL, NULL); 440 compile->set_indexSet_arena(NULL); 441 compile->set_indexSet_free_block_list(NULL); 442 compile->init_type_arena(); 443 Type::Initialize(compile); 444 _compile->begin_method(); 445 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 446 } 447 CompileWrapper::~CompileWrapper() { 448 _compile->end_method(); 449 _compile->env()->set_compiler_data(NULL); 450 } 451 452 453 //----------------------------print_compile_messages--------------------------- 454 void Compile::print_compile_messages() { 455 #ifndef PRODUCT 456 // Check if recompiling 457 if (_subsume_loads == false && PrintOpto) { 458 // Recompiling without allowing machine instructions to subsume loads 459 tty->print_cr("*********************************************************"); 460 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 461 tty->print_cr("*********************************************************"); 462 } 463 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) { 464 // Recompiling without escape analysis 465 tty->print_cr("*********************************************************"); 466 tty->print_cr("** Bailout: Recompile without escape analysis **"); 467 tty->print_cr("*********************************************************"); 468 } 469 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) { 470 // Recompiling without boxing elimination 471 tty->print_cr("*********************************************************"); 472 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 473 tty->print_cr("*********************************************************"); 474 } 475 if (C->directive()->BreakAtCompileOption) { 476 // Open the debugger when compiling this method. 477 tty->print("### Breaking when compiling: "); 478 method()->print_short_name(); 479 tty->cr(); 480 BREAKPOINT; 481 } 482 483 if( PrintOpto ) { 484 if (is_osr_compilation()) { 485 tty->print("[OSR]%3d", _compile_id); 486 } else { 487 tty->print("%3d", _compile_id); 488 } 489 } 490 #endif 491 } 492 493 // ============================================================================ 494 //------------------------------Compile standard------------------------------- 495 debug_only( int Compile::_debug_idx = 100000; ) 496 497 // Compile a method. entry_bci is -1 for normal compilations and indicates 498 // the continuation bci for on stack replacement. 499 500 501 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 502 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive) 503 : Phase(Compiler), 504 _compile_id(ci_env->compile_id()), 505 _save_argument_registers(false), 506 _subsume_loads(subsume_loads), 507 _do_escape_analysis(do_escape_analysis), 508 _eliminate_boxing(eliminate_boxing), 509 _method(target), 510 _entry_bci(osr_bci), 511 _stub_function(NULL), 512 _stub_name(NULL), 513 _stub_entry_point(NULL), 514 _max_node_limit(MaxNodeLimit), 515 _inlining_progress(false), 516 _inlining_incrementally(false), 517 _do_cleanup(false), 518 _has_reserved_stack_access(target->has_reserved_stack_access()), 519 #ifndef PRODUCT 520 _trace_opto_output(directive->TraceOptoOutputOption), 521 _print_ideal(directive->PrintIdealOption), 522 #endif 523 _has_method_handle_invokes(false), 524 _clinit_barrier_on_entry(false), 525 _comp_arena(mtCompiler), 526 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 527 _env(ci_env), 528 _directive(directive), 529 _log(ci_env->log()), 530 _failure_reason(NULL), 531 _congraph(NULL), 532 NOT_PRODUCT(_printer(NULL) COMMA) 533 _dead_node_list(comp_arena()), 534 _dead_node_count(0), 535 _node_arena(mtCompiler), 536 _old_arena(mtCompiler), 537 _mach_constant_base_node(NULL), 538 _Compile_types(mtCompiler), 539 _initial_gvn(NULL), 540 _for_igvn(NULL), 541 _warm_calls(NULL), 542 _late_inlines(comp_arena(), 2, 0, NULL), 543 _string_late_inlines(comp_arena(), 2, 0, NULL), 544 _boxing_late_inlines(comp_arena(), 2, 0, NULL), 545 _late_inlines_pos(0), 546 _number_of_mh_late_inlines(0), 547 _print_inlining_stream(NULL), 548 _print_inlining_list(NULL), 549 _print_inlining_idx(0), 550 _print_inlining_output(NULL), 551 _replay_inline_data(NULL), 552 _java_calls(0), 553 _inner_loops(0), 554 _interpreter_frame_size(0) 555 #ifndef PRODUCT 556 , _in_dump_cnt(0) 557 #endif 558 { 559 C = this; 560 CompileWrapper cw(this); 561 562 if (CITimeVerbose) { 563 tty->print(" "); 564 target->holder()->name()->print(); 565 tty->print("."); 566 target->print_short_name(); 567 tty->print(" "); 568 } 569 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 570 TraceTime t2(NULL, &_t_methodCompilation, CITime, false); 571 572 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 573 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 574 // We can always print a disassembly, either abstract (hex dump) or 575 // with the help of a suitable hsdis library. Thus, we should not 576 // couple print_assembly and print_opto_assembly controls. 577 // But: always print opto and regular assembly on compile command 'print'. 578 bool print_assembly = directive->PrintAssemblyOption; 579 set_print_assembly(print_opto_assembly || print_assembly); 580 #else 581 set_print_assembly(false); // must initialize. 582 #endif 583 584 #ifndef PRODUCT 585 set_parsed_irreducible_loop(false); 586 587 if (directive->ReplayInlineOption) { 588 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 589 } 590 #endif 591 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 592 set_print_intrinsics(directive->PrintIntrinsicsOption); 593 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 594 595 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 596 // Make sure the method being compiled gets its own MDO, 597 // so we can at least track the decompile_count(). 598 // Need MDO to record RTM code generation state. 599 method()->ensure_method_data(); 600 } 601 602 Init(::AliasLevel); 603 604 605 print_compile_messages(); 606 607 _ilt = InlineTree::build_inline_tree_root(); 608 609 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 610 assert(num_alias_types() >= AliasIdxRaw, ""); 611 612 #define MINIMUM_NODE_HASH 1023 613 // Node list that Iterative GVN will start with 614 Unique_Node_List for_igvn(comp_arena()); 615 set_for_igvn(&for_igvn); 616 617 // GVN that will be run immediately on new nodes 618 uint estimated_size = method()->code_size()*4+64; 619 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 620 PhaseGVN gvn(node_arena(), estimated_size); 621 set_initial_gvn(&gvn); 622 623 print_inlining_init(); 624 { // Scope for timing the parser 625 TracePhase tp("parse", &timers[_t_parser]); 626 627 // Put top into the hash table ASAP. 628 initial_gvn()->transform_no_reclaim(top()); 629 630 // Set up tf(), start(), and find a CallGenerator. 631 CallGenerator* cg = NULL; 632 if (is_osr_compilation()) { 633 const TypeTuple *domain = StartOSRNode::osr_domain(); 634 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 635 init_tf(TypeFunc::make(domain, range)); 636 StartNode* s = new StartOSRNode(root(), domain); 637 initial_gvn()->set_type_bottom(s); 638 init_start(s); 639 cg = CallGenerator::for_osr(method(), entry_bci()); 640 } else { 641 // Normal case. 642 init_tf(TypeFunc::make(method())); 643 StartNode* s = new StartNode(root(), tf()->domain()); 644 initial_gvn()->set_type_bottom(s); 645 init_start(s); 646 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 647 // With java.lang.ref.reference.get() we must go through the 648 // intrinsic - even when get() is the root 649 // method of the compile - so that, if necessary, the value in 650 // the referent field of the reference object gets recorded by 651 // the pre-barrier code. 652 cg = find_intrinsic(method(), false); 653 } 654 if (cg == NULL) { 655 float past_uses = method()->interpreter_invocation_count(); 656 float expected_uses = past_uses; 657 cg = CallGenerator::for_inline(method(), expected_uses); 658 } 659 } 660 if (failing()) return; 661 if (cg == NULL) { 662 record_method_not_compilable("cannot parse method"); 663 return; 664 } 665 JVMState* jvms = build_start_state(start(), tf()); 666 if ((jvms = cg->generate(jvms)) == NULL) { 667 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 668 record_method_not_compilable("method parse failed"); 669 } 670 return; 671 } 672 GraphKit kit(jvms); 673 674 if (!kit.stopped()) { 675 // Accept return values, and transfer control we know not where. 676 // This is done by a special, unique ReturnNode bound to root. 677 return_values(kit.jvms()); 678 } 679 680 if (kit.has_exceptions()) { 681 // Any exceptions that escape from this call must be rethrown 682 // to whatever caller is dynamically above us on the stack. 683 // This is done by a special, unique RethrowNode bound to root. 684 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 685 } 686 687 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 688 689 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 690 inline_string_calls(true); 691 } 692 693 if (failing()) return; 694 695 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 696 697 // Remove clutter produced by parsing. 698 if (!failing()) { 699 ResourceMark rm; 700 PhaseRemoveUseless pru(initial_gvn(), &for_igvn); 701 } 702 } 703 704 // Note: Large methods are capped off in do_one_bytecode(). 705 if (failing()) return; 706 707 // After parsing, node notes are no longer automagic. 708 // They must be propagated by register_new_node_with_optimizer(), 709 // clone(), or the like. 710 set_default_node_notes(NULL); 711 712 for (;;) { 713 int successes = Inline_Warm(); 714 if (failing()) return; 715 if (successes == 0) break; 716 } 717 718 // Drain the list. 719 Finish_Warm(); 720 #ifndef PRODUCT 721 if (should_print(1)) { 722 _printer->print_inlining(); 723 } 724 #endif 725 726 if (failing()) return; 727 NOT_PRODUCT( verify_graph_edges(); ) 728 729 // Now optimize 730 Optimize(); 731 if (failing()) return; 732 NOT_PRODUCT( verify_graph_edges(); ) 733 734 #ifndef PRODUCT 735 if (print_ideal()) { 736 ttyLocker ttyl; // keep the following output all in one block 737 // This output goes directly to the tty, not the compiler log. 738 // To enable tools to match it up with the compilation activity, 739 // be sure to tag this tty output with the compile ID. 740 if (xtty != NULL) { 741 xtty->head("ideal compile_id='%d'%s", compile_id(), 742 is_osr_compilation() ? " compile_kind='osr'" : 743 ""); 744 } 745 root()->dump(9999); 746 if (xtty != NULL) { 747 xtty->tail("ideal"); 748 } 749 } 750 #endif 751 752 #ifdef ASSERT 753 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 754 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 755 #endif 756 757 // Dump compilation data to replay it. 758 if (directive->DumpReplayOption) { 759 env()->dump_replay_data(_compile_id); 760 } 761 if (directive->DumpInlineOption && (ilt() != NULL)) { 762 env()->dump_inline_data(_compile_id); 763 } 764 765 // Now that we know the size of all the monitors we can add a fixed slot 766 // for the original deopt pc. 767 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 768 set_fixed_slots(next_slot); 769 770 // Compute when to use implicit null checks. Used by matching trap based 771 // nodes and NullCheck optimization. 772 set_allowed_deopt_reasons(); 773 774 // Now generate code 775 Code_Gen(); 776 } 777 778 //------------------------------Compile---------------------------------------- 779 // Compile a runtime stub 780 Compile::Compile( ciEnv* ci_env, 781 TypeFunc_generator generator, 782 address stub_function, 783 const char *stub_name, 784 int is_fancy_jump, 785 bool pass_tls, 786 bool save_arg_registers, 787 bool return_pc, 788 DirectiveSet* directive) 789 : Phase(Compiler), 790 _compile_id(0), 791 _save_argument_registers(save_arg_registers), 792 _subsume_loads(true), 793 _do_escape_analysis(false), 794 _eliminate_boxing(false), 795 _method(NULL), 796 _entry_bci(InvocationEntryBci), 797 _stub_function(stub_function), 798 _stub_name(stub_name), 799 _stub_entry_point(NULL), 800 _max_node_limit(MaxNodeLimit), 801 _inlining_progress(false), 802 _inlining_incrementally(false), 803 _has_reserved_stack_access(false), 804 #ifndef PRODUCT 805 _trace_opto_output(directive->TraceOptoOutputOption), 806 _print_ideal(directive->PrintIdealOption), 807 #endif 808 _has_method_handle_invokes(false), 809 _clinit_barrier_on_entry(false), 810 _comp_arena(mtCompiler), 811 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 812 _env(ci_env), 813 _directive(directive), 814 _log(ci_env->log()), 815 _failure_reason(NULL), 816 _congraph(NULL), 817 NOT_PRODUCT(_printer(NULL) COMMA) 818 _dead_node_list(comp_arena()), 819 _dead_node_count(0), 820 _node_arena(mtCompiler), 821 _old_arena(mtCompiler), 822 _mach_constant_base_node(NULL), 823 _Compile_types(mtCompiler), 824 _initial_gvn(NULL), 825 _for_igvn(NULL), 826 _warm_calls(NULL), 827 _number_of_mh_late_inlines(0), 828 _print_inlining_stream(NULL), 829 _print_inlining_list(NULL), 830 _print_inlining_idx(0), 831 _print_inlining_output(NULL), 832 _replay_inline_data(NULL), 833 _java_calls(0), 834 _inner_loops(0), 835 _interpreter_frame_size(0), 836 #ifndef PRODUCT 837 _in_dump_cnt(0), 838 #endif 839 _allowed_reasons(0) { 840 C = this; 841 842 TraceTime t1(NULL, &_t_totalCompilation, CITime, false); 843 TraceTime t2(NULL, &_t_stubCompilation, CITime, false); 844 845 #ifndef PRODUCT 846 set_print_assembly(PrintFrameConverterAssembly); 847 set_parsed_irreducible_loop(false); 848 #else 849 set_print_assembly(false); // Must initialize. 850 #endif 851 set_has_irreducible_loop(false); // no loops 852 853 CompileWrapper cw(this); 854 Init(/*AliasLevel=*/ 0); 855 init_tf((*generator)()); 856 857 { 858 // The following is a dummy for the sake of GraphKit::gen_stub 859 Unique_Node_List for_igvn(comp_arena()); 860 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this 861 PhaseGVN gvn(Thread::current()->resource_area(),255); 862 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 863 gvn.transform_no_reclaim(top()); 864 865 GraphKit kit; 866 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 867 } 868 869 NOT_PRODUCT( verify_graph_edges(); ) 870 871 Code_Gen(); 872 } 873 874 //------------------------------Init------------------------------------------- 875 // Prepare for a single compilation 876 void Compile::Init(int aliaslevel) { 877 _unique = 0; 878 _regalloc = NULL; 879 880 _tf = NULL; // filled in later 881 _top = NULL; // cached later 882 _matcher = NULL; // filled in later 883 _cfg = NULL; // filled in later 884 885 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 886 887 _node_note_array = NULL; 888 _default_node_notes = NULL; 889 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize() 890 891 _immutable_memory = NULL; // filled in at first inquiry 892 893 // Globally visible Nodes 894 // First set TOP to NULL to give safe behavior during creation of RootNode 895 set_cached_top_node(NULL); 896 set_root(new RootNode()); 897 // Now that you have a Root to point to, create the real TOP 898 set_cached_top_node( new ConNode(Type::TOP) ); 899 set_recent_alloc(NULL, NULL); 900 901 // Create Debug Information Recorder to record scopes, oopmaps, etc. 902 env()->set_oop_recorder(new OopRecorder(env()->arena())); 903 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 904 env()->set_dependencies(new Dependencies(env())); 905 906 _fixed_slots = 0; 907 set_has_split_ifs(false); 908 set_has_loops(has_method() && method()->has_loops()); // first approximation 909 set_has_stringbuilder(false); 910 set_has_boxed_value(false); 911 _trap_can_recompile = false; // no traps emitted yet 912 _major_progress = true; // start out assuming good things will happen 913 set_has_unsafe_access(false); 914 set_max_vector_size(0); 915 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 916 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 917 set_decompile_count(0); 918 919 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 920 _loop_opts_cnt = LoopOptsCount; 921 set_do_inlining(Inline); 922 set_max_inline_size(MaxInlineSize); 923 set_freq_inline_size(FreqInlineSize); 924 set_do_scheduling(OptoScheduling); 925 set_do_count_invocations(false); 926 set_do_method_data_update(false); 927 928 set_do_vector_loop(false); 929 930 if (AllowVectorizeOnDemand) { 931 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) { 932 set_do_vector_loop(true); 933 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 934 } else if (has_method() && method()->name() != 0 && 935 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 936 set_do_vector_loop(true); 937 } 938 } 939 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 940 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 941 942 set_age_code(has_method() && method()->profile_aging()); 943 set_rtm_state(NoRTM); // No RTM lock eliding by default 944 _max_node_limit = _directive->MaxNodeLimitOption; 945 946 #if INCLUDE_RTM_OPT 947 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) { 948 int rtm_state = method()->method_data()->rtm_state(); 949 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) { 950 // Don't generate RTM lock eliding code. 951 set_rtm_state(NoRTM); 952 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 953 // Generate RTM lock eliding code without abort ratio calculation code. 954 set_rtm_state(UseRTM); 955 } else if (UseRTMDeopt) { 956 // Generate RTM lock eliding code and include abort ratio calculation 957 // code if UseRTMDeopt is on. 958 set_rtm_state(ProfileRTM); 959 } 960 } 961 #endif 962 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 963 set_clinit_barrier_on_entry(true); 964 } 965 if (debug_info()->recording_non_safepoints()) { 966 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 967 (comp_arena(), 8, 0, NULL)); 968 set_default_node_notes(Node_Notes::make(this)); 969 } 970 971 // // -- Initialize types before each compile -- 972 // // Update cached type information 973 // if( _method && _method->constants() ) 974 // Type::update_loaded_types(_method, _method->constants()); 975 976 // Init alias_type map. 977 if (!