1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "jfr/jfrEvents.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "opto/addnode.hpp"
  41 #include "opto/block.hpp"
  42 #include "opto/c2compiler.hpp"
  43 #include "opto/callGenerator.hpp"
  44 #include "opto/callnode.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/cfgnode.hpp"
  47 #include "opto/chaitin.hpp"
  48 #include "opto/compile.hpp"
  49 #include "opto/connode.hpp"
  50 #include "opto/convertnode.hpp"
  51 #include "opto/divnode.hpp"
  52 #include "opto/escape.hpp"
  53 #include "opto/idealGraphPrinter.hpp"
  54 #include "opto/loopnode.hpp"
  55 #include "opto/machnode.hpp"
  56 #include "opto/macro.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/mathexactnode.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/narrowptrnode.hpp"
  62 #include "opto/node.hpp"
  63 #include "opto/opcodes.hpp"
  64 #include "opto/output.hpp"
  65 #include "opto/parse.hpp"
  66 #include "opto/phaseX.hpp"
  67 #include "opto/rootnode.hpp"
  68 #include "opto/runtime.hpp"
  69 #include "opto/stringopts.hpp"
  70 #include "opto/type.hpp"
  71 #include "opto/vectornode.hpp"
  72 #include "runtime/arguments.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/signature.hpp"
  75 #include "runtime/stubRoutines.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "utilities/align.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/macros.hpp"
  80 #include "utilities/resourceHash.hpp"
  81 
  82 
  83 // -------------------- Compile::mach_constant_base_node -----------------------
  84 // Constant table base node singleton.
  85 MachConstantBaseNode* Compile::mach_constant_base_node() {
  86   if (_mach_constant_base_node == NULL) {
  87     _mach_constant_base_node = new MachConstantBaseNode();
  88     _mach_constant_base_node->add_req(C->root());
  89   }
  90   return _mach_constant_base_node;
  91 }
  92 
  93 
  94 /// Support for intrinsics.
  95 
  96 // Return the index at which m must be inserted (or already exists).
  97 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  98 class IntrinsicDescPair {
  99  private:
 100   ciMethod* _m;
 101   bool _is_virtual;
 102  public:
 103   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 104   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 105     ciMethod* m= elt->method();
 106     ciMethod* key_m = key->_m;
 107     if (key_m < m)      return -1;
 108     else if (key_m > m) return 1;
 109     else {
 110       bool is_virtual = elt->is_virtual();
 111       bool key_virtual = key->_is_virtual;
 112       if (key_virtual < is_virtual)      return -1;
 113       else if (key_virtual > is_virtual) return 1;
 114       else                               return 0;
 115     }
 116   }
 117 };
 118 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 119 #ifdef ASSERT
 120   for (int i = 1; i < _intrinsics->length(); i++) {
 121     CallGenerator* cg1 = _intrinsics->at(i-1);
 122     CallGenerator* cg2 = _intrinsics->at(i);
 123     assert(cg1->method() != cg2->method()
 124            ? cg1->method()     < cg2->method()
 125            : cg1->is_virtual() < cg2->is_virtual(),
 126            "compiler intrinsics list must stay sorted");
 127   }
 128 #endif
 129   IntrinsicDescPair pair(m, is_virtual);
 130   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 131 }
 132 
 133 void Compile::register_intrinsic(CallGenerator* cg) {
 134   if (_intrinsics == NULL) {
 135     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 136   }
 137   int len = _intrinsics->length();
 138   bool found = false;
 139   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 140   assert(!found, "registering twice");
 141   _intrinsics->insert_before(index, cg);
 142   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 143 }
 144 
 145 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 146   assert(m->is_loaded(), "don't try this on unloaded methods");
 147   if (_intrinsics != NULL) {
 148     bool found = false;
 149     int index = intrinsic_insertion_index(m, is_virtual, found);
 150      if (found) {
 151       return _intrinsics->at(index);
 152     }
 153   }
 154   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 155   if (m->intrinsic_id() != vmIntrinsics::_none &&
 156       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 157     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 158     if (cg != NULL) {
 159       // Save it for next time:
 160       register_intrinsic(cg);
 161       return cg;
 162     } else {
 163       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 164     }
 165   }
 166   return NULL;
 167 }
 168 
 169 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 170 // in library_call.cpp.
 171 
 172 
 173 #ifndef PRODUCT
 174 // statistics gathering...