_do_escape_analysis && aliaslevel == 3) 978 aliaslevel = 2; // No unique types without escape analysis 979 _AliasLevel = aliaslevel; 980 const int grow_ats = 16; 981 _max_alias_types = grow_ats; 982 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 983 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 984 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 985 { 986 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 987 } 988 // Initialize the first few types. 989 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL); 990 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 991 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 992 _num_alias_types = AliasIdxRaw+1; 993 // Zero out the alias type cache. 994 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 995 // A NULL adr_type hits in the cache right away. Preload the right answer. 996 probe_alias_cache(NULL)->_index = AliasIdxTop; 997 998 _intrinsics = NULL; 999 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1000 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1001 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1002 _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1003 _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1004 register_library_intrinsics(); 1005 #ifdef ASSERT 1006 _type_verify_symmetry = true; 1007 #endif 1008 } 1009 1010 //---------------------------init_start---------------------------------------- 1011 // Install the StartNode on this compile object. 1012 void Compile::init_start(StartNode* s) { 1013 if (failing()) 1014 return; // already failing 1015 assert(s == start(), ""); 1016 } 1017 1018 /** 1019 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1020 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1021 * the ideal graph. 1022 */ 1023 StartNode* Compile::start() const { 1024 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1025 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1026 Node* start = root()->fast_out(i); 1027 if (start->is_Start()) { 1028 return start->as_Start(); 1029 } 1030 } 1031 fatal("Did not find Start node!"); 1032 return NULL; 1033 } 1034 1035 //-------------------------------immutable_memory------------------------------------- 1036 // Access immutable memory 1037 Node* Compile::immutable_memory() { 1038 if (_immutable_memory != NULL) { 1039 return _immutable_memory; 1040 } 1041 StartNode* s = start(); 1042 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1043 Node *p = s->fast_out(i); 1044 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1045 _immutable_memory = p; 1046 return _immutable_memory; 1047 } 1048 } 1049 ShouldNotReachHere(); 1050 return NULL; 1051 } 1052 1053 //----------------------set_cached_top_node------------------------------------ 1054 // Install the cached top node, and make sure Node::is_top works correctly. 1055 void Compile::set_cached_top_node(Node* tn) { 1056 if (tn != NULL) verify_top(tn); 1057 Node* old_top = _top; 1058 _top = tn; 1059 // Calling Node::setup_is_top allows the nodes the chance to adjust 1060 // their _out arrays. 1061 if (_top != NULL) _top->setup_is_top(); 1062 if (old_top != NULL) old_top->setup_is_top(); 1063 assert(_top == NULL || top()->is_top(), ""); 1064 } 1065 1066 #ifdef ASSERT 1067 uint Compile::count_live_nodes_by_graph_walk() { 1068 Unique_Node_List useful(comp_arena()); 1069 // Get useful node list by walking the graph. 1070 identify_useful_nodes(useful); 1071 return useful.size(); 1072 } 1073 1074 void Compile::print_missing_nodes() { 1075 1076 // Return if CompileLog is NULL and PrintIdealNodeCount is false. 1077 if ((_log == NULL) && (! PrintIdealNodeCount)) { 1078 return; 1079 } 1080 1081 // This is an expensive function. It is executed only when the user 1082 // specifies VerifyIdealNodeCount option or otherwise knows the 1083 // additional work that needs to be done to identify reachable nodes 1084 // by walking the flow graph and find the missing ones using 1085 // _dead_node_list. 1086 1087 Unique_Node_List useful(comp_arena()); 1088 // Get useful node list by walking the graph. 1089 identify_useful_nodes(useful); 1090 1091 uint l_nodes = C->live_nodes(); 1092 uint l_nodes_by_walk = useful.size(); 1093 1094 if (l_nodes != l_nodes_by_walk) { 1095 if (_log != NULL) { 1096 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1097 _log->stamp(); 1098 _log->end_head(); 1099 } 1100 VectorSet& useful_member_set = useful.member_set(); 1101 int last_idx = l_nodes_by_walk; 1102 for (int i = 0; i < last_idx; i++) { 1103 if (useful_member_set.test(i)) { 1104 if (_dead_node_list.test(i)) { 1105 if (_log != NULL) { 1106 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1107 } 1108 if (PrintIdealNodeCount) { 1109 // Print the log message to tty 1110 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1111 useful.at(i)->dump(); 1112 } 1113 } 1114 } 1115 else if (! _dead_node_list.test(i)) { 1116 if (_log != NULL) { 1117 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1118 } 1119 if (PrintIdealNodeCount) { 1120 // Print the log message to tty 1121 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1122 } 1123 } 1124 } 1125 if (_log != NULL) { 1126 _log->tail("mismatched_nodes"); 1127 } 1128 } 1129 } 1130 void Compile::record_modified_node(Node* n) { 1131 if (_modified_nodes != NULL && !_inlining_incrementally && 1132 n->outcnt() != 0 && !n->is_Con()) { 1133 _modified_nodes->push(n); 1134 } 1135 } 1136 1137 void Compile::remove_modified_node(Node* n) { 1138 if (_modified_nodes != NULL) { 1139 _modified_nodes->remove(n); 1140 } 1141 } 1142 #endif 1143 1144 #ifndef PRODUCT 1145 void Compile::verify_top(Node* tn) const { 1146 if (tn != NULL) { 1147 assert(tn->is_Con(), "top node must be a constant"); 1148 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1149 assert(tn->in(0) != NULL, "must have live top node"); 1150 } 1151 } 1152 #endif 1153 1154 1155 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1156 1157 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1158 guarantee(arr != NULL, ""); 1159 int num_blocks = arr->length(); 1160 if (grow_by < num_blocks) grow_by = num_blocks; 1161 int num_notes = grow_by * _node_notes_block_size; 1162 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1163 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1164 while (num_notes > 0) { 1165 arr->append(notes); 1166 notes += _node_notes_block_size; 1167 num_notes -= _node_notes_block_size; 1168 } 1169 assert(num_notes == 0, "exact multiple, please"); 1170 } 1171 1172 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1173 if (source == NULL || dest == NULL) return false; 1174 1175 if (dest->is_Con()) 1176 return false; // Do not push debug info onto constants. 1177 1178 #ifdef ASSERT 1179 // Leave a bread crumb trail pointing to the original node: 1180 if (dest != NULL && dest != source && dest->debug_orig() == NULL) { 1181 dest->set_debug_orig(source); 1182 } 1183 #endif 1184 1185 if (node_note_array() == NULL) 1186 return false; // Not collecting any notes now. 1187 1188 // This is a copy onto a pre-existing node, which may already have notes. 1189 // If both nodes have notes, do not overwrite any pre-existing notes. 1190 Node_Notes* source_notes = node_notes_at(source->_idx); 1191 if (source_notes == NULL || source_notes->is_clear()) return false; 1192 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1193 if (dest_notes == NULL || dest_notes->is_clear()) { 1194 return set_node_notes_at(dest->_idx, source_notes); 1195 } 1196 1197 Node_Notes merged_notes = (*source_notes); 1198 // The order of operations here ensures that dest notes will win... 1199 merged_notes.update_from(dest_notes); 1200 return set_node_notes_at(dest->_idx, &merged_notes); 1201 } 1202 1203 1204 //--------------------------allow_range_check_smearing------------------------- 1205 // Gating condition for coalescing similar range checks. 1206 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1207 // single covering check that is at least as strong as any of them. 1208 // If the optimization succeeds, the simplified (strengthened) range check 1209 // will always succeed. If it fails, we will deopt, and then give up 1210 // on the optimization. 1211 bool Compile::allow_range_check_smearing() const { 1212 // If this method has already thrown a range-check, 1213 // assume it was because we already tried range smearing 1214 // and it failed. 1215 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1216 return !already_trapped; 1217 } 1218 1219 1220 //------------------------------flatten_alias_type----------------------------- 1221 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1222 int offset = tj->offset(); 1223 TypePtr::PTR ptr = tj->ptr(); 1224 1225 // Known instance (scalarizable allocation) alias only with itself. 1226 bool is_known_inst = tj->isa_oopptr() != NULL && 1227 tj->is_oopptr()->is_known_instance(); 1228 1229 // Process weird unsafe references. 1230 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1231 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops"); 1232 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1233 tj = TypeOopPtr::BOTTOM; 1234 ptr = tj->ptr(); 1235 offset = tj->offset(); 1236 } 1237 1238 // Array pointers need some flattening 1239 const TypeAryPtr *ta = tj->isa_aryptr(); 1240 if (ta && ta->is_stable()) { 1241 // Erase stability property for alias analysis. 1242 tj = ta = ta->cast_to_stable(false); 1243 } 1244 if( ta && is_known_inst ) { 1245 if ( offset != Type::OffsetBot && 1246 offset > arrayOopDesc::length_offset_in_bytes() ) { 1247 offset = Type::OffsetBot; // Flatten constant access into array body only 1248 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id()); 1249 } 1250 } else if( ta && _AliasLevel >= 2 ) { 1251 // For arrays indexed by constant indices, we flatten the alias 1252 // space to include all of the array body. Only the header, klass 1253 // and array length can be accessed un-aliased. 1254 if( offset != Type::OffsetBot ) { 1255 if( ta->const_oop() ) { // MethodData* or Method* 1256 offset = Type::OffsetBot; // Flatten constant access into array body 1257 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset); 1258 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1259 // range is OK as-is. 1260 tj = ta = TypeAryPtr::RANGE; 1261 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1262 tj = TypeInstPtr::KLASS; // all klass loads look alike 1263 ta = TypeAryPtr::RANGE; // generic ignored junk 1264 ptr = TypePtr::BotPTR; 1265 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1266 tj = TypeInstPtr::MARK; 1267 ta = TypeAryPtr::RANGE; // generic ignored junk 1268 ptr = TypePtr::BotPTR; 1269 } else { // Random constant offset into array body 1270 offset = Type::OffsetBot; // Flatten constant access into array body 1271 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset); 1272 } 1273 } 1274 // Arrays of fixed size alias with arrays of unknown size. 1275 if (ta->size() != TypeInt::POS) { 1276 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1277 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset); 1278 } 1279 // Arrays of known objects become arrays of unknown objects. 1280 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1281 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1282 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1283 } 1284 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1285 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1286 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1287 } 1288 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1289 // cannot be distinguished by bytecode alone. 1290 if (ta->elem() == TypeInt::BOOL) { 1291 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1292 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1293 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1294 } 1295 // During the 2nd round of IterGVN, NotNull castings are removed. 1296 // Make sure the Bottom and NotNull variants alias the same. 1297 // Also, make sure exact and non-exact variants alias the same. 1298 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) { 1299 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset); 1300 } 1301 } 1302 1303 // Oop pointers need some flattening 1304 const TypeInstPtr *to = tj->isa_instptr(); 1305 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) { 1306 ciInstanceKlass *k = to->klass()->as_instance_klass(); 1307 if( ptr == TypePtr::Constant ) { 1308 if (to->klass() != ciEnv::current()->Class_klass() || 1309 offset < k->size_helper() * wordSize) { 1310 // No constant oop pointers (such as Strings); they alias with 1311 // unknown strings. 1312 assert(!is_known_inst, "not scalarizable allocation"); 1313 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1314 } 1315 } else if( is_known_inst ) { 1316 tj = to; // Keep NotNull and klass_is_exact for instance type 1317 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1318 // During the 2nd round of IterGVN, NotNull castings are removed. 1319 // Make sure the Bottom and NotNull variants alias the same. 1320 // Also, make sure exact and non-exact variants alias the same. 1321 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1322 } 1323 if (to->speculative() != NULL) { 1324 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id()); 1325 } 1326 // Canonicalize the holder of this field 1327 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1328 // First handle header references such as a LoadKlassNode, even if the 1329 // object's klass is unloaded at compile time (4965979). 1330 if (!is_known_inst) { // Do it only for non-instance types 1331 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset); 1332 } 1333 } else if (offset < 0 || offset >= k->size_helper() * wordSize) { 1334 // Static fields are in the space above the normal instance 1335 // fields in the java.lang.Class instance. 1336 if (to->klass() != ciEnv::current()->Class_klass()) { 1337 to = NULL; 1338 tj = TypeOopPtr::BOTTOM; 1339 offset = tj->offset(); 1340 } 1341 } else { 1342 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset); 1343 if (!k->equals(canonical_holder) || tj->offset() != offset) { 1344 if( is_known_inst ) { 1345 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id()); 1346 } else { 1347 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset); 1348 } 1349 } 1350 } 1351 } 1352 1353 // Klass pointers to object array klasses need some flattening 1354 const TypeKlassPtr *tk = tj->isa_klassptr(); 1355 if( tk ) { 1356 // If we are referencing a field within a Klass, we need 1357 // to assume the worst case of an Object. Both exact and 1358 // inexact types must flatten to the same alias class so 1359 // use NotNull as the PTR. 1360 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1361 1362 tj = tk = TypeKlassPtr::make(TypePtr::NotNull, 1363 TypeKlassPtr::OBJECT->klass(), 1364 offset); 1365 } 1366 1367 ciKlass* klass = tk->klass(); 1368 if( klass->is_obj_array_klass() ) { 1369 ciKlass* k = TypeAryPtr::OOPS->klass(); 1370 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs 1371 k = TypeInstPtr::BOTTOM->klass(); 1372 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset ); 1373 } 1374 1375 // Check for precise loads from the primary supertype array and force them 1376 // to the supertype cache alias index. Check for generic array loads from 1377 // the primary supertype array and also force them to the supertype cache 1378 // alias index. Since the same load can reach both, we need to merge 1379 // these 2 disparate memories into the same alias class. Since the 1380 // primary supertype array is read-only, there's no chance of confusion 1381 // where we bypass an array load and an array store. 1382 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1383 if (offset == Type::OffsetBot || 1384 (offset >= primary_supers_offset && 1385 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1386 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1387 offset = in_bytes(Klass::secondary_super_cache_offset()); 1388 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset ); 1389 } 1390 } 1391 1392 // Flatten all Raw pointers together. 1393 if (tj->base() == Type::RawPtr) 1394 tj = TypeRawPtr::BOTTOM; 1395 1396 if (tj->base() == Type::AnyPtr) 1397 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1398 1399 // Flatten all to bottom for now 1400 switch( _AliasLevel ) { 1401 case 0: 1402 tj = TypePtr::BOTTOM; 1403 break; 1404 case 1: // Flatten to: oop, static, field or array 1405 switch (tj->base()) { 1406 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break; 1407 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break; 1408 case Type::AryPtr: // do not distinguish arrays at all 1409 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break; 1410 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break; 1411 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it 1412 default: ShouldNotReachHere(); 1413 } 1414 break; 1415 case 2: // No collapsing at level 2; keep all splits 1416 case 3: // No collapsing at level 3; keep all splits 1417 break; 1418 default: 1419 Unimplemented(); 1420 } 1421 1422 offset = tj->offset(); 1423 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1424 1425 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1426 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1427 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1428 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1429 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1430 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1431 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1432 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1433 assert( tj->ptr() != TypePtr::TopPTR && 1434 tj->ptr() != TypePtr::AnyNull && 1435 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1436 // assert( tj->ptr() != TypePtr::Constant || 1437 // tj->base() == Type::RawPtr || 1438 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1439 1440 return tj; 1441 } 1442 1443 void Compile::AliasType::Init(int i, const TypePtr* at) { 1444 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1445 _index = i; 1446 _adr_type = at; 1447 _field = NULL; 1448 _element = NULL; 1449 _is_rewritable = true; // default 1450 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL; 1451 if (atoop != NULL && atoop->is_known_instance()) { 1452 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1453 _general_index = Compile::current()->get_alias_index(gt); 1454 } else { 1455 _general_index = 0; 1456 } 1457 } 1458 1459 BasicType Compile::AliasType::basic_type() const { 1460 if (element() != NULL) { 1461 const Type* element = adr_type()->is_aryptr()->elem(); 1462 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1463 } if (field() != NULL) { 1464 return field()->layout_type(); 1465 } else { 1466 return T_ILLEGAL; // unknown 1467 } 1468 } 1469 1470 //---------------------------------print_on------------------------------------ 1471 #ifndef PRODUCT 1472 void Compile::AliasType::print_on(outputStream* st) { 1473 if (index() < 10) 1474 st->print("@ <%d> ", index()); 1475 else st->print("@ <%d>", index()); 1476 st->print(is_rewritable() ? " " : " RO"); 1477 int offset = adr_type()->offset(); 1478 if (offset == Type::OffsetBot) 1479 st->print(" +any"); 1480 else st->print(" +%-3d", offset); 1481 st->print(" in "); 1482 adr_type()->dump_on(st); 1483 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1484 if (field() != NULL && tjp) { 1485 if (tjp->klass() != field()->holder() || 1486 tjp->offset() != field()->offset_in_bytes()) { 1487 st->print(" != "); 1488 field()->print(); 1489 st->print(" ***"); 1490 } 1491 } 1492 } 1493 1494 void print_alias_types() { 1495 Compile* C = Compile::current(); 1496 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1497 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1498 C->alias_type(idx)->print_on(tty); 1499 tty->cr(); 1500 } 1501 } 1502 #endif 1503 1504 1505 //----------------------------probe_alias_cache-------------------------------- 1506 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1507 intptr_t key = (intptr_t) adr_type; 1508 key ^= key >> logAliasCacheSize; 1509 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1510 } 1511 1512 1513 //-----------------------------grow_alias_types-------------------------------- 1514 void Compile::grow_alias_types() { 1515 const int old_ats = _max_alias_types; // how many before? 1516 const int new_ats = old_ats; // how many more? 1517 const int grow_ats = old_ats+new_ats; // how many now? 1518 _max_alias_types = grow_ats; 1519 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1520 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1521 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1522 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1523 } 1524 1525 1526 //--------------------------------find_alias_type------------------------------ 1527 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1528 if (_AliasLevel == 0) 1529 return alias_type(AliasIdxBot); 1530 1531 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1532 if (ace->_adr_type == adr_type) { 1533 return alias_type(ace->_index); 1534 } 1535 1536 // Handle special cases. 1537 if (adr_type == NULL) return alias_type(AliasIdxTop); 1538 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1539 1540 // Do it the slow way. 1541 const TypePtr* flat = flatten_alias_type(adr_type); 1542 1543 #ifdef ASSERT 1544 { 1545 ResourceMark rm; 1546 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1547 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1548 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1549 Type::str(adr_type)); 1550 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1551 const TypeOopPtr* foop = flat->is_oopptr(); 1552 // Scalarizable allocations have exact klass always. 1553 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1554 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1555 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1556 Type::str(foop), Type::str(xoop)); 1557 } 1558 } 1559 #endif 1560 1561 int idx = AliasIdxTop; 1562 for (int i = 0; i < num_alias_types(); i++) { 1563 if (alias_type(i)->adr_type() == flat) { 1564 idx = i; 1565 break; 1566 } 1567 } 1568 1569 if (idx == AliasIdxTop) { 1570 if (no_create) return NULL; 1571 // Grow the array if necessary. 1572 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1573 // Add a new alias type. 1574 idx = _num_alias_types++; 1575 _alias_types[idx]->Init(idx, flat); 1576 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1577 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1578 if (flat->isa_instptr()) { 1579 if (flat->offset() == java_lang_Class::klass_offset() 1580 && flat->is_instptr()->klass() == env()->Class_klass()) 1581 alias_type(idx)->set_rewritable(false); 1582 } 1583 if (flat->isa_aryptr()) { 1584 #ifdef ASSERT 1585 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1586 // (T_BYTE has the weakest alignment and size restrictions...) 1587 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1588 #endif 1589 if (flat->offset() == TypePtr::OffsetBot) { 1590 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1591 } 1592 } 1593 if (flat->isa_klassptr()) { 1594 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1595 alias_type(idx)->set_rewritable(false); 1596 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1597 alias_type(idx)->set_rewritable(false); 1598 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1599 alias_type(idx)->set_rewritable(false); 1600 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1601 alias_type(idx)->set_rewritable(false); 1602 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1603 alias_type(idx)->set_rewritable(false); 1604 } 1605 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1606 // but the base pointer type is not distinctive enough to identify 1607 // references into JavaThread.) 1608 1609 // Check for final fields. 1610 const TypeInstPtr* tinst = flat->isa_instptr(); 1611 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1612 ciField* field; 1613 if (tinst->const_oop() != NULL && 1614 tinst->klass() == ciEnv::current()->Class_klass() && 1615 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) { 1616 // static field 1617 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1618 field = k->get_field_by_offset(tinst->offset(), true); 1619 } else { 1620 ciInstanceKlass *k = tinst->klass()->as_instance_klass(); 1621 field = k->get_field_by_offset(tinst->offset(), false); 1622 } 1623 assert(field == NULL || 1624 original_field == NULL || 1625 (field->holder() == original_field->holder() && 1626 field->offset() == original_field->offset() && 1627 field->is_static() == original_field->is_static()), "wrong field?"); 1628 // Set field() and is_rewritable() attributes. 1629 if (field != NULL) alias_type(idx)->set_field(field); 1630 } 1631 } 1632 1633 // Fill the cache for next time. 1634 ace->_adr_type = adr_type; 1635 ace->_index = idx; 1636 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1637 1638 // Might as well try to fill the cache for the flattened version, too. 1639 AliasCacheEntry* face = probe_alias_cache(flat); 1640 if (face->_adr_type == NULL) { 1641 face->_adr_type = flat; 1642 face->_index = idx; 1643 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1644 } 1645 1646 return alias_type(idx); 1647 } 1648 1649 1650 Compile::AliasType* Compile::alias_type(ciField* field) { 1651 const TypeOopPtr* t; 1652 if (field->is_static()) 1653 t = TypeInstPtr::make(field->holder()->java_mirror()); 1654 else 1655 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1656 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1657 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1658 return atp; 1659 } 1660 1661 1662 //------------------------------have_alias_type-------------------------------- 1663 bool Compile::have_alias_type(const TypePtr* adr_type) { 1664 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1665 if (ace->_adr_type == adr_type) { 1666 return true; 1667 } 1668 1669 // Handle special cases. 1670 if (adr_type == NULL) return true; 1671 if (adr_type == TypePtr::BOTTOM) return true; 1672 1673 return find_alias_type(adr_type, true, NULL) != NULL; 1674 } 1675 1676 //-----------------------------must_alias-------------------------------------- 1677 // True if all values of the given address type are in the given alias category. 1678 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1679 if (alias_idx == AliasIdxBot) return true; // the universal category 1680 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP 1681 if (alias_idx == AliasIdxTop) return false; // the empty category 1682 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1683 1684 // the only remaining possible overlap is identity 1685 int adr_idx = get_alias_index(adr_type); 1686 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1687 assert(adr_idx == alias_idx || 1688 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1689 && adr_type != TypeOopPtr::BOTTOM), 1690 "should not be testing for overlap with an unsafe pointer"); 1691 return adr_idx == alias_idx; 1692 } 1693 1694 //------------------------------can_alias-------------------------------------- 1695 // True if any values of the given address type are in the given alias category. 1696 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1697 if (alias_idx == AliasIdxTop) return false; // the empty category 1698 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP 1699 // Known instance doesn't alias with bottom memory 1700 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1701 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1702 1703 // the only remaining possible overlap is identity 1704 int adr_idx = get_alias_index(adr_type); 1705 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1706 return adr_idx == alias_idx; 1707 } 1708 1709 1710 1711 //---------------------------pop_warm_call------------------------------------- 1712 WarmCallInfo* Compile::pop_warm_call() { 1713 WarmCallInfo* wci = _warm_calls; 1714 if (wci != NULL) _warm_calls = wci->remove_from(wci); 1715 return wci; 1716 } 1717 1718 //----------------------------Inline_Warm-------------------------------------- 1719 int Compile::Inline_Warm() { 1720 // If there is room, try to inline some more warm call sites. 1721 // %%% Do a graph index compaction pass when we think we're out of space? 1722 if (!InlineWarmCalls) return 0; 1723 1724 int calls_made_hot = 0; 1725 int room_to_grow = NodeCountInliningCutoff - unique(); 1726 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep); 1727 int amount_grown = 0; 1728 WarmCallInfo* call; 1729 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) { 1730 int est_size = (int)call->size(); 1731 if (est_size > (room_to_grow - amount_grown)) { 1732 // This one won't fit anyway. Get rid of it. 1733 call->make_cold(); 1734 continue; 1735 } 1736 call->make_hot(); 1737 calls_made_hot++; 1738 amount_grown += est_size; 1739 amount_to_grow -= est_size; 1740 } 1741 1742 if (calls_made_hot > 0) set_major_progress(); 1743 return calls_made_hot; 1744 } 1745 1746 1747 //----------------------------Finish_Warm-------------------------------------- 1748 void Compile::Finish_Warm() { 1749 if (!InlineWarmCalls) return; 1750 if (failing()) return; 1751 if (warm_calls() == NULL) return; 1752 1753 // Clean up loose ends, if we are out of space for inlining. 1754 WarmCallInfo* call; 1755 while ((call = pop_warm_call()) != NULL) { 1756 call->make_cold(); 1757 } 1758 } 1759 1760 //---------------------cleanup_loop_predicates----------------------- 1761 // Remove the opaque nodes that protect the predicates so that all unused 1762 // checks and uncommon_traps will be eliminated from the ideal graph 1763 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) { 1764 if (predicate_count()==0) return; 1765 for (int i = predicate_count(); i > 0; i--) { 1766 Node * n = predicate_opaque1_node(i-1); 1767 assert(n->Opcode() == Op_Opaque1, "must be"); 1768 igvn.replace_node(n, n->in(1)); 1769 } 1770 assert(predicate_count()==0, "should be clean!"); 1771 } 1772 1773 void Compile::add_range_check_cast(Node* n) { 1774 assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1775 assert(!_range_check_casts->contains(n), "duplicate entry in range check casts"); 1776 _range_check_casts->append(n); 1777 } 1778 1779 // Remove all range check dependent CastIINodes. 1780 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) { 1781 for (int i = range_check_cast_count(); i > 0; i--) { 1782 Node* cast = range_check_cast_node(i-1); 1783 assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1784 igvn.replace_node(cast, cast->in(1)); 1785 } 1786 assert(range_check_cast_count() == 0, "should be empty"); 1787 } 1788 1789 void Compile::add_opaque4_node(Node* n) { 1790 assert(n->Opcode() == Op_Opaque4, "Opaque4 only"); 1791 assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list"); 1792 _opaque4_nodes->append(n); 1793 } 1794 1795 // Remove all Opaque4 nodes. 1796 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) { 1797 for (int i = opaque4_count(); i > 0; i--) { 1798 Node* opaq = opaque4_node(i-1); 1799 assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only"); 1800 igvn.replace_node(opaq, opaq->in(2)); 1801 } 1802 assert(opaque4_count() == 0, "should be empty"); 1803 } 1804 1805 // StringOpts and late inlining of string methods 1806 void Compile::inline_string_calls(bool parse_time) { 1807 { 1808 // remove useless nodes to make the usage analysis simpler 1809 ResourceMark rm; 1810 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1811 } 1812 1813 { 1814 ResourceMark rm; 1815 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1816 PhaseStringOpts pso(initial_gvn(), for_igvn()); 1817 print_method(PHASE_AFTER_STRINGOPTS, 3); 1818 } 1819 1820 // now inline anything that we skipped the first time around 1821 if (!parse_time) { 1822 _late_inlines_pos = _late_inlines.length(); 1823 } 1824 1825 while (_string_late_inlines.length() > 0) { 1826 CallGenerator* cg = _string_late_inlines.pop(); 1827 cg->do_late_inline(); 1828 if (failing()) return; 1829 } 1830 _string_late_inlines.trunc_to(0); 1831 } 1832 1833 // Late inlining of boxing methods 1834 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 1835 if (_boxing_late_inlines.length() > 0) { 1836 assert(has_boxed_value(), "inconsistent"); 1837 1838 PhaseGVN* gvn = initial_gvn(); 1839 set_inlining_incrementally(true); 1840 1841 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1842 for_igvn()->clear(); 1843 gvn->replace_with(&igvn); 1844 1845 _late_inlines_pos = _late_inlines.length(); 1846 1847 while (_boxing_late_inlines.length() > 0) { 1848 CallGenerator* cg = _boxing_late_inlines.pop(); 1849 cg->do_late_inline(); 1850 if (failing()) return; 1851 } 1852 _boxing_late_inlines.trunc_to(0); 1853 1854 inline_incrementally_cleanup(igvn); 1855 1856 set_inlining_incrementally(false); 1857 } 1858 } 1859 1860 bool Compile::inline_incrementally_one() { 1861 assert(IncrementalInline, "incremental inlining should be on"); 1862 1863 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 1864 set_inlining_progress(false); 1865 set_do_cleanup(false); 1866 int i = 0; 1867 for (; i <_late_inlines.length() && !inlining_progress(); i++) { 1868 CallGenerator* cg = _late_inlines.at(i); 1869 _late_inlines_pos = i+1; 1870 cg->do_late_inline(); 1871 if (failing()) return false; 1872 } 1873 int j = 0; 1874 for (; i < _late_inlines.length(); i++, j++) { 1875 _late_inlines.at_put(j, _late_inlines.at(i)); 1876 } 1877 _late_inlines.trunc_to(j); 1878 assert(inlining_progress() || _late_inlines.length() == 0, ""); 1879 1880 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 1881 1882 set_inlining_progress(false); 1883 set_do_cleanup(false); 1884 return (_late_inlines.length() > 0) && !needs_cleanup; 1885 } 1886 1887 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 1888 { 1889 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 1890 ResourceMark rm; 1891 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1892 } 1893 { 1894 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 1895 igvn = PhaseIterGVN(initial_gvn()); 1896 igvn.optimize(); 1897 } 1898 } 1899 1900 // Perform incremental inlining until bound on number of live nodes is reached 1901 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 1902 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 1903 1904 set_inlining_incrementally(true); 1905 uint low_live_nodes = 0; 1906 1907 while (_late_inlines.length() > 0) { 1908 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 1909 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 1910 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 1911 // PhaseIdealLoop is expensive so we only try it once we are 1912 // out of live nodes and we only try it again if the previous 1913 // helped got the number of nodes down significantly 1914 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 1915 if (failing()) return; 1916 low_live_nodes = live_nodes(); 1917 _major_progress = true; 1918 } 1919 1920 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 1921 break; // finish 1922 } 1923 } 1924 1925 for_igvn()->clear(); 1926 initial_gvn()->replace_with(&igvn); 1927 1928 while (inline_incrementally_one()) { 1929 assert(!failing(), "inconsistent"); 1930 } 1931 1932 if (failing()) return; 1933 1934 inline_incrementally_cleanup(igvn); 1935 1936 if (failing()) return; 1937 } 1938 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1939 1940 if (_string_late_inlines.length() > 0) { 1941 assert(has_stringbuilder(), "inconsistent"); 1942 for_igvn()->clear(); 1943 initial_gvn()->replace_with(&igvn); 1944 1945 inline_string_calls(false); 1946 1947 if (failing()) return; 1948 1949 inline_incrementally_cleanup(igvn); 1950 } 1951 1952 set_inlining_incrementally(false); 1953 } 1954 1955 1956 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 1957 if(_loop_opts_cnt > 0) { 1958 debug_only( int cnt = 0; ); 1959 while(major_progress() && (_loop_opts_cnt > 0)) { 1960 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 1961 assert( cnt++ < 40, "infinite cycle in loop optimization" ); 1962 PhaseIdealLoop::optimize(igvn, mode); 1963 _loop_opts_cnt--; 1964 if (failing()) return false; 1965 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 1966 } 1967 } 1968 return true; 1969 } 1970 1971 // Remove edges from "root" to each SafePoint at a backward branch. 