 175 
 176 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 177 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 178 
 179 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 180   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 181   int oflags = _intrinsic_hist_flags[id];
 182   assert(flags != 0, "what happened?");
 183   if (is_virtual) {
 184     flags |= _intrinsic_virtual;
 185   }
 186   bool changed = (flags != oflags);
 187   if ((flags & _intrinsic_worked) != 0) {
 188     juint count = (_intrinsic_hist_count[id] += 1);
 189     if (count == 1) {
 190       changed = true;           // first time
 191     }
 192     // increment the overall count also:
 193     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 194   }
 195   if (changed) {
 196     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 197       // Something changed about the intrinsic's virtuality.
 198       if ((flags & _intrinsic_virtual) != 0) {
 199         // This is the first use of this intrinsic as a virtual call.
 200         if (oflags != 0) {
 201           // We already saw it as a non-virtual, so note both cases.
 202           flags |= _intrinsic_both;
 203         }
 204       } else if ((oflags & _intrinsic_both) == 0) {
 205         // This is the first use of this intrinsic as a non-virtual
 206         flags |= _intrinsic_both;
 207       }
 208     }
 209     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 210   }
 211   // update the overall flags also:
 212   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 213   return changed;
 214 }
 215 
 216 static char* format_flags(int flags, char* buf) {
 217   buf[0] = 0;
 218   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 219   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 220   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 221   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 222   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 223   if (buf[0] == 0)  strcat(buf, ",");
 224   assert(buf[0] == ',', "must be");
 225   return &buf[1];
 226 }
 227 
 228 void Compile::print_intrinsic_statistics() {
 229   char flagsbuf[100];
 230   ttyLocker ttyl;
 231   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 232   tty->print_cr("Compiler intrinsic usage:");
 233   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 234   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 235   #define PRINT_STAT_LINE(name, c, f) \
 236     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 237   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 238     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 239     int   flags = _intrinsic_hist_flags[id];
 240     juint count = _intrinsic_hist_count[id];
 241     if ((flags | count) != 0) {
 242       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 243     }
 244   }
 245   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 246   if (xtty != NULL)  xtty->tail("statistics");
 247 }
 248 
 249 void Compile::print_statistics() {
 250   { ttyLocker ttyl;
 251     if (xtty != NULL)  xtty->head("statistics type='opto'");
 252     Parse::print_statistics();
 253     PhaseCCP::print_statistics();
 254     PhaseRegAlloc::print_statistics();
 255     PhaseOutput::print_statistics();
 256     PhasePeephole::print_statistics();
 257     PhaseIdealLoop::print_statistics();
 258     if (xtty != NULL)  xtty->tail("statistics");
 259   }
 260   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 261     // put this under its own <statistics> element.
 262     print_intrinsic_statistics();
 263   }
 264 }
 265 #endif //PRODUCT
 266 
 267 void Compile::gvn_replace_by(Node* n, Node* nn) {
 268   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 269     Node* use = n->last_out(i);
 270     bool is_in_table = initial_gvn()->hash_delete(use);
 271     uint uses_found = 0;
 272     for (uint j = 0; j < use->len(); j++) {
 273       if (use->in(j) == n) {
 274         if (j < use->req())
 275           use->set_req(j, nn);
 276         else
 277           use->set_prec(j, nn);
 278         uses_found++;
 279       }
 280     }
 281     if (is_in_table) {
 282       // reinsert into table
 283       initial_gvn()->hash_find_insert(use);
 284     }
 285     record_for_igvn(use);
 286     i -= uses_found;    // we deleted 1 or more copies of this edge
 287   }
 288 }
 289 
 290 
 291 static inline bool not_a_node(const Node* n) {
 292   if (n == NULL)                   return true;
 293   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 294   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 295   return false;
 296 }
 297 
 298 // Identify all nodes that are reachable from below, useful.
 299 // Use breadth-first pass that records state in a Unique_Node_List,
 300 // recursive traversal is slower.
 301 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 302   int estimated_worklist_size = live_nodes();
 303   useful.map( estimated_worklist_size, NULL );  // preallocate space
 304 
 305   // Initialize worklist
 306   if (root() != NULL)     { useful.push(root()); }
 307   // If 'top' is cached, declare it useful to preserve cached node
 308   if( cached_top_node() ) { useful.push(cached_top_node()); }
 309 
 310   // Push all useful nodes onto the list, breadthfirst
 311   for( uint next = 0; next < useful.size(); ++next ) {
 312     assert( next < unique(), "Unique useful nodes < total nodes");
 313     Node *n  = useful.at(next);
 314     uint max = n->len();
 315     for( uint i = 0; i < max; ++i ) {
 316       Node *m = n->in(i);
 317       if (not_a_node(m))  continue;
 318       useful.push(m);
 319     }
 320   }
 321 }
 322 
 323 // Update dead_node_list with any missing dead nodes using useful
 324 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 325 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 326   uint max_idx = unique();
 327   VectorSet& useful_node_set = useful.member_set();
 328 
 329   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 330     // If node with index node_idx is not in useful set,
 331     // mark it as dead in dead node list.
 332     if (!useful_node_set.test(node_idx)) {
 333       record_dead_node(node_idx);
 334     }
 335   }
 336 }
 337 
 338 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 339   int shift = 0;
 340   for (int i = 0; i < inlines->length(); i++) {
 341     CallGenerator* cg = inlines->at(i);
 342     CallNode* call = cg->call_node();
 343     if (shift > 0) {
 344       inlines->at_put(i-shift, cg);
 345     }
 346     if (!useful.member(call)) {
 347       shift++;
 348     }
 349   }
 350   inlines->trunc_to(inlines->length()-shift);
 351 }
 352 
 353 // Disconnect all useless nodes by disconnecting those at the boundary.
 354 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 355   uint next = 0;
 356   while (next < useful.size()) {
 357     Node *n = useful.at(next++);
 358     if (n->is_SafePoint()) {
 359       // We're done with a parsing phase. Replaced nodes are not valid
 360       // beyond that point.
 361       n->as_SafePoint()->delete_replaced_nodes();
 362     }
 363     // Use raw traversal of out edges since this code removes out edges
 364     int max = n->outcnt();
 365     for (int j = 0; j < max; ++j) {
 366       Node* child = n->raw_out(j);
 367       if (! useful.member(child)) {
 368         assert(!child->is_top() || child != top(),
 369                "If top is cached in Compile object it is in useful list");
 370         // Only need to remove this out-edge to the useless node
 371         n->raw_del_out(j);
 372         --j;
 373         --max;
 374       }
 375     }
 376     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 377       record_for_igvn(n->unique_out());
 378     }
 379   }
 380   // Remove useless macro and predicate opaq nodes
 381   for (int i = C->macro_count()-1; i >= 0; i--) {
 382     Node* n = C->macro_node(i);
 383     if (!useful.member(n)) {
 384       remove_macro_node(n);
 385     }
 386   }
 387   // Remove useless CastII nodes with range check dependency
 388   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 389     Node* cast = range_check_cast_node(i);
 390     if (!useful.member(cast)) {
 391       remove_range_check_cast(cast);
 392     }
 393   }
 394   // Remove useless expensive nodes
 395   for (int i = C->expensive_count()-1; i >= 0; i--) {
 396     Node* n = C->expensive_node(i);
 397     if (!useful.member(n)) {
 398       remove_expensive_node(n);
 399     }
 400   }
 401   // Remove useless Opaque4 nodes
 402   for (int i = opaque4_count() - 1; i >= 0; i--) {
 403     Node* opaq = opaque4_node(i);
 404     if (!useful.member(opaq)) {
 405       remove_opaque4_node(opaq);
 406     }
 407   }
 408   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 409   bs->eliminate_useless_gc_barriers(useful, this);
 410   // clean up the late inline lists
 411   remove_useless_late_inlines(&_string_late_inlines, useful);
 412   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 413   remove_useless_late_inlines(&_late_inlines, useful);
 414   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 415 }
 416 
 417 // ============================================================================
 418 //------------------------------CompileWrapper---------------------------------
 419 class CompileWrapper : public StackObj {
 420   Compile *const _compile;
 421  public:
 422   CompileWrapper(Compile* compile);
 423 
 424   ~CompileWrapper();
 425 };
 426 
 427 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 428   // the Compile* pointer is stored in the current ciEnv:
 429   ciEnv* env = compile->env();
 430   assert(env == ciEnv::current(), "must already be a ciEnv active");
 431   assert(env->compiler_data() == NULL, "compile already active?");
 432   env->set_compiler_data(compile);
 433   assert(compile == Compile::current(), "sanity");
 434 
 435   compile->set_type_dict(NULL);
 436   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 437   compile->clone_map().set_clone_idx(0);
 438   compile->set_type_last_size(0);
 439   compile->set_last_tf(NULL, NULL);
 440   compile->set_indexSet_arena(NULL);
 441   compile->set_indexSet_free_block_list(NULL);
 442   compile->init_type_arena();
 443   Type::Initialize(compile);
 444   _compile->begin_method();
 445   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 446 }
 447 CompileWrapper::~CompileWrapper() {
 448   _compile->end_method();
 449   _compile->env()->set_compiler_data(NULL);
 450 }
 451 
 452 
 453 //----------------------------print_compile_messages---------------------------
 454 void Compile::print_compile_messages() {
 455 #ifndef PRODUCT
 456   // Check if recompiling
 457   if (_subsume_loads == false && PrintOpto) {
 458     // Recompiling without allowing machine instructions to subsume loads
 459     tty->print_cr("*********************************************************");
 460     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 461     tty->print_cr("*********************************************************");
 462   }
 463   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 464     // Recompiling without escape analysis
 465     tty->print_cr("*********************************************************");
 466     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 467     tty->print_cr("*********************************************************");
 468   }
 469   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 470     // Recompiling without boxing elimination
 471     tty->print_cr("*********************************************************");
 472     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 473     tty->print_cr("*********************************************************");
 474   }
 475   if (C->directive()->BreakAtCompileOption) {
 476     // Open the debugger when compiling this method.