1972 // They were inserted during parsing (see add_safepoint()) to make 1973 // infinite loops without calls or exceptions visible to root, i.e., 1974 // useful. 1975 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 1976 Node *r = root(); 1977 if (r != NULL) { 1978 for (uint i = r->req(); i < r->len(); ++i) { 1979 Node *n = r->in(i); 1980 if (n != NULL && n->is_SafePoint()) { 1981 r->rm_prec(i); 1982 if (n->outcnt() == 0) { 1983 igvn.remove_dead_node(n); 1984 } 1985 --i; 1986 } 1987 } 1988 // Parsing may have added top inputs to the root node (Path 1989 // leading to the Halt node proven dead). Make sure we get a 1990 // chance to clean them up. 1991 igvn._worklist.push(r); 1992 igvn.optimize(); 1993 } 1994 } 1995 1996 //------------------------------Optimize--------------------------------------- 1997 // Given a graph, optimize it. 1998 void Compile::Optimize() { 1999 TracePhase tp("optimizer", &timers[_t_optimizer]); 2000 2001 #ifndef PRODUCT 2002 if (_directive->BreakAtCompileOption) { 2003 BREAKPOINT; 2004 } 2005 2006 #endif 2007 2008 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2009 #ifdef ASSERT 2010 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2011 #endif 2012 2013 ResourceMark rm; 2014 2015 print_inlining_reinit(); 2016 2017 NOT_PRODUCT( verify_graph_edges(); ) 2018 2019 print_method(PHASE_AFTER_PARSING); 2020 2021 { 2022 // Iterative Global Value Numbering, including ideal transforms 2023 // Initialize IterGVN with types and values from parse-time GVN 2024 PhaseIterGVN igvn(initial_gvn()); 2025 #ifdef ASSERT 2026 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2027 #endif 2028 { 2029 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2030 igvn.optimize(); 2031 } 2032 2033 if (failing()) return; 2034 2035 print_method(PHASE_ITER_GVN1, 2); 2036 2037 inline_incrementally(igvn); 2038 2039 print_method(PHASE_INCREMENTAL_INLINE, 2); 2040 2041 if (failing()) return; 2042 2043 if (eliminate_boxing()) { 2044 // Inline valueOf() methods now. 2045 inline_boxing_calls(igvn); 2046 2047 if (AlwaysIncrementalInline) { 2048 inline_incrementally(igvn); 2049 } 2050 2051 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2052 2053 if (failing()) return; 2054 } 2055 2056 // Now that all inlining is over, cut edge from root to loop 2057 // safepoints 2058 remove_root_to_sfpts_edges(igvn); 2059 2060 // Remove the speculative part of types and clean up the graph from 2061 // the extra CastPP nodes whose only purpose is to carry them. Do 2062 // that early so that optimizations are not disrupted by the extra 2063 // CastPP nodes. 2064 remove_speculative_types(igvn); 2065 2066 // No more new expensive nodes will be added to the list from here 2067 // so keep only the actual candidates for optimizations. 2068 cleanup_expensive_nodes(igvn); 2069 2070 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2071 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2072 initial_gvn()->replace_with(&igvn); 2073 for_igvn()->clear(); 2074 Unique_Node_List new_worklist(C->comp_arena()); 2075 { 2076 ResourceMark rm; 2077 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist); 2078 } 2079 set_for_igvn(&new_worklist); 2080 igvn = PhaseIterGVN(initial_gvn()); 2081 igvn.optimize(); 2082 } 2083 2084 // Perform escape analysis 2085 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) { 2086 if (has_loops()) { 2087 // Cleanup graph (remove dead nodes). 2088 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2089 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2090 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2091 if (failing()) return; 2092 } 2093 ConnectionGraph::do_analysis(this, &igvn); 2094 2095 if (failing()) return; 2096 2097 // Optimize out fields loads from scalar replaceable allocations. 2098 igvn.optimize(); 2099 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2100 2101 if (failing()) return; 2102 2103 if (congraph() != NULL && macro_count() > 0) { 2104 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2105 PhaseMacroExpand mexp(igvn); 2106 mexp.eliminate_macro_nodes(); 2107 igvn.set_delay_transform(false); 2108 2109 igvn.optimize(); 2110 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2111 2112 if (failing()) return; 2113 } 2114 } 2115 2116 // Loop transforms on the ideal graph. Range Check Elimination, 2117 // peeling, unrolling, etc. 2118 2119 // Set loop opts counter 2120 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2121 { 2122 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2123 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2124 _loop_opts_cnt--; 2125 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2126 if (failing()) return; 2127 } 2128 // Loop opts pass if partial peeling occurred in previous pass 2129 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2130 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2131 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2132 _loop_opts_cnt--; 2133 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2134 if (failing()) return; 2135 } 2136 // Loop opts pass for loop-unrolling before CCP 2137 if(major_progress() && (_loop_opts_cnt > 0)) { 2138 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2139 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2140 _loop_opts_cnt--; 2141 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2142 } 2143 if (!failing()) { 2144 // Verify that last round of loop opts produced a valid graph 2145 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2146 PhaseIdealLoop::verify(igvn); 2147 } 2148 } 2149 if (failing()) return; 2150 2151 // Conditional Constant Propagation; 2152 PhaseCCP ccp( &igvn ); 2153 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2154 { 2155 TracePhase tp("ccp", &timers[_t_ccp]); 2156 ccp.do_transform(); 2157 } 2158 print_method(PHASE_CPP1, 2); 2159 2160 assert( true, "Break here to ccp.dump_old2new_map()"); 2161 2162 // Iterative Global Value Numbering, including ideal transforms 2163 { 2164 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2165 igvn = ccp; 2166 igvn.optimize(); 2167 } 2168 print_method(PHASE_ITER_GVN2, 2); 2169 2170 if (failing()) return; 2171 2172 // Loop transforms on the ideal graph. Range Check Elimination, 2173 // peeling, unrolling, etc. 2174 if (!optimize_loops(igvn, LoopOptsDefault)) { 2175 return; 2176 } 2177 2178 if (failing()) return; 2179 2180 // Ensure that major progress is now clear 2181 C->clear_major_progress(); 2182 2183 { 2184 // Verify that all previous optimizations produced a valid graph 2185 // at least to this point, even if no loop optimizations were done. 2186 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2187 PhaseIdealLoop::verify(igvn); 2188 } 2189 2190 if (range_check_cast_count() > 0) { 2191 // No more loop optimizations. Remove all range check dependent CastIINodes. 2192 C->remove_range_check_casts(igvn); 2193 igvn.optimize(); 2194 } 2195 2196 #ifdef ASSERT 2197 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2198 #endif 2199 2200 { 2201 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2202 PhaseMacroExpand mex(igvn); 2203 if (mex.expand_macro_nodes()) { 2204 assert(failing(), "must bail out w/ explicit message"); 2205 return; 2206 } 2207 print_method(PHASE_MACRO_EXPANSION, 2); 2208 } 2209 2210 { 2211 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2212 if (bs->expand_barriers(this, igvn)) { 2213 assert(failing(), "must bail out w/ explicit message"); 2214 return; 2215 } 2216 print_method(PHASE_BARRIER_EXPANSION, 2); 2217 } 2218 2219 if (opaque4_count() > 0) { 2220 C->remove_opaque4_nodes(igvn); 2221 igvn.optimize(); 2222 } 2223 2224 if (C->max_vector_size() > 0) { 2225 C->optimize_logic_cones(igvn); 2226 igvn.optimize(); 2227 } 2228 2229 DEBUG_ONLY( _modified_nodes = NULL; ) 2230 } // (End scope of igvn; run destructor if necessary for asserts.) 2231 2232 process_print_inlining(); 2233 // A method with only infinite loops has no edges entering loops from root 2234 { 2235 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2236 if (final_graph_reshaping()) { 2237 assert(failing(), "must bail out w/ explicit message"); 2238 return; 2239 } 2240 } 2241 2242 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2243 } 2244 2245 //---------------------------- Bitwise operation packing optimization --------------------------- 2246 2247 static bool is_vector_unary_bitwise_op(Node* n) { 2248 return n->Opcode() == Op_XorV && 2249 VectorNode::is_vector_bitwise_not_pattern(n); 2250 } 2251 2252 static bool is_vector_binary_bitwise_op(Node* n) { 2253 switch (n->Opcode()) { 2254 case Op_AndV: 2255 case Op_OrV: 2256 return true; 2257 2258 case Op_XorV: 2259 return !is_vector_unary_bitwise_op(n); 2260 2261 default: 2262 return false; 2263 } 2264 } 2265 2266 static bool is_vector_ternary_bitwise_op(Node* n) { 2267 return n->Opcode() == Op_MacroLogicV; 2268 } 2269 2270 static bool is_vector_bitwise_op(Node* n) { 2271 return is_vector_unary_bitwise_op(n) || 2272 is_vector_binary_bitwise_op(n) || 2273 is_vector_ternary_bitwise_op(n); 2274 } 2275 2276 static bool is_vector_bitwise_cone_root(Node* n) { 2277 if (!is_vector_bitwise_op(n)) { 2278 return false; 2279 } 2280 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2281 if (is_vector_bitwise_op(n->fast_out(i))) { 2282 return false; 2283 } 2284 } 2285 return true; 2286 } 2287 2288 static uint collect_unique_inputs(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2289 uint cnt = 0; 2290 if (is_vector_bitwise_op(n)) { 2291 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2292 for (uint i = 1; i < n->req(); i++) { 2293 Node* in = n->in(i); 2294 bool skip = VectorNode::is_all_ones_vector(in); 2295 if (!skip && !inputs.member(in)) { 2296 inputs.push(in); 2297 cnt++; 2298 } 2299 } 2300 assert(cnt <= 1, "not unary"); 2301 } else { 2302 uint last_req = n->req(); 2303 if (is_vector_ternary_bitwise_op(n)) { 2304 last_req = n->req() - 1; // skip last input 2305 } 2306 for (uint i = 1; i < last_req; i++) { 2307 Node* def = n->in(i); 2308 if (!inputs.member(def)) { 2309 inputs.push(def); 2310 cnt++; 2311 } 2312 } 2313 } 2314 partition.push(n); 2315 } else { // not a bitwise operations 2316 if (!inputs.member(n)) { 2317 inputs.push(n); 2318 cnt++; 2319 } 2320 } 2321 return cnt; 2322 } 2323 2324 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2325 Unique_Node_List useful_nodes; 2326 C->identify_useful_nodes(useful_nodes); 2327 2328 for (uint i = 0; i < useful_nodes.size(); i++) { 2329 Node* n = useful_nodes.at(i); 2330 if (is_vector_bitwise_cone_root(n)) { 2331 list.push(n); 2332 } 2333 } 2334 } 2335 2336 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2337 const TypeVect* vt, 2338 Unique_Node_List& partition, 2339 Unique_Node_List& inputs) { 2340 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2341 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2342 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2343 2344 Node* in1 = inputs.at(0); 2345 Node* in2 = inputs.at(1); 2346 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2347 2348 uint func = compute_truth_table(partition, inputs); 2349 return igvn.transform(MacroLogicVNode::make(igvn, in3, in2, in1, func, vt)); 2350 } 2351 2352 static uint extract_bit(uint func, uint pos) { 2353 return (func & (1 << pos)) >> pos; 2354 } 2355 2356 // 2357 // A macro logic node represents a truth table. It has 4 inputs, 2358 // First three inputs corresponds to 3 columns of a truth table 2359 // and fourth input captures the logic function. 2360 // 2361 // eg. fn = (in1 AND in2) OR in3; 2362 // 2363 // MacroNode(in1,in2,in3,fn) 2364 // 2365 // ----------------- 2366 // in1 in2 in3 fn 2367 // ----------------- 2368 // 0 0 0 0 2369 // 0 0 1 1 2370 // 0 1 0 0 2371 // 0 1 1 1 2372 // 1 0 0 0 2373 // 1 0 1 1 2374 // 1 1 0 1 2375 // 1 1 1 1 2376 // 2377 2378 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2379 int res = 0; 2380 for (int i = 0; i < 8; i++) { 2381 int bit1 = extract_bit(in1, i); 2382 int bit2 = extract_bit(in2, i); 2383 int bit3 = extract_bit(in3, i); 2384 2385 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2386 int func_bit = extract_bit(func, func_bit_pos); 2387 2388 res |= func_bit << i; 2389 } 2390 return res; 2391 } 2392 2393 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2394 assert(n != NULL, ""); 2395 assert(eval_map.contains(n), "absent"); 2396 return *(eval_map.get(n)); 2397 } 2398 2399 static void eval_operands(Node* n, 2400 uint& func1, uint& func2, uint& func3, 2401 ResourceHashtable<Node*,uint>& eval_map) { 2402 assert(is_vector_bitwise_op(n), ""); 2403 func1 = eval_operand(n->in(1), eval_map); 2404 2405 if (is_vector_binary_bitwise_op(n)) { 2406 func2 = eval_operand(n->in(2), eval_map); 2407 } else if (is_vector_ternary_bitwise_op(n)) { 2408 func2 = eval_operand(n->in(2), eval_map); 2409 func3 = eval_operand(n->in(3), eval_map); 2410 } else { 2411 assert(is_vector_unary_bitwise_op(n), "not unary"); 2412 } 2413 } 2414 2415 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2416 assert(inputs.size() <= 3, "sanity"); 2417 ResourceMark rm; 2418 uint res = 0; 2419 ResourceHashtable<Node*,uint> eval_map; 2420 2421 // Populate precomputed functions for inputs. 2422 // Each input corresponds to one column of 3 input truth-table. 2423 uint input_funcs[] = { 0xAA, // (_, _, a) -> a 2424 0xCC, // (_, b, _) -> b 2425 0xF0 }; // (c, _, _) -> c 2426 for (uint i = 0; i < inputs.size(); i++) { 2427 eval_map.put(inputs.at(i), input_funcs[i]); 2428 } 2429 2430 for (uint i = 0; i < partition.size(); i++) { 2431 Node* n = partition.at(i); 2432 2433 uint func1 = 0, func2 = 0, func3 = 0; 2434 eval_operands(n, func1, func2, func3, eval_map); 2435 2436 switch (n->Opcode()) { 2437 case Op_OrV: 2438 assert(func3 == 0, "not binary"); 2439 res = func1 | func2; 2440 break; 2441 case Op_AndV: 2442 assert(func3 == 0, "not binary"); 2443 res = func1 & func2; 2444 break; 2445 case Op_XorV: 2446 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2447 assert(func2 == 0 && func3 == 0, "not unary"); 2448 res = (~func1) & 0xFF; 2449 } else { 2450 assert(func3 == 0, "not binary"); 2451 res = func1 ^ func2; 2452 } 2453 break; 2454 case Op_MacroLogicV: 2455 // Ordering of inputs may change during evaluation of sub-tree 2456 // containing MacroLogic node as a child node, thus a re-evaluation 2457 // makes sure that function is evaluated in context of current 2458 // inputs. 2459 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2460 break; 2461 2462 default: assert(false, "not supported: %s", n->Name()); 2463 } 2464 assert(res <= 0xFF, "invalid"); 2465 eval_map.put(n, res); 2466 } 2467 return res; 2468 } 2469 2470 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2471 assert(partition.size() == 0, "not empty"); 2472 assert(inputs.size() == 0, "not empty"); 2473 if (is_vector_ternary_bitwise_op(n)) { 2474 return false; 2475 } 2476 2477 bool is_unary_op = is_vector_unary_bitwise_op(n); 2478 if (is_unary_op) { 2479 assert(collect_unique_inputs(n, partition, inputs) == 1, "not unary"); 2480 return false; // too few inputs 2481 } 2482 2483 assert(is_vector_binary_bitwise_op(n), "not binary"); 2484 Node* in1 = n->in(1); 2485 Node* in2 = n->in(2); 2486 2487 int in1_unique_inputs_cnt = collect_unique_inputs(in1, partition, inputs); 2488 int in2_unique_inputs_cnt = collect_unique_inputs(in2, partition, inputs); 2489 partition.push(n); 2490 2491 // Too many inputs? 2492 if (inputs.size() > 3) { 2493 partition.clear(); 2494 inputs.clear(); 2495 { // Recompute in2 inputs 2496 Unique_Node_List not_used; 2497 in2_unique_inputs_cnt = collect_unique_inputs(in2, not_used, not_used); 2498 } 2499 // Pick the node with minimum number of inputs. 2500 if (in1_unique_inputs_cnt >= 3 && in2_unique_inputs_cnt >= 3) { 2501 return false; // still too many inputs 2502 } 2503 // Recompute partition & inputs. 2504 Node* child = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in1 : in2); 2505 collect_unique_inputs(child, partition, inputs); 2506 2507 Node* other_input = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in2 : in1); 2508 inputs.push(other_input); 2509 2510 partition.push(n); 2511 } 2512 2513 return (partition.size() == 2 || partition.size() == 3) && 2514 (inputs.size() == 2 || inputs.size() == 3); 2515 } 2516 2517 2518 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2519 assert(is_vector_bitwise_op(n), "not a root"); 2520 2521 visited.set(n->_idx); 2522 2523 // 1) Do a DFS walk over the logic cone. 2524 for (uint i = 1; i < n->req(); i++) { 2525 Node* in = n->in(i); 2526 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2527 process_logic_cone_root(igvn, in, visited); 2528 } 2529 } 2530 2531 // 2) Bottom up traversal: Merge node[s] with 2532 // the parent to form macro logic node. 2533 Unique_Node_List partition; 2534 Unique_Node_List inputs; 2535 if (compute_logic_cone(n, partition, inputs)) { 2536 const TypeVect* vt = n->bottom_type()->is_vect(); 2537 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2538 igvn.replace_node(n, macro_logic); 2539 } 2540 } 2541 2542 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2543 ResourceMark rm; 2544 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2545 Unique_Node_List list; 2546 collect_logic_cone_roots(list); 2547 2548 while (list.size() > 0) { 2549 Node* n = list.pop(); 2550 const TypeVect* vt = n->bottom_type()->is_vect(); 2551 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2552 if (supported) { 2553 VectorSet visited(comp_arena()); 2554 process_logic_cone_root(igvn, n, visited); 2555 } 2556 } 2557 } 2558 } 2559 2560 //------------------------------Code_Gen--------------------------------------- 2561 // Given a graph, generate code for it 2562 void Compile::Code_Gen() { 2563 if (failing()) { 2564 return; 2565 } 2566 2567 // Perform instruction selection. You might think we could reclaim Matcher 2568 // memory PDQ, but actually the Matcher is used in generating spill code. 2569 // Internals of the Matcher (including some VectorSets) must remain live 2570 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2571 // set a bit in reclaimed memory. 