 477     tty->print("### Breaking when compiling: ");
 478     method()->print_short_name();
 479     tty->cr();
 480     BREAKPOINT;
 481   }
 482 
 483   if( PrintOpto ) {
 484     if (is_osr_compilation()) {
 485       tty->print("[OSR]%3d", _compile_id);
 486     } else {
 487       tty->print("%3d", _compile_id);
 488     }
 489   }
 490 #endif
 491 }
 492 
 493 // ============================================================================
 494 //------------------------------Compile standard-------------------------------
 495 debug_only( int Compile::_debug_idx = 100000; )
 496 
 497 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 498 // the continuation bci for on stack replacement.
 499 
 500 
 501 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
 502                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 503                 : Phase(Compiler),
 504                   _compile_id(ci_env->compile_id()),
 505                   _save_argument_registers(false),
 506                   _subsume_loads(subsume_loads),
 507                   _do_escape_analysis(do_escape_analysis),
 508                   _eliminate_boxing(eliminate_boxing),
 509                   _method(target),
 510                   _entry_bci(osr_bci),
 511                   _stub_function(NULL),
 512                   _stub_name(NULL),
 513                   _stub_entry_point(NULL),
 514                   _max_node_limit(MaxNodeLimit),
 515                   _inlining_progress(false),
 516                   _inlining_incrementally(false),
 517                   _do_cleanup(false),
 518                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 519 #ifndef PRODUCT
 520                   _trace_opto_output(directive->TraceOptoOutputOption),
 521                   _print_ideal(directive->PrintIdealOption),
 522 #endif
 523                   _has_method_handle_invokes(false),
 524                   _clinit_barrier_on_entry(false),
 525                   _comp_arena(mtCompiler),
 526                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 527                   _env(ci_env),
 528                   _directive(directive),
 529                   _log(ci_env->log()),
 530                   _failure_reason(NULL),
 531                   _congraph(NULL),
 532                   NOT_PRODUCT(_printer(NULL) COMMA)
 533                   _dead_node_list(comp_arena()),
 534                   _dead_node_count(0),
 535                   _node_arena(mtCompiler),
 536                   _old_arena(mtCompiler),
 537                   _mach_constant_base_node(NULL),
 538                   _Compile_types(mtCompiler),
 539                   _initial_gvn(NULL),
 540                   _for_igvn(NULL),
 541                   _warm_calls(NULL),
 542                   _late_inlines(comp_arena(), 2, 0, NULL),
 543                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 544                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 545                   _late_inlines_pos(0),
 546                   _number_of_mh_late_inlines(0),
 547                   _print_inlining_stream(NULL),
 548                   _print_inlining_list(NULL),
 549                   _print_inlining_idx(0),
 550                   _print_inlining_output(NULL),
 551                   _replay_inline_data(NULL),
 552                   _java_calls(0),
 553                   _inner_loops(0),
 554                   _interpreter_frame_size(0)
 555 #ifndef PRODUCT
 556                   , _in_dump_cnt(0)
 557 #endif
 558 {
 559   C = this;
 560   CompileWrapper cw(this);
 561 
 562   if (CITimeVerbose) {
 563     tty->print(" ");
 564     target->holder()->name()->print();
 565     tty->print(".");
 566     target->print_short_name();
 567     tty->print("  ");
 568   }
 569   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 570   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 571 
 572 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 573   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 574   // We can always print a disassembly, either abstract (hex dump) or
 575   // with the help of a suitable hsdis library. Thus, we should not
 576   // couple print_assembly and print_opto_assembly controls.
 577   // But: always print opto and regular assembly on compile command 'print'.
 578   bool print_assembly = directive->PrintAssemblyOption;
 579   set_print_assembly(print_opto_assembly || print_assembly);
 580 #else
 581   set_print_assembly(false); // must initialize.
 582 #endif
 583 
 584 #ifndef PRODUCT
 585   set_parsed_irreducible_loop(false);
 586 
 587   if (directive->ReplayInlineOption) {
 588     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 589   }
 590 #endif
 591   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 592   set_print_intrinsics(directive->PrintIntrinsicsOption);
 593   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 594 
 595   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 596     // Make sure the method being compiled gets its own MDO,
 597     // so we can at least track the decompile_count().
 598     // Need MDO to record RTM code generation state.
 599     method()->ensure_method_data();
 600   }
 601 
 602   Init(::AliasLevel);
 603 
 604 
 605   print_compile_messages();
 606 
 607   _ilt = InlineTree::build_inline_tree_root();
 608 
 609   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 610   assert(num_alias_types() >= AliasIdxRaw, "");
 611 
 612 #define MINIMUM_NODE_HASH  1023
 613   // Node list that Iterative GVN will start with
 614   Unique_Node_List for_igvn(comp_arena());
 615   set_for_igvn(&for_igvn);
 616 
 617   // GVN that will be run immediately on new nodes
 618   uint estimated_size = method()->code_size()*4+64;
 619   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 620   PhaseGVN gvn(node_arena(), estimated_size);
 621   set_initial_gvn(&gvn);
 622 
 623   print_inlining_init();
 624   { // Scope for timing the parser
 625     TracePhase tp("parse", &timers[_t_parser]);
 626 
 627     // Put top into the hash table ASAP.
 628     initial_gvn()->transform_no_reclaim(top());
 629 
 630     // Set up tf(), start(), and find a CallGenerator.
 631     CallGenerator* cg = NULL;
 632     if (is_osr_compilation()) {
 633       const TypeTuple *domain = StartOSRNode::osr_domain();
 634       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 635       init_tf(TypeFunc::make(domain, range));
 636       StartNode* s = new StartOSRNode(root(), domain);
 637       initial_gvn()->set_type_bottom(s);
 638       init_start(s);
 639       cg = CallGenerator::for_osr(method(), entry_bci());
 640     } else {
 641       // Normal case.
 642       init_tf(TypeFunc::make(method()));
 643       StartNode* s = new StartNode(root(), tf()->domain());
 644       initial_gvn()->set_type_bottom(s);
 645       init_start(s);
 646       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 647         // With java.lang.ref.reference.get() we must go through the
 648         // intrinsic - even when get() is the root
 649         // method of the compile - so that, if necessary, the value in
 650         // the referent field of the reference object gets recorded by
 651         // the pre-barrier code.
 652         cg = find_intrinsic(method(), false);
 653       }
 654       if (cg == NULL) {
 655         float past_uses = method()->interpreter_invocation_count();
 656         float expected_uses = past_uses;
 657         cg = CallGenerator::for_inline(method(), expected_uses);
 658       }
 659     }
 660     if (failing())  return;
 661     if (cg == NULL) {
 662       record_method_not_compilable("cannot parse method");
 663       return;
 664     }
 665     JVMState* jvms = build_start_state(start(), tf());
 666     if ((jvms = cg->generate(jvms)) == NULL) {
 667       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 668         record_method_not_compilable("method parse failed");
 669       }
 670       return;
 671     }
 672     GraphKit kit(jvms);
 673 
 674     if (!kit.stopped()) {
 675       // Accept return values, and transfer control we know not where.
 676       // This is done by a special, unique ReturnNode bound to root.
 677       return_values(kit.jvms());
 678     }
 679 
 680     if (kit.has_exceptions()) {
 681       // Any exceptions that escape from this call must be rethrown
 682       // to whatever caller is dynamically above us on the stack.
 683       // This is done by a special, unique RethrowNode bound to root.
 684       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 685     }
 686 
 687     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 688 
 689     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 690       inline_string_calls(true);
 691     }
 692 
 693     if (failing())  return;
 694 
 695     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 696 
 697     // Remove clutter produced by parsing.
 698     if (!failing()) {
 699       ResourceMark rm;
 700       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 701     }
 702   }
 703 
 704   // Note:  Large methods are capped off in do_one_bytecode().
 705   if (failing())  return;
 706 
 707   // After parsing, node notes are no longer automagic.
 708   // They must be propagated by register_new_node_with_optimizer(),
 709   // clone(), or the like.
 710   set_default_node_notes(NULL);
 711 
 712   for (;;) {
 713     int successes = Inline_Warm();
 714     if (failing())  return;
 715     if (successes == 0)  break;
 716   }
 717 
 718   // Drain the list.
 719   Finish_Warm();
 720 #ifndef PRODUCT
 721   if (should_print(1)) {
 722     _printer->print_inlining();
 723   }
 724 #endif
 725 
 726   if (failing())  return;
 727   NOT_PRODUCT( verify_graph_edges(); )
 728 
 729   // Now optimize
 730   Optimize();
 731   if (failing())  return;
 732   NOT_PRODUCT( verify_graph_edges(); )
 733 
 734 #ifndef PRODUCT
 735   if (print_ideal()) {
 736     ttyLocker ttyl;  // keep the following output all in one block
 737     // This output goes directly to the tty, not the compiler log.