2572 2573 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2574 // nodes. Mapping is only valid at the root of each matched subtree. 2575 NOT_PRODUCT( verify_graph_edges(); ) 2576 2577 Matcher matcher; 2578 _matcher = &matcher; 2579 { 2580 TracePhase tp("matcher", &timers[_t_matcher]); 2581 matcher.match(); 2582 if (failing()) { 2583 return; 2584 } 2585 } 2586 2587 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2588 // nodes. Mapping is only valid at the root of each matched subtree. 2589 NOT_PRODUCT( verify_graph_edges(); ) 2590 2591 // If you have too many nodes, or if matching has failed, bail out 2592 check_node_count(0, "out of nodes matching instructions"); 2593 if (failing()) { 2594 return; 2595 } 2596 2597 print_method(PHASE_MATCHING, 2); 2598 2599 // Build a proper-looking CFG 2600 PhaseCFG cfg(node_arena(), root(), matcher); 2601 _cfg = &cfg; 2602 { 2603 TracePhase tp("scheduler", &timers[_t_scheduler]); 2604 bool success = cfg.do_global_code_motion(); 2605 if (!success) { 2606 return; 2607 } 2608 2609 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2610 NOT_PRODUCT( verify_graph_edges(); ) 2611 debug_only( cfg.verify(); ) 2612 } 2613 2614 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2615 _regalloc = ®alloc; 2616 { 2617 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2618 // Perform register allocation. After Chaitin, use-def chains are 2619 // no longer accurate (at spill code) and so must be ignored. 2620 // Node->LRG->reg mappings are still accurate. 2621 _regalloc->Register_Allocate(); 2622 2623 // Bail out if the allocator builds too many nodes 2624 if (failing()) { 2625 return; 2626 } 2627 } 2628 2629 // Prior to register allocation we kept empty basic blocks in case the 2630 // the allocator needed a place to spill. After register allocation we 2631 // are not adding any new instructions. If any basic block is empty, we 2632 // can now safely remove it. 2633 { 2634 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2635 cfg.remove_empty_blocks(); 2636 if (do_freq_based_layout()) { 2637 PhaseBlockLayout layout(cfg); 2638 } else { 2639 cfg.set_loop_alignment(); 2640 } 2641 cfg.fixup_flow(); 2642 } 2643 2644 // Apply peephole optimizations 2645 if( OptoPeephole ) { 2646 TracePhase tp("peephole", &timers[_t_peephole]); 2647 PhasePeephole peep( _regalloc, cfg); 2648 peep.do_transform(); 2649 } 2650 2651 // Do late expand if CPU requires this. 2652 if (Matcher::require_postalloc_expand) { 2653 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 2654 cfg.postalloc_expand(_regalloc); 2655 } 2656 2657 // Convert Nodes to instruction bits in a buffer 2658 { 2659 TracePhase tp("output", &timers[_t_output]); 2660 PhaseOutput output; 2661 output.Output(); 2662 if (failing()) return; 2663 output.install(); 2664 } 2665 2666 print_method(PHASE_FINAL_CODE); 2667 2668 // He's dead, Jim. 2669 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 2670 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 2671 } 2672 2673 //------------------------------Final_Reshape_Counts--------------------------- 2674 // This class defines counters to help identify when a method 2675 // may/must be executed using hardware with only 24-bit precision. 2676 struct Final_Reshape_Counts : public StackObj { 2677 int _call_count; // count non-inlined 'common' calls 2678 int _float_count; // count float ops requiring 24-bit precision 2679 int _double_count; // count double ops requiring more precision 2680 int _java_call_count; // count non-inlined 'java' calls 2681 int _inner_loop_count; // count loops which need alignment 2682 VectorSet _visited; // Visitation flags 2683 Node_List _tests; // Set of IfNodes & PCTableNodes 2684 2685 Final_Reshape_Counts() : 2686 _call_count(0), _float_count(0), _double_count(0), 2687 _java_call_count(0), _inner_loop_count(0), 2688 _visited( Thread::current()->resource_area() ) { } 2689 2690 void inc_call_count () { _call_count ++; } 2691 void inc_float_count () { _float_count ++; } 2692 void inc_double_count() { _double_count++; } 2693 void inc_java_call_count() { _java_call_count++; } 2694 void inc_inner_loop_count() { _inner_loop_count++; } 2695 2696 int get_call_count () const { return _call_count ; } 2697 int get_float_count () const { return _float_count ; } 2698 int get_double_count() const { return _double_count; } 2699 int get_java_call_count() const { return _java_call_count; } 2700 int get_inner_loop_count() const { return _inner_loop_count; } 2701 }; 2702 2703 #ifdef ASSERT 2704 static bool oop_offset_is_sane(const TypeInstPtr* tp) { 2705 ciInstanceKlass *k = tp->klass()->as_instance_klass(); 2706 // Make sure the offset goes inside the instance layout. 2707 return k->contains_field_offset(tp->offset()); 2708 // Note that OffsetBot and OffsetTop are very negative. 2709 } 2710 #endif 2711 2712 // Eliminate trivially redundant StoreCMs and accumulate their 2713 // precedence edges. 2714 void Compile::eliminate_redundant_card_marks(Node* n) { 2715 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 2716 if (n->in(MemNode::Address)->outcnt() > 1) { 2717 // There are multiple users of the same address so it might be 2718 // possible to eliminate some of the StoreCMs 2719 Node* mem = n->in(MemNode::Memory); 2720 Node* adr = n->in(MemNode::Address); 2721 Node* val = n->in(MemNode::ValueIn); 2722 Node* prev = n; 2723 bool done = false; 2724 // Walk the chain of StoreCMs eliminating ones that match. As 2725 // long as it's a chain of single users then the optimization is 2726 // safe. Eliminating partially redundant StoreCMs would require 2727 // cloning copies down the other paths. 2728 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 2729 if (adr == mem->in(MemNode::Address) && 2730 val == mem->in(MemNode::ValueIn)) { 2731 // redundant StoreCM 2732 if (mem->req() > MemNode::OopStore) { 2733 // Hasn't been processed by this code yet. 2734 n->add_prec(mem->in(MemNode::OopStore)); 2735 } else { 2736 // Already converted to precedence edge 2737 for (uint i = mem->req(); i < mem->len(); i++) { 2738 // Accumulate any precedence edges 2739 if (mem->in(i) != NULL) { 2740 n->add_prec(mem->in(i)); 2741 } 2742 } 2743 // Everything above this point has been processed. 2744 done = true; 2745 } 2746 // Eliminate the previous StoreCM 2747 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 2748 assert(mem->outcnt() == 0, "should be dead"); 2749 mem->disconnect_inputs(NULL, this); 2750 } else { 2751 prev = mem; 2752 } 2753 mem = prev->in(MemNode::Memory); 2754 } 2755 } 2756 } 2757 2758 //------------------------------final_graph_reshaping_impl---------------------- 2759 // Implement items 1-5 from final_graph_reshaping below. 2760 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) { 2761 2762 if ( n->outcnt() == 0 ) return; // dead node 2763 uint nop = n->Opcode(); 2764 2765 // Check for 2-input instruction with "last use" on right input. 2766 // Swap to left input. Implements item (2). 2767 if( n->req() == 3 && // two-input instruction 2768 n->in(1)->outcnt() > 1 && // left use is NOT a last use 2769 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 2770 n->in(2)->outcnt() == 1 &&// right use IS a last use 2771 !n->in(2)->is_Con() ) { // right use is not a constant 2772 // Check for commutative opcode 2773 switch( nop ) { 2774 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 2775 case Op_MaxI: case Op_MinI: 2776 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 2777 case Op_AndL: case Op_XorL: case Op_OrL: 2778 case Op_AndI: case Op_XorI: case Op_OrI: { 2779 // Move "last use" input to left by swapping inputs 2780 n->swap_edges(1, 2); 2781 break; 2782 } 2783 default: 2784 break; 2785 } 2786 } 2787 2788 #ifdef ASSERT 2789 if( n->is_Mem() ) { 2790 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 2791 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw || 2792 // oop will be recorded in oop map if load crosses safepoint 2793 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 2794 LoadNode::is_immutable_value(n->in(MemNode::Address))), 2795 "raw memory operations should have control edge"); 2796 } 2797 if (n->is_MemBar()) { 2798 MemBarNode* mb = n->as_MemBar(); 2799 if (mb->trailing_store() || mb->trailing_load_store()) { 2800 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 2801 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 2802 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 2803 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 2804 } else if (mb->leading()) { 2805 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 2806 } 2807 } 2808 #endif 2809 // Count FPU ops and common calls, implements item (3) 2810 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop); 2811 if (!gc_handled) { 2812 final_graph_reshaping_main_switch(n, frc, nop); 2813 } 2814 2815 // Collect CFG split points 2816 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 2817 frc._tests.push(n); 2818 } 2819 } 2820 2821 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) { 2822 switch( nop ) { 2823 // Count all float operations that may use FPU 2824 case Op_AddF: 2825 case Op_SubF: 2826 case Op_MulF: 2827 case Op_DivF: 2828 case Op_NegF: 2829 case Op_ModF: 2830 case Op_ConvI2F: 2831 case Op_ConF: 2832 case Op_CmpF: 2833 case Op_CmpF3: 2834 // case Op_ConvL2F: // longs are split into 32-bit halves 2835 frc.inc_float_count(); 2836 break; 2837 2838 case Op_ConvF2D: 2839 case Op_ConvD2F: 2840 frc.inc_float_count(); 2841 frc.inc_double_count(); 2842 break; 2843 2844 // Count all double operations that may use FPU 2845 case Op_AddD: 2846 case Op_SubD: 2847 case Op_MulD: 2848 case Op_DivD: 2849 case Op_NegD: 2850 case Op_ModD: 2851 case Op_ConvI2D: 2852 case Op_ConvD2I: 2853 // case Op_ConvL2D: // handled by leaf call 2854 // case Op_ConvD2L: // handled by leaf call 2855 case Op_ConD: 2856 case Op_CmpD: 2857 case Op_CmpD3: 2858 frc.inc_double_count(); 2859 break; 2860 case Op_Opaque1: // Remove Opaque Nodes before matching 2861 case Op_Opaque2: // Remove Opaque Nodes before matching 2862 case Op_Opaque3: 2863 n->subsume_by(n->in(1), this); 2864 break; 2865 case Op_CallStaticJava: 2866 case Op_CallJava: 2867 case Op_CallDynamicJava: 2868 frc.inc_java_call_count(); // Count java call site; 2869 case Op_CallRuntime: 2870 case Op_CallLeaf: 2871 case Op_CallLeafNoFP: { 2872 assert (n->is_Call(), ""); 2873 CallNode *call = n->as_Call(); 2874 // Count call sites where the FP mode bit would have to be flipped. 2875 // Do not count uncommon runtime calls: 2876 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 2877 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 2878 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 2879 frc.inc_call_count(); // Count the call site 2880 } else { // See if uncommon argument is shared 2881 Node *n = call->in(TypeFunc::Parms); 2882 int nop = n->Opcode(); 2883 // Clone shared simple arguments to uncommon calls, item (1). 2884 if (n->outcnt() > 1 && 2885 !n->is_Proj() && 2886 nop != Op_CreateEx && 2887 nop != Op_CheckCastPP && 2888 nop != Op_DecodeN && 2889 nop != Op_DecodeNKlass && 2890 !n->is_Mem() && 2891 !n->is_Phi()) { 2892 Node *x = n->clone(); 2893 call->set_req(TypeFunc::Parms, x); 2894 } 2895 } 2896 break; 2897 } 2898 2899 case Op_StoreD: 2900 case Op_LoadD: 2901 case Op_LoadD_unaligned: 2902 frc.inc_double_count(); 2903 goto handle_mem; 2904 case Op_StoreF: 2905 case Op_LoadF: 2906 frc.inc_float_count(); 2907 goto handle_mem; 2908 2909 case Op_StoreCM: 2910 { 2911 // Convert OopStore dependence into precedence edge 2912 Node* prec = n->in(MemNode::OopStore); 2913 n->del_req(MemNode::OopStore); 2914 n->add_prec(prec); 2915 eliminate_redundant_card_marks(n); 2916 } 2917 2918 // fall through 2919 2920 case Op_StoreB: 2921 case Op_StoreC: 2922 case Op_StorePConditional: 2923 case Op_StoreI: 2924 case Op_StoreL: 2925 case Op_StoreIConditional: 2926 case Op_StoreLConditional: 2927 case Op_CompareAndSwapB: 2928 case Op_CompareAndSwapS: 2929 case Op_CompareAndSwapI: 2930 case Op_CompareAndSwapL: 2931 case Op_CompareAndSwapP: 2932 case Op_CompareAndSwapN: 2933 case Op_WeakCompareAndSwapB: 2934 case Op_WeakCompareAndSwapS: 2935 case Op_WeakCompareAndSwapI: 2936 case Op_WeakCompareAndSwapL: 2937 case Op_WeakCompareAndSwapP: 2938 case Op_WeakCompareAndSwapN: 2939 case Op_CompareAndExchangeB: 2940 case Op_CompareAndExchangeS: 2941 case Op_CompareAndExchangeI: 2942 case Op_CompareAndExchangeL: 2943 case Op_CompareAndExchangeP: 2944 case Op_CompareAndExchangeN: 2945 case Op_GetAndAddS: 2946 case Op_GetAndAddB: 2947 case Op_GetAndAddI: 2948 case Op_GetAndAddL: 2949 case Op_GetAndSetS: 2950 case Op_GetAndSetB: 2951 case Op_GetAndSetI: 2952 case Op_GetAndSetL: 2953 case Op_GetAndSetP: 2954 case Op_GetAndSetN: 2955 case Op_StoreP: 2956 case Op_StoreN: 2957 case Op_StoreNKlass: 2958 case Op_LoadB: 2959 case Op_LoadUB: 2960 case Op_LoadUS: 2961 case Op_LoadI: 2962 case Op_LoadKlass: 2963 case Op_LoadNKlass: 2964 case Op_LoadL: 2965 case Op_LoadL_unaligned: 2966 case Op_LoadPLocked: 2967 case Op_LoadP: 2968 case Op_LoadN: 2969 case Op_LoadRange: 2970 case Op_LoadS: { 2971 handle_mem: 2972 #ifdef ASSERT 2973 if( VerifyOptoOopOffsets ) { 2974 MemNode* mem = n->as_Mem(); 2975 // Check to see if address types have grounded out somehow. 2976 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); 2977 assert( !tp || oop_offset_is_sane(tp), "" ); 2978 } 2979 #endif 2980 break; 2981 } 2982 2983 case Op_AddP: { // Assert sane base pointers 2984 Node *addp = n->in(AddPNode::Address); 2985 assert( !addp->is_AddP() || 2986 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 2987 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 2988 "Base pointers must match (addp %u)", addp->_idx ); 2989 #ifdef _LP64 2990 if ((UseCompressedOops || UseCompressedClassPointers) && 2991 addp->Opcode() == Op_ConP && 2992 addp == n->in(AddPNode::Base) && 2993 n->in(AddPNode::Offset)->is_Con()) { 2994 // If the transformation of ConP to ConN+DecodeN is beneficial depends 2995 // on the platform and on the compressed oops mode. 2996 // Use addressing with narrow klass to load with offset on x86. 2997 // Some platforms can use the constant pool to load ConP. 2998 // Do this transformation here since IGVN will convert ConN back to ConP. 2999 const Type* t = addp->bottom_type(); 3000 bool is_oop = t->isa_oopptr() != NULL; 3001 bool is_klass = t->isa_klassptr() != NULL; 3002 3003 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 3004 (is_klass && Matcher::const_klass_prefer_decode())) { 3005 Node* nn = NULL; 3006 3007 int op = is_oop ? Op_ConN : Op_ConNKlass; 3008 3009 // Look for existing ConN node of the same exact type. 3010 Node* r = root(); 3011 uint cnt = r->outcnt(); 3012 for (uint i = 0; i < cnt; i++) { 3013 Node* m = r->raw_out(i); 3014 if (m!= NULL && m->Opcode() == op && 3015 m->bottom_type()->make_ptr() == t) { 3016 nn = m; 3017 break; 3018 } 3019 } 3020 if (nn != NULL) { 3021 // Decode a narrow oop to match address 3022 // [R12 + narrow_oop_reg<<3 + offset] 3023 if (is_oop) { 3024 nn = new DecodeNNode(nn, t); 3025 } else { 3026 nn = new DecodeNKlassNode(nn, t); 3027 } 3028 // Check for succeeding AddP which uses the same Base. 3029 // Otherwise we will run into the assertion above when visiting that guy. 3030 for (uint i = 0; i < n->outcnt(); ++i) { 3031 Node *out_i = n->raw_out(i); 3032 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3033 out_i->set_req(AddPNode::Base, nn); 3034 #ifdef ASSERT 3035 for (uint j = 0; j < out_i->outcnt(); ++j) { 3036 Node *out_j = out_i->raw_out(j); 3037 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3038 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3039 } 3040 #endif 3041 } 3042 } 3043 n->set_req(AddPNode::Base, nn); 3044 n->set_req(AddPNode::Address, nn); 3045 if (addp->outcnt() == 0) { 3046 addp->disconnect_inputs(NULL, this); 3047 } 3048 } 3049 } 3050 } 3051 #endif 3052 // platform dependent reshaping of the address expression 3053 reshape_address(n->as_AddP()); 3054 break; 3055 } 3056 3057 case Op_CastPP: { 3058 // Remove CastPP nodes to gain more freedom during scheduling but 3059 // keep the dependency they encode as control or precedence edges 3060 // (if control is set already) on memory operations. Some CastPP 3061 // nodes don't have a control (don't carry a dependency): skip 3062 // those. 3063 if (n->in(0) != NULL) { 3064 ResourceMark rm; 3065 Unique_Node_List wq; 3066 wq.push(n); 3067 for (uint next = 0; next < wq.size(); ++next) { 3068 Node *m = wq.at(next); 3069 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3070 Node* use = m->fast_out(i); 3071 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3072 use->ensure_control_or_add_prec(n->in(0)); 3073 } else { 3074 switch(use->Opcode()) { 3075 case Op_AddP: 3076 case Op_DecodeN: 3077 case Op_DecodeNKlass: 3078 case Op_CheckCastPP: 3079 case Op_CastPP: 3080 wq.push(use); 3081 break; 3082 } 3083 } 3084 } 3085 } 3086 } 3087 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3088 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3089 Node* in1 = n->in(1); 3090 const Type* t = n->bottom_type(); 3091 Node* new_in1 = in1->clone(); 3092 new_in1->as_DecodeN()->set_type(t); 3093 3094 if (!Matcher::narrow_oop_use_complex_address()) { 3095 // 3096 // x86, ARM and friends can handle 2 adds in addressing mode 3097 // and Matcher can fold a DecodeN node into address by using 3098 // a narrow oop directly and do implicit NULL check in address: 3099 // 3100 // [R12 + narrow_oop_reg<<3 + offset] 3101 // NullCheck narrow_oop_reg 3102 // 3103 // On other platforms (Sparc) we have to keep new DecodeN node and 3104 // use it to do implicit NULL check in address: 3105 // 3106 // decode_not_null narrow_oop_reg, base_reg 3107 // [base_reg + offset] 3108 // NullCheck base_reg 3109 // 3110 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3111 // to keep the information to which NULL check the new DecodeN node 3112 // corresponds to use it as value in implicit_null_check(). 