 738     // To enable tools to match it up with the compilation activity,
 739     // be sure to tag this tty output with the compile ID.
 740     if (xtty != NULL) {
 741       xtty->head("ideal compile_id='%d'%s", compile_id(),
 742                  is_osr_compilation()    ? " compile_kind='osr'" :
 743                  "");
 744     }
 745     root()->dump(9999);
 746     if (xtty != NULL) {
 747       xtty->tail("ideal");
 748     }
 749   }
 750 #endif
 751 
 752 #ifdef ASSERT
 753   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 754   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 755 #endif
 756 
 757   // Dump compilation data to replay it.
 758   if (directive->DumpReplayOption) {
 759     env()->dump_replay_data(_compile_id);
 760   }
 761   if (directive->DumpInlineOption && (ilt() != NULL)) {
 762     env()->dump_inline_data(_compile_id);
 763   }
 764 
 765   // Now that we know the size of all the monitors we can add a fixed slot
 766   // for the original deopt pc.
 767   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 768   set_fixed_slots(next_slot);
 769 
 770   // Compute when to use implicit null checks. Used by matching trap based
 771   // nodes and NullCheck optimization.
 772   set_allowed_deopt_reasons();
 773 
 774   // Now generate code
 775   Code_Gen();
 776 }
 777 
 778 //------------------------------Compile----------------------------------------
 779 // Compile a runtime stub
 780 Compile::Compile( ciEnv* ci_env,
 781                   TypeFunc_generator generator,
 782                   address stub_function,
 783                   const char *stub_name,
 784                   int is_fancy_jump,
 785                   bool pass_tls,
 786                   bool save_arg_registers,
 787                   bool return_pc,
 788                   DirectiveSet* directive)
 789   : Phase(Compiler),
 790     _compile_id(0),
 791     _save_argument_registers(save_arg_registers),
 792     _subsume_loads(true),
 793     _do_escape_analysis(false),
 794     _eliminate_boxing(false),
 795     _method(NULL),
 796     _entry_bci(InvocationEntryBci),
 797     _stub_function(stub_function),
 798     _stub_name(stub_name),
 799     _stub_entry_point(NULL),
 800     _max_node_limit(MaxNodeLimit),
 801     _inlining_progress(false),
 802     _inlining_incrementally(false),
 803     _has_reserved_stack_access(false),
 804 #ifndef PRODUCT
 805     _trace_opto_output(directive->TraceOptoOutputOption),
 806     _print_ideal(directive->PrintIdealOption),
 807 #endif
 808     _has_method_handle_invokes(false),
 809     _clinit_barrier_on_entry(false),
 810     _comp_arena(mtCompiler),
 811     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 812     _env(ci_env),
 813     _directive(directive),
 814     _log(ci_env->log()),
 815     _failure_reason(NULL),
 816     _congraph(NULL),
 817     NOT_PRODUCT(_printer(NULL) COMMA)
 818     _dead_node_list(comp_arena()),
 819     _dead_node_count(0),
 820     _node_arena(mtCompiler),
 821     _old_arena(mtCompiler),
 822     _mach_constant_base_node(NULL),
 823     _Compile_types(mtCompiler),
 824     _initial_gvn(NULL),
 825     _for_igvn(NULL),
 826     _warm_calls(NULL),
 827     _number_of_mh_late_inlines(0),
 828     _print_inlining_stream(NULL),
 829     _print_inlining_list(NULL),
 830     _print_inlining_idx(0),
 831     _print_inlining_output(NULL),
 832     _replay_inline_data(NULL),
 833     _java_calls(0),
 834     _inner_loops(0),
 835     _interpreter_frame_size(0),
 836 #ifndef PRODUCT
 837     _in_dump_cnt(0),
 838 #endif
 839     _allowed_reasons(0) {
 840   C = this;
 841 
 842   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 843   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 844 
 845 #ifndef PRODUCT
 846   set_print_assembly(PrintFrameConverterAssembly);
 847   set_parsed_irreducible_loop(false);
 848 #else
 849   set_print_assembly(false); // Must initialize.
 850 #endif
 851   set_has_irreducible_loop(false); // no loops
 852 
 853   CompileWrapper cw(this);
 854   Init(/*AliasLevel=*/ 0);
 855   init_tf((*generator)());
 856 
 857   {
 858     // The following is a dummy for the sake of GraphKit::gen_stub
 859     Unique_Node_List for_igvn(comp_arena());
 860     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 861     PhaseGVN gvn(Thread::current()->resource_area(),255);
 862     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 863     gvn.transform_no_reclaim(top());
 864 
 865     GraphKit kit;
 866     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 867   }
 868 
 869   NOT_PRODUCT( verify_graph_edges(); )
 870 
 871   Code_Gen();
 872 }
 873 
 874 //------------------------------Init-------------------------------------------
 875 // Prepare for a single compilation
 876 void Compile::Init(int aliaslevel) {
 877   _unique  = 0;
 878   _regalloc = NULL;
 879 
 880   _tf      = NULL;  // filled in later
 881   _top     = NULL;  // cached later
 882   _matcher = NULL;  // filled in later
 883   _cfg     = NULL;  // filled in later
 884 
 885   IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
 886 
 887   _node_note_array = NULL;
 888   _default_node_notes = NULL;
 889   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
 890 
 891   _immutable_memory = NULL; // filled in at first inquiry
 892 
 893   // Globally visible Nodes
 894   // First set TOP to NULL to give safe behavior during creation of RootNode
 895   set_cached_top_node(NULL);
 896   set_root(new RootNode());
 897   // Now that you have a Root to point to, create the real TOP
 898   set_cached_top_node( new ConNode(Type::TOP) );
 899   set_recent_alloc(NULL, NULL);
 900 
 901   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 902   env()->set_oop_recorder(new OopRecorder(env()->arena()));
 903   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 904   env()->set_dependencies(new Dependencies(env()));
 905 
 906   _fixed_slots = 0;
 907   set_has_split_ifs(false);
 908   set_has_loops(has_method() && method()->has_loops()); // first approximation
 909   set_has_stringbuilder(false);
 910   set_has_boxed_value(false);
 911   _trap_can_recompile = false;  // no traps emitted yet
 912   _major_progress = true; // start out assuming good things will happen
 913   set_has_unsafe_access(false);
 914   set_max_vector_size(0);
 915   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
 916   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 917   set_decompile_count(0);
 918 
 919   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
 920   _loop_opts_cnt = LoopOptsCount;
 921   set_do_inlining(Inline);
 922   set_max_inline_size(MaxInlineSize);
 923   set_freq_inline_size(FreqInlineSize);
 924   set_do_scheduling(OptoScheduling);
 925   set_do_count_invocations(false);
 926   set_do_method_data_update(false);
 927 
 928   set_do_vector_loop(false);
 929 
 930   if (AllowVectorizeOnDemand) {
 931     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
 932       set_do_vector_loop(true);
 933       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
 934     } else if (has_method() && method()->name() != 0 &&
 935                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
 936       set_do_vector_loop(true);
 937     }
 938   }
 939   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
 940   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
 941 
 942   set_age_code(has_method() && method()->profile_aging());
 943   set_rtm_state(NoRTM); // No RTM lock eliding by default
 944   _max_node_limit = _directive->MaxNodeLimitOption;
 945 
 946 #if INCLUDE_RTM_OPT
 947   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
 948     int rtm_state = method()->method_data()->rtm_state();
 949     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
 950       // Don't generate RTM lock eliding code.
 951       set_rtm_state(NoRTM);
 952     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
 953       // Generate RTM lock eliding code without abort ratio calculation code.
 954       set_rtm_state(UseRTM);
 955     } else if (UseRTMDeopt) {
 956       // Generate RTM lock eliding code and include abort ratio calculation
 957       // code if UseRTMDeopt is on.
 958       set_rtm_state(ProfileRTM);
 959     }
 960   }
 961 #endif
 962   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
 963     set_clinit_barrier_on_entry(true);
 964   }
 965   if (debug_info()->recording_non_safepoints()) {
 966     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 967                         (comp_arena(), 8, 0, NULL));
 968     set_default_node_notes(Node_Notes::make(this));
 969   }
 970 
 971   // // -- Initialize types before each compile --
 972   // // Update cached type information
 973   // if( _method && _method->constants() )
 974   //   Type::update_loaded_types(_method, _method->constants());
 975 
 976   // Init alias_type map.
 977   if (!_do_escape_analysis && aliaslevel == 3)
 978     aliaslevel = 2;  // No unique types without escape analysis
 979   _AliasLevel = aliaslevel;
 980   const int grow_ats = 16;
 981   _max_alias_types = grow_ats;
 982   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 983   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 984   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 985   {
 986     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 987   }
 988   // Initialize the first few types.
 989   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
 990   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
 991   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
 992   _num_alias_types = AliasIdxRaw+1;
 993   // Zero out the alias type cache.
 994   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
 995   // A NULL adr_type hits in the cache right away.  Preload the right answer.