3113 // 3114 new_in1->set_req(0, n->in(0)); 3115 } 3116 3117 n->subsume_by(new_in1, this); 3118 if (in1->outcnt() == 0) { 3119 in1->disconnect_inputs(NULL, this); 3120 } 3121 } else { 3122 n->subsume_by(n->in(1), this); 3123 if (n->outcnt() == 0) { 3124 n->disconnect_inputs(NULL, this); 3125 } 3126 } 3127 break; 3128 } 3129 #ifdef _LP64 3130 case Op_CmpP: 3131 // Do this transformation here to preserve CmpPNode::sub() and 3132 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3133 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3134 Node* in1 = n->in(1); 3135 Node* in2 = n->in(2); 3136 if (!in1->is_DecodeNarrowPtr()) { 3137 in2 = in1; 3138 in1 = n->in(2); 3139 } 3140 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3141 3142 Node* new_in2 = NULL; 3143 if (in2->is_DecodeNarrowPtr()) { 3144 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3145 new_in2 = in2->in(1); 3146 } else if (in2->Opcode() == Op_ConP) { 3147 const Type* t = in2->bottom_type(); 3148 if (t == TypePtr::NULL_PTR) { 3149 assert(in1->is_DecodeN(), "compare klass to null?"); 3150 // Don't convert CmpP null check into CmpN if compressed 3151 // oops implicit null check is not generated. 3152 // This will allow to generate normal oop implicit null check. 3153 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3154 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3155 // 3156 // This transformation together with CastPP transformation above 3157 // will generated code for implicit NULL checks for compressed oops. 3158 // 3159 // The original code after Optimize() 3160 // 3161 // LoadN memory, narrow_oop_reg 3162 // decode narrow_oop_reg, base_reg 3163 // CmpP base_reg, NULL 3164 // CastPP base_reg // NotNull 3165 // Load [base_reg + offset], val_reg 3166 // 3167 // after these transformations will be 3168 // 3169 // LoadN memory, narrow_oop_reg 3170 // CmpN narrow_oop_reg, NULL 3171 // decode_not_null narrow_oop_reg, base_reg 3172 // Load [base_reg + offset], val_reg 3173 // 3174 // and the uncommon path (== NULL) will use narrow_oop_reg directly 3175 // since narrow oops can be used in debug info now (see the code in 3176 // final_graph_reshaping_walk()). 3177 // 3178 // At the end the code will be matched to 3179 // on x86: 3180 // 3181 // Load_narrow_oop memory, narrow_oop_reg 3182 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3183 // NullCheck narrow_oop_reg 3184 // 3185 // and on sparc: 3186 // 3187 // Load_narrow_oop memory, narrow_oop_reg 3188 // decode_not_null narrow_oop_reg, base_reg 3189 // Load [base_reg + offset], val_reg 3190 // NullCheck base_reg 3191 // 3192 } else if (t->isa_oopptr()) { 3193 new_in2 = ConNode::make(t->make_narrowoop()); 3194 } else if (t->isa_klassptr()) { 3195 new_in2 = ConNode::make(t->make_narrowklass()); 3196 } 3197 } 3198 if (new_in2 != NULL) { 3199 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3200 n->subsume_by(cmpN, this); 3201 if (in1->outcnt() == 0) { 3202 in1->disconnect_inputs(NULL, this); 3203 } 3204 if (in2->outcnt() == 0) { 3205 in2->disconnect_inputs(NULL, this); 3206 } 3207 } 3208 } 3209 break; 3210 3211 case Op_DecodeN: 3212 case Op_DecodeNKlass: 3213 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3214 // DecodeN could be pinned when it can't be fold into 3215 // an address expression, see the code for Op_CastPP above. 3216 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3217 break; 3218 3219 case Op_EncodeP: 3220 case Op_EncodePKlass: { 3221 Node* in1 = n->in(1); 3222 if (in1->is_DecodeNarrowPtr()) { 3223 n->subsume_by(in1->in(1), this); 3224 } else if (in1->Opcode() == Op_ConP) { 3225 const Type* t = in1->bottom_type(); 3226 if (t == TypePtr::NULL_PTR) { 3227 assert(t->isa_oopptr(), "null klass?"); 3228 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3229 } else if (t->isa_oopptr()) { 3230 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3231 } else if (t->isa_klassptr()) { 3232 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3233 } 3234 } 3235 if (in1->outcnt() == 0) { 3236 in1->disconnect_inputs(NULL, this); 3237 } 3238 break; 3239 } 3240 3241 case Op_Proj: { 3242 if (OptimizeStringConcat) { 3243 ProjNode* p = n->as_Proj(); 3244 if (p->_is_io_use) { 3245 // Separate projections were used for the exception path which 3246 // are normally removed by a late inline. If it wasn't inlined 3247 // then they will hang around and should just be replaced with 3248 // the original one. 3249 Node* proj = NULL; 3250 // Replace with just one 3251 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) { 3252 Node *use = i.get(); 3253 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) { 3254 proj = use; 3255 break; 3256 } 3257 } 3258 assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop"); 3259 if (proj != NULL) { 3260 p->subsume_by(proj, this); 3261 } 3262 } 3263 } 3264 break; 3265 } 3266 3267 case Op_Phi: 3268 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3269 // The EncodeP optimization may create Phi with the same edges 3270 // for all paths. It is not handled well by Register Allocator. 3271 Node* unique_in = n->in(1); 3272 assert(unique_in != NULL, ""); 3273 uint cnt = n->req(); 3274 for (uint i = 2; i < cnt; i++) { 3275 Node* m = n->in(i); 3276 assert(m != NULL, ""); 3277 if (unique_in != m) 3278 unique_in = NULL; 3279 } 3280 if (unique_in != NULL) { 3281 n->subsume_by(unique_in, this); 3282 } 3283 } 3284 break; 3285 3286 #endif 3287 3288 #ifdef ASSERT 3289 case Op_CastII: 3290 // Verify that all range check dependent CastII nodes were removed. 3291 if (n->isa_CastII()->has_range_check()) { 3292 n->dump(3); 3293 assert(false, "Range check dependent CastII node was not removed"); 3294 } 3295 break; 3296 #endif 3297 3298 case Op_ModI: 3299 if (UseDivMod) { 3300 // Check if a%b and a/b both exist 3301 Node* d = n->find_similar(Op_DivI); 3302 if (d) { 3303 // Replace them with a fused divmod if supported 3304 if (Matcher::has_match_rule(Op_DivModI)) { 3305 DivModINode* divmod = DivModINode::make(n); 3306 d->subsume_by(divmod->div_proj(), this); 3307 n->subsume_by(divmod->mod_proj(), this); 3308 } else { 3309 // replace a%b with a-((a/b)*b) 3310 Node* mult = new MulINode(d, d->in(2)); 3311 Node* sub = new SubINode(d->in(1), mult); 3312 n->subsume_by(sub, this); 3313 } 3314 } 3315 } 3316 break; 3317 3318 case Op_ModL: 3319 if (UseDivMod) { 3320 // Check if a%b and a/b both exist 3321 Node* d = n->find_similar(Op_DivL); 3322 if (d) { 3323 // Replace them with a fused divmod if supported 3324 if (Matcher::has_match_rule(Op_DivModL)) { 3325 DivModLNode* divmod = DivModLNode::make(n); 3326 d->subsume_by(divmod->div_proj(), this); 3327 n->subsume_by(divmod->mod_proj(), this); 3328 } else { 3329 // replace a%b with a-((a/b)*b) 3330 Node* mult = new MulLNode(d, d->in(2)); 3331 Node* sub = new SubLNode(d->in(1), mult); 3332 n->subsume_by(sub, this); 3333 } 3334 } 3335 } 3336 break; 3337 3338 case Op_LoadVector: 3339 case Op_StoreVector: 3340 break; 3341 3342 case Op_AddReductionVI: 3343 case Op_AddReductionVL: 3344 case Op_AddReductionVF: 3345 case Op_AddReductionVD: 3346 case Op_MulReductionVI: 3347 case Op_MulReductionVL: 3348 case Op_MulReductionVF: 3349 case Op_MulReductionVD: 3350 case Op_MinReductionV: 3351 case Op_MaxReductionV: 3352 case Op_AndReductionV: 3353 case Op_OrReductionV: 3354 case Op_XorReductionV: 3355 break; 3356 3357 case Op_PackB: 3358 case Op_PackS: 3359 case Op_PackI: 3360 case Op_PackF: 3361 case Op_PackL: 3362 case Op_PackD: 3363 if (n->req()-1 > 2) { 3364 // Replace many operand PackNodes with a binary tree for matching 3365 PackNode* p = (PackNode*) n; 3366 Node* btp = p->binary_tree_pack(1, n->req()); 3367 n->subsume_by(btp, this); 3368 } 3369 break; 3370 case Op_Loop: 3371 case Op_CountedLoop: 3372 case Op_OuterStripMinedLoop: 3373 if (n->as_Loop()->is_inner_loop()) { 3374 frc.inc_inner_loop_count(); 3375 } 3376 n->as_Loop()->verify_strip_mined(0); 3377 break; 3378 case Op_LShiftI: 3379 case Op_RShiftI: 3380 case Op_URShiftI: 3381 case Op_LShiftL: 3382 case Op_RShiftL: 3383 case Op_URShiftL: 3384 if (Matcher::need_masked_shift_count) { 3385 // The cpu's shift instructions don't restrict the count to the 3386 // lower 5/6 bits. We need to do the masking ourselves. 3387 Node* in2 = n->in(2); 3388 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3389 const TypeInt* t = in2->find_int_type(); 3390 if (t != NULL && t->is_con()) { 3391 juint shift = t->get_con(); 3392 if (shift > mask) { // Unsigned cmp 3393 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3394 } 3395 } else { 3396 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { 3397 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3398 n->set_req(2, shift); 3399 } 3400 } 3401 if (in2->outcnt() == 0) { // Remove dead node 3402 in2->disconnect_inputs(NULL, this); 3403 } 3404 } 3405 break; 3406 case Op_MemBarStoreStore: 3407 case Op_MemBarRelease: 3408 // Break the link with AllocateNode: it is no longer useful and 3409 // confuses register allocation. 3410 if (n->req() > MemBarNode::Precedent) { 3411 n->set_req(MemBarNode::Precedent, top()); 3412 } 3413 break; 3414 case Op_MemBarAcquire: { 3415 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3416 // At parse time, the trailing MemBarAcquire for a volatile load 3417 // is created with an edge to the load. After optimizations, 3418 // that input may be a chain of Phis. If those phis have no 3419 // other use, then the MemBarAcquire keeps them alive and 3420 // register allocation can be confused. 3421 ResourceMark rm; 3422 Unique_Node_List wq; 3423 wq.push(n->in(MemBarNode::Precedent)); 3424 n->set_req(MemBarNode::Precedent, top()); 3425 while (wq.size() > 0) { 3426 Node* m = wq.pop(); 3427 if (m->outcnt() == 0) { 3428 for (uint j = 0; j < m->req(); j++) { 3429 Node* in = m->in(j); 3430 if (in != NULL) { 3431 wq.push(in); 3432 } 3433 } 3434 m->disconnect_inputs(NULL, this); 3435 } 3436 } 3437 } 3438 break; 3439 } 3440 case Op_RangeCheck: { 3441 RangeCheckNode* rc = n->as_RangeCheck(); 3442 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3443 n->subsume_by(iff, this); 3444 frc._tests.push(iff); 3445 break; 3446 } 3447 case Op_ConvI2L: { 3448 if (!Matcher::convi2l_type_required) { 3449 // Code generation on some platforms doesn't need accurate 3450 // ConvI2L types. Widening the type can help remove redundant 3451 // address computations. 3452 n->as_Type()->set_type(TypeLong::INT); 3453 ResourceMark rm; 3454 Unique_Node_List wq; 3455 wq.push(n); 3456 for (uint next = 0; next < wq.size(); next++) { 3457 Node *m = wq.at(next); 3458 3459 for(;;) { 3460 // Loop over all nodes with identical inputs edges as m 3461 Node* k = m->find_similar(m->Opcode()); 3462 if (k == NULL) { 3463 break; 3464 } 3465 // Push their uses so we get a chance to remove node made 3466 // redundant 3467 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3468 Node* u = k->fast_out(i); 3469 if (u->Opcode() == Op_LShiftL || 3470 u->Opcode() == Op_AddL || 3471 u->Opcode() == Op_SubL || 3472 u->Opcode() == Op_AddP) { 3473 wq.push(u); 3474 } 3475 } 3476 // Replace all nodes with identical edges as m with m 3477 k->subsume_by(m, this); 3478 } 3479 } 3480 } 3481 break; 3482 } 3483 case Op_CmpUL: { 3484 if (!Matcher::has_match_rule(Op_CmpUL)) { 3485 // No support for unsigned long comparisons 3486 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3487 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3488 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3489 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3490 Node* andl = new AndLNode(orl, remove_sign_mask); 3491 Node* cmp = new CmpLNode(andl, n->in(2)); 3492 n->subsume_by(cmp, this); 3493 } 3494 break; 3495 } 3496 default: 3497 assert(!n->is_Call(), ""); 3498 assert(!n->is_Mem(), ""); 3499 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3500 break; 3501 } 3502 } 3503 3504 //------------------------------final_graph_reshaping_walk--------------------- 3505 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3506 // requires that the walk visits a node's inputs before visiting the node. 3507 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) { 3508 ResourceArea *area = Thread::current()->resource_area(); 3509 Unique_Node_List sfpt(area); 3510 3511 frc._visited.set(root->_idx); // first, mark node as visited 3512 uint cnt = root->req(); 3513 Node *n = root; 3514 uint i = 0; 3515 while (true) { 3516 if (i < cnt) { 3517 // Place all non-visited non-null inputs onto stack 3518 Node* m = n->in(i); 3519 ++i; 3520 if (m != NULL && !frc._visited.test_set(m->_idx)) { 3521 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) { 3522 // compute worst case interpreter size in case of a deoptimization 3523 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3524 3525 sfpt.push(m); 3526 } 3527 cnt = m->req(); 3528 nstack.push(n, i); // put on stack parent and next input's index 3529 n = m; 3530 i = 0; 3531 } 3532 } else { 3533 // Now do post-visit work 3534 final_graph_reshaping_impl( n, frc ); 3535 if (nstack.is_empty()) 3536 break; // finished 3537 n = nstack.node(); // Get node from stack 3538 cnt = n->req(); 3539 i = nstack.index(); 3540 nstack.pop(); // Shift to the next node on stack 3541 } 3542 } 3543 3544 // Skip next transformation if compressed oops are not used. 3545 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3546 (!UseCompressedOops && !UseCompressedClassPointers)) 3547 return; 3548 3549 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3550 // It could be done for an uncommon traps or any safepoints/calls 3551 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3552 while (sfpt.size() > 0) { 3553 n = sfpt.pop(); 3554 JVMState *jvms = n->as_SafePoint()->jvms(); 3555 assert(jvms != NULL, "sanity"); 3556 int start = jvms->debug_start(); 3557 int end = n->req(); 3558 bool is_uncommon = (n->is_CallStaticJava() && 3559 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3560 for (int j = start; j < end; j++) { 3561 Node* in = n->in(j); 3562 if (in->is_DecodeNarrowPtr()) { 3563 bool safe_to_skip = true; 3564 if (!is_uncommon ) { 3565 // Is it safe to skip? 3566 for (uint i = 0; i < in->outcnt(); i++) { 3567 Node* u = in->raw_out(i); 3568 if (!u->is_SafePoint() || 3569 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3570 safe_to_skip = false; 3571 } 3572 } 3573 } 3574 if (safe_to_skip) { 3575 n->set_req(j, in->in(1)); 3576 } 3577 if (in->outcnt() == 0) { 3578 in->disconnect_inputs(NULL, this); 3579 } 3580 } 3581 } 3582 } 3583 } 3584 3585 //------------------------------final_graph_reshaping-------------------------- 3586 // Final Graph Reshaping. 3587 // 3588 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3589 // and not commoned up and forced early. Must come after regular 3590 // optimizations to avoid GVN undoing the cloning. Clone constant 3591 // inputs to Loop Phis; these will be split by the allocator anyways. 3592 // Remove Opaque nodes. 3593 // (2) Move last-uses by commutative operations to the left input to encourage 3594 // Intel update-in-place two-address operations and better register usage 3595 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3596 // calls canonicalizing them back. 3597 // (3) Count the number of double-precision FP ops, single-precision FP ops 3598 // and call sites. On Intel, we can get correct rounding either by 3599 // forcing singles to memory (requires extra stores and loads after each 3600 // FP bytecode) or we can set a rounding mode bit (requires setting and 3601 // clearing the mode bit around call sites). The mode bit is only used 3602 // if the relative frequency of single FP ops to calls is low enough. 3603 // This is a key transform for SPEC mpeg_audio. 3604 // (4) Detect infinite loops; blobs of code reachable from above but not 3605 // below. Several of the Code_Gen algorithms fail on such code shapes, 3606 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3607 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3608 // Detection is by looking for IfNodes where only 1 projection is 3609 // reachable from below or CatchNodes missing some targets. 3610 // (5) Assert for insane oop offsets in debug mode. 3611 3612 bool Compile::final_graph_reshaping() { 3613 // an infinite loop may have been eliminated by the optimizer, 3614 // in which case the graph will be empty. 3615 if (root()->req() == 1) { 3616 record_method_not_compilable("trivial infinite loop"); 3617 return true; 3618 } 3619 3620 // Expensive nodes have their control input set to prevent the GVN 3621 // from freely commoning them. There's no GVN beyond this point so 3622 // no need to keep the control input. We want the expensive nodes to 3623 // be freely moved to the least frequent code path by gcm. 3624 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3625 for (int i = 0; i < expensive_count(); i++) { 3626 _expensive_nodes->at(i)->set_req(0, NULL); 3627 } 3628 3629 Final_Reshape_Counts frc; 3630 3631 // Visit everybody reachable! 3632 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3633 Node_Stack nstack(live_nodes() >> 1); 3634 final_graph_reshaping_walk(nstack, root(), frc); 3635 3636 // Check for unreachable (from below) code (i.e., infinite loops). 3637 for( uint i = 0; i < frc._tests.size(); i++ ) { 3638 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3639 // Get number of CFG targets. 3640 // Note that PCTables include exception targets after calls. 3641 uint required_outcnt = n->required_outcnt(); 3642 if (n->outcnt() != required_outcnt) { 3643 // Check for a few special cases. Rethrow Nodes never take the 3644 // 'fall-thru' path, so expected kids is 1 less. 3645 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3646 if (n->in(0)->in(0)->is_Call()) { 3647 CallNode *call = n->in(0)->in(0)->as_Call(); 3648 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3649 required_outcnt--; // Rethrow always has 1 less kid 3650 } else if (call->req() > TypeFunc::Parms && 3651 call->is_CallDynamicJava()) { 3652 // Check for null receiver. In such case, the optimizer has 3653 // detected that the virtual call will always result in a null 3654 // pointer exception. The fall-through projection of this CatchNode 3655 // will not be populated. 3656 Node *arg0 = call->in(TypeFunc::Parms); 3657 if (arg0->is_Type() && 3658 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3659 required_outcnt--; 3660 } 3661 } else if (call->entry_point() == OptoRuntime::new_array_Java() && 3662 call->req() > TypeFunc::Parms+1 && 3663 call->is_CallStaticJava()) { 3664 // Check for negative array length. In such case, the optimizer has 3665 // detected that the allocation attempt will always result in an 3666 // exception. There is no fall-through projection of this CatchNode . 3667 Node *arg1 = call->in(TypeFunc::Parms+1); 3668 if (arg1->is_Type() && 3669 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) { 3670 required_outcnt--; 3671 } 3672 } 3673 } 3674 } 3675 // Recheck with a better notion of 'required_outcnt' 3676 if (n->outcnt() != required_outcnt) { 3677 record_method_not_compilable("malformed control flow"); 3678 return true; // Not all targets reachable! 3679 } 3680 } 3681 // Check that I actually visited all kids. Unreached kids 3682 // must be infinite loops. 3683 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 3684 if (!frc._visited.test(n->fast_out(j)->_idx)) { 3685 record_method_not_compilable("infinite loop"); 3686 return true; // Found unvisited kid; must be unreach 3687 } 3688 3689 // Here so verification code in final_graph_reshaping_walk() 3690 // always see an OuterStripMinedLoopEnd 3691 if (n->is_OuterStripMinedLoopEnd()) { 3692 IfNode* init_iff = n->as_If(); 3693 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 3694 n->subsume_by(iff, this); 3695 } 3696 } 3697 3698 #ifdef IA32 3699 // If original bytecodes contained a mixture of floats and doubles 3700 // check if the optimizer has made it homogenous, item (3). 3701 if (UseSSE == 0 && 3702 frc.get_float_count() > 32 && 3703 frc.get_double_count() == 0 && 3704 (10 * frc.get_call_count() < frc.get_float_count()) ) { 3705 set_24_bit_selection_and_mode(false, true); 3706 } 3707 #endif // IA32 3708 3709 set_java_calls(frc.get_java_call_count()); 3710 set_inner_loops(frc.get_inner_loop_count()); 3711 3712 // No infinite loops, no reason to bail out. 3713 return false; 3714 } 3715 3716 //-----------------------------too_many_traps---------------------------------- 3717 // Report if there are too many traps at the current method and bci. 3718 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 3719 bool Compile::too_many_traps(ciMethod* method, 3720 int bci, 3721 Deoptimization::DeoptReason reason) { 3722 ciMethodData* md = method->method_data(); 3723 if (md->is_empty()) { 3724 // Assume the trap has not occurred, or that it occurred only 3725 // because of a transient condition during start-up in the interpreter. 3726 return false; 3727 } 3728 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3729 if (md->has_trap_at(bci, m, reason) != 0) { 3730 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 3731 // Also, if there are multiple reasons, or if there is no per-BCI record, 3732 // assume the worst. 3733 if (log()) 3734 log()->elem("observe trap='%s' count='%d'", 3735 Deoptimization::trap_reason_name(reason), 3736 md->trap_count(reason)); 3737 return true; 3738 } else { 3739 // Ignore method/bci and see if there have been too many globally. 3740 return too_many_traps(reason, md); 3741 } 3742 } 3743 3744 // Less-accurate variant which does not require a method and bci. 3745 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 3746 ciMethodData* logmd) { 3747 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 3748 // Too many traps globally. 3749 // Note that we use cumulative trap_count, not just md->trap_count. 3750 if (log()) { 3751 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason); 3752 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 3753 Deoptimization::trap_reason_name(reason), 3754 mcount, trap_count(reason)); 3755 } 3756 return true; 3757 } else { 3758 // The coast is clear. 3759 return false; 3760 } 3761 } 3762 3763 //--------------------------too_many_recompiles-------------------------------- 3764 // Report if there are too many recompiles at the current method and bci. 3765 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 3766 // Is not eager to return true, since this will cause the compiler to use 3767 // Action_none for a trap point, to avoid too many recompilations. 3768 bool Compile::too_many_recompiles(ciMethod* method, 3769 int bci, 3770 Deoptimization::DeoptReason reason) { 3771 ciMethodData* md = method->method_data(); 3772 if (md->is_empty()) { 3773 // Assume the trap has not occurred, or that it occurred only 3774 // because of a transient condition during start-up in the interpreter. 3775 return false; 3776 } 3777 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 3778 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 3779 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 3780 Deoptimization::DeoptReason per_bc_reason 3781 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 3782 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3783 if ((per_bc_reason == Deoptimization::Reason_none 3784 || md->has_trap_at(bci, m, reason) != 0) 3785 // The trap frequency measure we care about is the recompile count: 3786 && md->trap_recompiled_at(bci, m) 3787 && md->overflow_recompile_count() >= bc_cutoff) { 3788 // Do not emit a trap here if it has already caused recompilations. 3789 // Also, if there are multiple reasons, or if there is no per-BCI record, 3790 // assume the worst. 3791 if (log()) 3792 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 3793 Deoptimization::trap_reason_name(reason), 3794 md->trap_count(reason), 3795 md->overflow_recompile_count()); 3796 return true; 3797 } else if (trap_count(reason) != 0 3798 && decompile_count() >= m_cutoff) { 3799 // Too many recompiles globally, and we have seen this sort of trap. 3800 // Use cumulative decompile_count, not just md->decompile_count. 3801 if (log()) 3802 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 3803 Deoptimization::trap_reason_name(reason), 3804 md->trap_count(reason), trap_count(reason), 3805 md->decompile_count(), decompile_count()); 3806 return true; 3807 } else { 3808 // The coast is clear. 3809 return false; 3810 } 3811 } 3812 3813 // Compute when not to trap. Used by matching trap based nodes and 3814 // NullCheck optimization. 3815 void Compile::set_allowed_deopt_reasons() { 3816 _allowed_reasons = 0; 3817 if (is_method_compilation()) { 3818 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 3819 assert(rs < BitsPerInt, "recode bit map"); 3820 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 3821 _allowed_reasons |= nth_bit(rs); 3822 } 3823 } 3824 } 3825 } 3826 3827 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 3828 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 3829 } 3830 3831 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 3832 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 3833 } 3834 3835 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 3836 if (holder->is_initialized()) { 3837 return false; 3838 } 3839 if (holder->is_being_initialized()) { 3840 if (accessing_method->holder() == holder) { 3841 // Access inside a class. The barrier can be elided when access happens in <clinit>, 3842 // <init>, or a static method. In all those cases, there was an initialization 3843 // barrier on the holder klass passed. 3844 if (accessing_method->is_static_initializer() || 3845 accessing_method->is_object_initializer() || 3846 accessing_method->is_static()) { 3847 return false; 3848 } 3849 } else if (accessing_method->holder()->is_subclass_of(holder)) { 3850 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 3851 // In case of <init> or a static method, the barrier is on the subclass is not enough: 3852 // child class can become fully initialized while its parent class is still being initialized. 3853 if (accessing_method->is_static_initializer()) { 3854 return false; 3855 } 3856 } 3857 ciMethod* root = method(); // the root method of compilation 3858 if (root != accessing_method) { 3859 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 3860 } 3861 } 3862 return true; 3863 } 3864 3865 #ifndef PRODUCT 3866 //------------------------------verify_graph_edges--------------------------- 3867 // Walk the Graph and verify that there is a one-to-one correspondence 3868 // between Use-Def edges and Def-Use edges in the graph. 3869 void Compile::verify_graph_edges(bool no_dead_code) { 3870 if (VerifyGraphEdges) { 3871 ResourceArea *area = Thread::current()->resource_area(); 3872 Unique_Node_List visited(area); 3873 // Call recursive graph walk to check edges 3874 _root->verify_edges(visited); 3875 if (no_dead_code) { 3876 // Now make sure that no visited node is used by an unvisited node. 3877 bool dead_nodes = false; 3878 Unique_Node_List checked(area); 3879 while (visited.size() > 0) { 3880 Node* n = visited.pop(); 3881 checked.push(n); 3882 for (uint i = 0; i < n->outcnt(); i++) { 3883 Node* use = n->raw_out(i); 3884 if (checked.member(use)) continue; // already checked 3885 if (visited.member(use)) continue; // already in the graph 3886 if (use->is_Con()) continue; // a dead ConNode is OK 3887 // At this point, we have found a dead node which is DU-reachable. 3888 if (!dead_nodes) { 3889 tty->print_cr("*** Dead nodes reachable via DU edges:"); 3890 dead_nodes = true; 3891 } 3892 use->dump(2); 3893 tty->print_cr("---"); 3894 checked.push(use); // No repeats; pretend it is now checked. 3895 } 3896 } 3897 assert(!dead_nodes, "using nodes must be reachable from root"); 3898 } 3899 } 3900 } 3901 #endif 3902 3903 // The Compile object keeps track of failure reasons separately from the ciEnv. 3904 // This is required because there is not quite a 1-1 relation between the 3905 // ciEnv and its compilation task and the Compile object. Note that one 3906 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 3907 // to backtrack and retry without subsuming loads. Other than this backtracking 3908 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 3909 // by the logic in C2Compiler. 3910 void Compile::record_failure(const char* reason) { 3911 if (log() != NULL) { 3912 log()->elem("failure reason='%s' phase='compile'", reason); 3913 } 3914 if (_failure_reason == NULL) { 3915 // Record the first failure reason. 3916 _failure_reason = reason; 3917 } 3918 3919 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 3920 C->print_method(PHASE_FAILURE); 3921 } 3922 _root = NULL; // flush the graph, too 3923 } 3924 3925 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 3926 : TraceTime(name, accumulator, CITime, CITimeVerbose), 3927 _phase_name(name), _dolog(CITimeVerbose) 3928 { 3929 if (_dolog) { 3930 C = Compile::current(); 3931 _log = C->log(); 3932 } else { 3933 C = NULL; 3934 _log = NULL; 3935 } 3936 if (_log != NULL) { 3937 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3938 _log->stamp(); 3939 _log->end_head(); 3940 } 3941 } 3942 3943 Compile::TracePhase::~TracePhase() { 3944 3945 C = Compile::current(); 3946 if (_dolog) { 3947 _log = C->log(); 3948 } else { 3949 _log = NULL; 3950 } 3951 3952 #ifdef ASSERT 3953 if (PrintIdealNodeCount) { 3954 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 3955 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 3956 } 3957 3958 if (VerifyIdealNodeCount) { 3959 Compile::current()->print_missing_nodes(); 3960 } 3961 #endif 3962 3963 if (_log != NULL) { 3964 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3965 } 3966 } 3967 3968 //----------------------------static_subtype_check----------------------------- 3969 // Shortcut important common cases when superklass is exact: 3970 // (0) superklass is java.lang.Object (can occur in reflective code) 3971 // (1) subklass is already limited to a subtype of superklass => always ok 3972 // (2) subklass does not overlap with superklass => always fail 3973 // (3) superklass has NO subtypes and we can check with a simple compare. 3974 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) { 3975 if (StressReflectiveCode) { 3976 return SSC_full_test; // Let caller generate the general case. 3977 } 3978 3979 if (superk == env()->Object_klass()) { 3980 return SSC_always_true; // (0) this test cannot fail 3981 } 3982 3983 ciType* superelem = superk; 3984 if (superelem->is_array_klass()) 3985 superelem = superelem->as_array_klass()->base_element_type(); 3986 3987 if (!subk->is_interface()) { // cannot trust static interface types yet 3988 if (subk->is_subtype_of(superk)) { 3989 return SSC_always_true; // (1) false path dead; no dynamic test needed 3990 } 3991 if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) && 3992 !superk->is_subtype_of(subk)) { 3993 return SSC_always_false; 3994 } 3995 } 3996 3997 // If casting to an instance klass, it must have no subtypes 3998 if (superk->is_interface()) { 3999 // Cannot trust interfaces yet. 4000 // %%% S.B. superk->nof_implementors() == 1 4001 } else if (superelem->is_instance_klass()) { 4002 ciInstanceKlass* ik = superelem->as_instance_klass(); 4003 if (!ik->has_subklass() && !ik->is_interface()) { 4004 if (!ik->is_final()) { 4005 // Add a dependency if there is a chance of a later subclass. 4006 dependencies()->assert_leaf_type(ik); 4007 } 4008 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4009 } 4010 } else { 4011 // A primitive array type has no subtypes. 4012 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4013 } 4014 4015 return SSC_full_test; 4016 } 4017 4018 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4019 #ifdef _LP64 4020 // The scaled index operand to AddP must be a clean 64-bit value. 4021 // Java allows a 32-bit int to be incremented to a negative 4022 // value, which appears in a 64-bit register as a large 4023 // positive number. Using that large positive number as an 4024 // operand in pointer arithmetic has bad consequences. 4025 // On the other hand, 32-bit overflow is rare, and the possibility 4026 // can often be excluded, if we annotate the ConvI2L node with 4027 // a type assertion that its value is known to be a small positive 4028 // number. (The prior range check has ensured this.) 4029 // This assertion is used by ConvI2LNode::Ideal. 4030 int index_max = max_jint - 1; // array size is max_jint, index is one less 4031 if (sizetype != NULL) index_max = sizetype->_hi - 1; 4032 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4033 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4034 #endif 4035 return idx; 4036 } 4037 4038 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4039 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) { 4040 if (ctrl != NULL) { 4041 // Express control dependency by a CastII node with a narrow type. 4042 value = new CastIINode(value, itype, false, true /* range check dependency */); 4043 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4044 // node from floating above the range check during loop optimizations. Otherwise, the 4045 // ConvI2L node may be eliminated independently of the range check, causing the data path 4046 // to become TOP while the control path is still there (although it's unreachable). 4047 value->set_req(0, ctrl); 4048 // Save CastII node to remove it after loop optimizations. 4049 phase->C->add_range_check_cast(value); 4050 value = phase->transform(value); 4051 } 4052 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4053 return phase->transform(new ConvI2LNode(value, ltype)); 4054 } 4055 4056 void Compile::print_inlining_stream_free() { 4057 if (_print_inlining_stream != NULL) { 4058 _print_inlining_stream->~stringStream(); 4059 _print_inlining_stream = NULL; 4060 } 4061 } 4062 4063 // The message about the current inlining is accumulated in 4064 // _print_inlining_stream and transfered into the _print_inlining_list 4065 // once we know whether inlining succeeds or not. For regular 4066 // inlining, messages are appended to the buffer pointed by 4067 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4068 // a new buffer is added after _print_inlining_idx in the list. This 4069 // way we can update the inlining message for late inlining call site 4070 // when the inlining is attempted again. 4071 void Compile::print_inlining_init() { 4072 if (print_inlining() || print_intrinsics()) { 4073 // print_inlining_init is actually called several times. 4074 print_inlining_stream_free(); 4075 _print_inlining_stream = new stringStream(); 4076 // Watch out: The memory initialized by the constructor call PrintInliningBuffer() 4077 // will be copied into the only initial element. The default destructor of 4078 // PrintInliningBuffer will be called when leaving the scope here. If it 4079 // would destuct the enclosed stringStream _print_inlining_list[0]->_ss 4080 // would be destructed, too! 4081 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer()); 4082 } 4083 } 4084 4085 void Compile::print_inlining_reinit() { 4086 if (print_inlining() || print_intrinsics()) { 4087 print_inlining_stream_free(); 4088 // Re allocate buffer when we change ResourceMark 4089 _print_inlining_stream = new stringStream(); 4090 } 4091 } 4092 4093 void Compile::print_inlining_reset() { 4094 _print_inlining_stream->reset(); 4095 } 4096 4097 void Compile::print_inlining_commit() { 4098 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4099 // Transfer the message from _print_inlining_stream to the current 4100 // _print_inlining_list buffer and clear _print_inlining_stream. 4101 _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4102 print_inlining_reset(); 4103 } 4104 4105 void Compile::print_inlining_push() { 4106 // Add new buffer to the _print_inlining_list at current position 4107 _print_inlining_idx++; 4108 _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer()); 4109 } 4110 4111 Compile::PrintInliningBuffer& Compile::print_inlining_current() { 4112 return _print_inlining_list->at(_print_inlining_idx); 4113 } 4114 4115 void Compile::print_inlining_update(CallGenerator* cg) { 4116 if (print_inlining() || print_intrinsics()) { 4117 if (!cg->is_late_inline()) { 4118 if (print_inlining_current().cg() != NULL) { 4119 print_inlining_push(); 4120 } 4121 print_inlining_commit(); 4122 } else { 4123 if (print_inlining_current().cg() != cg && 4124 (print_inlining_current().cg() != NULL || 4125 print_inlining_current().ss()->size() != 0)) { 4126 print_inlining_push(); 4127 } 4128 print_inlining_commit(); 4129 print_inlining_current().set_cg(cg); 4130 } 4131 } 4132 } 4133 4134 void Compile::print_inlining_move_to(CallGenerator* cg) { 4135 // We resume inlining at a late inlining call site. Locate the 4136 // corresponding inlining buffer so that we can update it. 4137 if (print_inlining()) { 4138 for (int i = 0; i < _print_inlining_list->length(); i++) { 4139 if (_print_inlining_list->adr_at(i)->cg() == cg) { 4140 _print_inlining_idx = i; 4141 return; 4142 } 4143 } 4144 ShouldNotReachHere(); 4145 } 4146 } 4147 4148 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4149 if (print_inlining()) { 4150 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4151 assert(print_inlining_current().cg() == cg, "wrong entry"); 4152 // replace message with new message 4153 _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer()); 4154 print_inlining_commit(); 4155 print_inlining_current().set_cg(cg); 4156 } 4157 } 4158 4159 void Compile::print_inlining_assert_ready() { 4160 assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data"); 4161 } 4162 4163 void Compile::process_print_inlining() { 4164 bool do_print_inlining = print_inlining() || print_intrinsics(); 4165 if (do_print_inlining || log() != NULL) { 4166 // Print inlining message for candidates that we couldn't inline 4167 // for lack of space 4168 for (int i = 0; i < _late_inlines.length(); i++) { 4169 CallGenerator* cg = _late_inlines.at(i); 4170 if (!cg->is_mh_late_inline()) { 4171 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 4172 if (do_print_inlining) { 4173 cg->print_inlining_late(msg); 4174 } 4175 log_late_inline_failure(cg, msg); 4176 } 4177 } 4178 } 4179 if (do_print_inlining) { 4180 ResourceMark rm; 4181 stringStream ss; 4182 assert(_print_inlining_list != NULL, "process_print_inlining should be called only once."); 4183 for (int i = 0; i < _print_inlining_list->length(); i++) { 4184 ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string()); 4185 _print_inlining_list->at(i).freeStream(); 4186 } 4187 // Reset _print_inlining_list, it only contains destructed objects. 4188 // It is on the arena, so it will be freed when the arena is reset. 4189 _print_inlining_list = NULL; 4190 // _print_inlining_stream won't be used anymore, either. 4191 print_inlining_stream_free(); 4192 size_t end = ss.size(); 4193 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4194 strncpy(_print_inlining_output, ss.base(), end+1); 4195 _print_inlining_output[end] = 0; 4196 } 4197 } 4198 4199 void Compile::dump_print_inlining() { 4200 if (_print_inlining_output != NULL) { 4201 tty->print_raw(_print_inlining_output); 4202 } 4203 } 4204 4205 void Compile::log_late_inline(CallGenerator* cg) { 4206 if (log() != NULL) { 4207 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4208 cg->unique_id()); 4209 JVMState* p = cg->call_node()->jvms(); 4210 while (p != NULL) { 4211 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4212 p = p->caller(); 4213 } 4214 log()->tail("late_inline"); 4215 } 4216 } 4217 4218 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4219 log_late_inline(cg); 4220 if (log() != NULL) { 4221 log()->inline_fail(msg); 4222 } 4223 } 4224 4225 void Compile::log_inline_id(CallGenerator* cg) { 4226 if (log() != NULL) { 4227 // The LogCompilation tool needs a unique way to identify late 4228 // inline call sites. This id must be unique for this call site in 4229 // this compilation. Try to have it unique across compilations as 4230 // well because it can be convenient when grepping through the log 4231 // file. 4232 // Distinguish OSR compilations from others in case CICountOSR is 4233 // on. 4234 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4235 cg->set_unique_id(id); 4236 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4237 } 4238 } 4239 4240 void Compile::log_inline_failure(const char* msg) { 4241 if (C->log() != NULL) { 4242 C->log()->inline_fail(msg); 4243 } 4244 } 4245 4246 4247 // Dump inlining replay data to the stream. 4248 // Don't change thread state and acquire any locks. 4249 void Compile::dump_inline_data(outputStream* out) { 4250 InlineTree* inl_tree = ilt(); 4251 if (inl_tree != NULL) { 4252 out->print(" inline %d", inl_tree->count()); 4253 inl_tree->dump_replay_data(out); 4254 } 4255 } 4256 4257 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4258 if (n1->Opcode() < n2->Opcode()) return -1; 4259 else if (n1->Opcode() > n2->Opcode()) return 1; 4260 4261 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4262 for (uint i = 1; i < n1->req(); i++) { 4263 if (n1->in(i) < n2->in(i)) return -1; 4264 else if (n1->in(i) > n2->in(i)) return 1; 4265 } 4266 4267 return 0; 4268 } 4269 4270 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4271 Node* n1 = *n1p; 4272 Node* n2 = *n2p; 4273 4274 return cmp_expensive_nodes(n1, n2); 4275 } 4276 4277 void Compile::sort_expensive_nodes() { 4278 if (!expensive_nodes_sorted()) { 4279 _expensive_nodes->sort(cmp_expensive_nodes); 4280 } 4281 } 4282 4283 bool Compile::expensive_nodes_sorted() const { 4284 for (int i = 1; i < _expensive_nodes->length(); i++) { 4285 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) { 4286 return false; 4287 } 4288 } 4289 return true; 4290 } 4291 4292 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4293 if (_expensive_nodes->length() == 0) { 4294 return false; 4295 } 4296 4297 assert(OptimizeExpensiveOps, "optimization off?"); 4298 4299 // Take this opportunity to remove dead nodes from the list 4300 int j = 0; 4301 for (int i = 0; i < _expensive_nodes->length(); i++) { 4302 Node* n = _expensive_nodes->at(i); 4303 if (!n->is_unreachable(igvn)) { 4304 assert(n->is_expensive(), "should be expensive"); 4305 _expensive_nodes->at_put(j, n); 4306 j++; 4307 } 4308 } 4309 _expensive_nodes->trunc_to(j); 4310 4311 // Then sort the list so that similar nodes are next to each other 4312 // and check for at least two nodes of identical kind with same data 4313 // inputs. 4314 sort_expensive_nodes(); 4315 4316 for (int i = 0; i < _expensive_nodes->length()-1; i++) { 4317 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) { 4318 return true; 4319 } 4320 } 4321 4322 return false; 4323 } 4324 4325 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4326 if (_expensive_nodes->length() == 0) { 4327 return; 4328 } 4329 4330 assert(OptimizeExpensiveOps, "optimization off?"); 4331 4332 // Sort to bring similar nodes next to each other and clear the 4333 // control input of nodes for which there's only a single copy. 4334 sort_expensive_nodes(); 4335 4336 int j = 0; 4337 int identical = 0; 4338 int i = 0; 4339 bool modified = false; 4340 for (; i < _expensive_nodes->length()-1; i++) { 4341 assert(j <= i, "can't write beyond current index"); 4342 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) { 4343 identical++; 4344 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4345 continue; 4346 } 4347 if (identical > 0) { 4348 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4349 identical = 0; 4350 } else { 4351 Node* n = _expensive_nodes->at(i); 4352 igvn.replace_input_of(n, 0, NULL); 4353 igvn.hash_insert(n); 4354 modified = true; 4355 } 4356 } 4357 if (identical > 0) { 4358 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4359 } else if (_expensive_nodes->length() >= 1) { 4360 Node* n = _expensive_nodes->at(i); 4361 igvn.replace_input_of(n, 0, NULL); 4362 igvn.hash_insert(n); 4363 modified = true; 4364 } 4365 _expensive_nodes->trunc_to(j); 4366 if (modified) { 4367 igvn.optimize(); 4368 } 4369 } 4370 4371 void Compile::add_expensive_node(Node * n) { 4372 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list"); 4373 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4374 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4375 if (OptimizeExpensiveOps) { 4376 _expensive_nodes->append(n); 4377 } else { 4378 // Clear control input and let IGVN optimize expensive nodes if 4379 // OptimizeExpensiveOps is off. 4380 n->set_req(0, NULL); 4381 } 4382 } 4383 4384 /** 4385 * Remove the speculative part of types and clean up the graph 4386 */ 4387 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4388 if (UseTypeSpeculation) { 4389 Unique_Node_List worklist; 4390 worklist.push(root()); 4391 int modified = 0; 4392 // Go over all type nodes that carry a speculative type, drop the 4393 // speculative part of the type and enqueue the node for an igvn 4394 // which may optimize it out. 4395 for (uint next = 0; next < worklist.size(); ++next) { 4396 Node *n = worklist.at(next); 4397 if (n->is_Type()) { 4398 TypeNode* tn = n->as_Type(); 4399 const Type* t = tn->type(); 4400 const Type* t_no_spec = t->remove_speculative(); 4401 if (t_no_spec != t) { 4402 bool in_hash = igvn.hash_delete(n); 4403 assert(in_hash, "node should be in igvn hash table"); 4404 tn->set_type(t_no_spec); 4405 igvn.hash_insert(n); 4406 igvn._worklist.push(n); // give it a chance to go away 4407 modified++; 4408 } 4409 } 4410 uint max = n->len(); 4411 for( uint i = 0; i < max; ++i ) { 4412 Node *m = n->in(i); 4413 if (not_a_node(m)) continue; 4414 worklist.push(m); 4415 } 4416 } 4417 // Drop the speculative part of all types in the igvn's type table 4418 igvn.remove_speculative_types(); 4419 if (modified > 0) { 4420 igvn.optimize(); 4421 } 4422 #ifdef ASSERT 4423 // Verify that after the IGVN is over no speculative type has resurfaced 4424 worklist.clear(); 4425 worklist.push(root()); 4426 for (uint next = 0; next < worklist.size(); ++next) { 4427 Node *n = worklist.at(next); 4428 const Type* t = igvn.type_or_null(n); 4429 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types"); 4430 if (n->is_Type()) { 4431 t = n->as_Type()->type(); 4432 assert(t == t->remove_speculative(), "no more speculative types"); 4433 } 4434 uint max = n->len(); 4435 for( uint i = 0; i < max; ++i ) { 4436 Node *m = n->in(i); 4437 if (not_a_node(m)) continue; 4438 worklist.push(m); 4439 } 4440 } 4441 igvn.check_no_speculative_types(); 4442 #endif 4443 } 4444 } 4445 4446 // Auxiliary method to support randomized stressing/fuzzing. 4447 // 4448 // This method can be called the arbitrary number of times, with current count 4449 // as the argument. The logic allows selecting a single candidate from the 4450 // running list of candidates as follows: 4451 // int count = 0; 4452 // Cand* selected = null; 4453 // while(cand = cand->next()) { 4454 // if (randomized_select(++count)) { 4455 // selected = cand; 4456 // } 4457 // } 4458 // 4459 // Including count equalizes the chances any candidate is "selected". 4460 // This is useful when we don't have the complete list of candidates to choose 4461 // from uniformly. In this case, we need to adjust the randomicity of the 4462 // selection, or else we will end up biasing the selection towards the latter 4463 // candidates. 4464 // 4465 // Quick back-envelope calculation shows that for the list of n candidates 4466 // the equal probability for the candidate to persist as "best" can be 4467 // achieved by replacing it with "next" k-th candidate with the probability 4468 // of 1/k. It can be easily shown that by the end of the run, the 4469 // probability for any candidate is converged to 1/n, thus giving the 4470 // uniform distribution among all the candidates. 4471 // 4472 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4473 #define RANDOMIZED_DOMAIN_POW 29 4474 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4475 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4476 bool Compile::randomized_select(int count) { 4477 assert(count > 0, "only positive"); 4478 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4479 } 4480 4481 CloneMap& Compile::clone_map() { return _clone_map; } 4482 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 4483 4484 void NodeCloneInfo::dump() const { 4485 tty->print(" {%d:%d} ", idx(), gen()); 4486 } 4487 4488 void CloneMap::clone(Node* old, Node* nnn, int gen) { 4489 uint64_t val = value(old->_idx); 4490 NodeCloneInfo cio(val); 4491 assert(val != 0, "old node should be in the map"); 4492 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 4493 insert(nnn->_idx, cin.get()); 4494 #ifndef PRODUCT 4495 if (is_debug()) { 4496 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 4497 } 4498 #endif 4499 } 4500 4501 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 4502 NodeCloneInfo cio(value(old->_idx)); 4503 if (cio.get() == 0) { 4504 cio.set(old->_idx, 0); 4505 insert(old->_idx, cio.get()); 4506 #ifndef PRODUCT 4507 if (is_debug()) { 4508 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 4509 } 4510 #endif 4511 } 4512 clone(old, nnn, gen); 4513 } 4514 4515 int CloneMap::max_gen() const { 4516 int g = 0; 4517 DictI di(_dict); 4518 for(; di.test(); ++di) { 4519 int t = gen(di._key); 4520 if (g < t) { 4521 g = t; 4522 #ifndef PRODUCT 4523 if (is_debug()) { 4524 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 4525 } 4526 #endif 4527 } 4528 } 4529 return g; 4530 } 4531 4532 void CloneMap::dump(node_idx_t key) const { 4533 uint64_t val = value(key); 4534 if (val != 0) { 4535 NodeCloneInfo ni(val); 4536 ni.dump(); 4537 } 4538 } 4539 4540 // Move Allocate nodes to the start of the list 4541 void Compile::sort_macro_nodes() { 4542 int count = macro_count(); 4543 int allocates = 0; 4544 for (int i = 0; i < count; i++) { 4545 Node* n = macro_node(i); 4546 if (n->is_Allocate()) { 4547 if (i != allocates) { 4548 Node* tmp = macro_node(allocates); 4549 _macro_nodes->at_put(allocates, n); 4550 _macro_nodes->at_put(i, tmp); 4551 } 4552 allocates++; 4553 } 4554 } 4555 } 4556 4557 void Compile::print_method(CompilerPhaseType cpt, int level, int idx) { 4558 EventCompilerPhase event; 4559 if (event.should_commit()) { 4560 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 4561 } 4562 4563 #ifndef PRODUCT 4564 if (should_print(level)) { 4565 char output[1024]; 4566 if (idx != 0) { 4567 jio_snprintf(output, sizeof(output), "%s:%d", CompilerPhaseTypeHelper::to_string(cpt), idx); 4568 } else { 4569 jio_snprintf(output, sizeof(output), "%s", CompilerPhaseTypeHelper::to_string(cpt)); 4570 } 4571 _printer->print_method(output, level); 4572 } 4573 #endif 4574 C->_latest_stage_start_counter.stamp(); 4575 } 4576 4577 void Compile::end_method(int level) { 4578 EventCompilerPhase event; 4579 if (event.should_commit()) { 4580 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, level); 4581 } 4582 4583 #ifndef PRODUCT 4584 if (_method != NULL && should_print(level)) { 4585 _printer->end_method(); 4586 } 4587 #endif 4588 } 4589 4590 4591 #ifndef PRODUCT 4592 IdealGraphPrinter* Compile::_debug_file_printer = NULL; 4593 IdealGraphPrinter* Compile::_debug_network_printer = NULL; 4594 4595 // Called from debugger. Prints method to the default file with the default phase name. 4596 // This works regardless of any Ideal Graph Visualizer flags set or not. 4597 void igv_print() { 4598 Compile::current()->igv_print_method_to_file(); 4599 } 4600 4601 // Same as igv_print() above but with a specified phase name. 4602 void igv_print(const char* phase_name) { 4603 Compile::current()->igv_print_method_to_file(phase_name); 4604 } 4605 4606 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 4607 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 4608 // This works regardless of any Ideal Graph Visualizer flags set or not. 4609 void igv_print(bool network) { 4610 if (network) { 4611 Compile::current()->igv_print_method_to_network(); 4612 } else { 4613 Compile::current()->igv_print_method_to_file(); 4614 } 4615 } 4616 4617 // Same as igv_print(bool network) above but with a specified phase name. 4618 void igv_print(bool network, const char* phase_name) { 4619 if (network) { 4620 Compile::current()->igv_print_method_to_network(phase_name); 4621 } else { 4622 Compile::current()->igv_print_method_to_file(phase_name); 4623 } 4624 } 4625 4626 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 4627 void igv_print_default() { 4628 Compile::current()->print_method(PHASE_DEBUG, 0, 0); 4629 } 4630 4631 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 4632 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 4633 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 4634 void igv_append() { 4635 Compile::current()->igv_print_method_to_file("Debug", true); 4636 } 4637 4638 // Same as igv_append() above but with a specified phase name. 4639 void igv_append(const char* phase_name) { 4640 Compile::current()->igv_print_method_to_file(phase_name, true); 4641 } 4642 4643 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 4644 const char* file_name = "custom_debug.xml"; 4645 if (_debug_file_printer == NULL) { 4646 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 4647 } else { 4648 _debug_file_printer->update_compiled_method(C->method()); 4649 } 4650 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 4651 _debug_file_printer->print_method(phase_name, 0); 4652 } 4653 4654 void Compile::igv_print_method_to_network(const char* phase_name) { 4655 if (_debug_network_printer == NULL) { 4656 _debug_network_printer = new IdealGraphPrinter(C); 4657 } else { 4658 _debug_network_printer->update_compiled_method(C->method()); 4659 } 4660 tty->print_cr("Method printed over network stream to IGV"); 4661 _debug_network_printer->print_method(phase_name, 0); 4662 } 4663 #endif 4664