 996   probe_alias_cache(NULL)->_index = AliasIdxTop;
 997 
 998   _intrinsics = NULL;
 999   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1000   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1001   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1002   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1003   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1004   register_library_intrinsics();
1005 #ifdef ASSERT
1006   _type_verify_symmetry = true;
1007 #endif
1008 }
1009 
1010 //---------------------------init_start----------------------------------------
1011 // Install the StartNode on this compile object.
1012 void Compile::init_start(StartNode* s) {
1013   if (failing())
1014     return; // already failing
1015   assert(s == start(), "");
1016 }
1017 
1018 /**
1019  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1020  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1021  * the ideal graph.
1022  */
1023 StartNode* Compile::start() const {
1024   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1025   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1026     Node* start = root()->fast_out(i);
1027     if (start->is_Start()) {
1028       return start->as_Start();
1029     }
1030   }
1031   fatal("Did not find Start node!");
1032   return NULL;
1033 }
1034 
1035 //-------------------------------immutable_memory-------------------------------------
1036 // Access immutable memory
1037 Node* Compile::immutable_memory() {
1038   if (_immutable_memory != NULL) {
1039     return _immutable_memory;
1040   }
1041   StartNode* s = start();
1042   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1043     Node *p = s->fast_out(i);
1044     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1045       _immutable_memory = p;
1046       return _immutable_memory;
1047     }
1048   }
1049   ShouldNotReachHere();
1050   return NULL;
1051 }
1052 
1053 //----------------------set_cached_top_node------------------------------------
1054 // Install the cached top node, and make sure Node::is_top works correctly.
1055 void Compile::set_cached_top_node(Node* tn) {
1056   if (tn != NULL)  verify_top(tn);
1057   Node* old_top = _top;
1058   _top = tn;
1059   // Calling Node::setup_is_top allows the nodes the chance to adjust
1060   // their _out arrays.
1061   if (_top != NULL)     _top->setup_is_top();
1062   if (old_top != NULL)  old_top->setup_is_top();
1063   assert(_top == NULL || top()->is_top(), "");
1064 }
1065 
1066 #ifdef ASSERT
1067 uint Compile::count_live_nodes_by_graph_walk() {
1068   Unique_Node_List useful(comp_arena());
1069   // Get useful node list by walking the graph.
1070   identify_useful_nodes(useful);
1071   return useful.size();
1072 }
1073 
1074 void Compile::print_missing_nodes() {
1075 
1076   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1077   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1078     return;
1079   }
1080 
1081   // This is an expensive function. It is executed only when the user
1082   // specifies VerifyIdealNodeCount option or otherwise knows the
1083   // additional work that needs to be done to identify reachable nodes
1084   // by walking the flow graph and find the missing ones using
1085   // _dead_node_list.
1086 
1087   Unique_Node_List useful(comp_arena());
1088   // Get useful node list by walking the graph.
1089   identify_useful_nodes(useful);
1090 
1091   uint l_nodes = C->live_nodes();
1092   uint l_nodes_by_walk = useful.size();
1093 
1094   if (l_nodes != l_nodes_by_walk) {
1095     if (_log != NULL) {
1096       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1097       _log->stamp();
1098       _log->end_head();
1099     }
1100     VectorSet& useful_member_set = useful.member_set();
1101     int last_idx = l_nodes_by_walk;
1102     for (int i = 0; i < last_idx; i++) {
1103       if (useful_member_set.test(i)) {
1104         if (_dead_node_list.test(i)) {
1105           if (_log != NULL) {
1106             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1107           }
1108           if (PrintIdealNodeCount) {
1109             // Print the log message to tty
1110               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1111               useful.at(i)->dump();
1112           }
1113         }
1114       }
1115       else if (! _dead_node_list.test(i)) {
1116         if (_log != NULL) {
1117           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1118         }
1119         if (PrintIdealNodeCount) {
1120           // Print the log message to tty
1121           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1122         }
1123       }
1124     }
1125     if (_log != NULL) {
1126       _log->tail("mismatched_nodes");
1127     }
1128   }
1129 }
1130 void Compile::record_modified_node(Node* n) {
1131   if (_modified_nodes != NULL && !_inlining_incrementally &&
1132       n->outcnt() != 0 && !n->is_Con()) {
1133     _modified_nodes->push(n);
1134   }
1135 }
1136 
1137 void Compile::remove_modified_node(Node* n) {
1138   if (_modified_nodes != NULL) {
1139     _modified_nodes->remove(n);
1140   }
1141 }
1142 #endif
1143 
1144 #ifndef PRODUCT
1145 void Compile::verify_top(Node* tn) const {
1146   if (tn != NULL) {
1147     assert(tn->is_Con(), "top node must be a constant");
1148     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1149     assert(tn->in(0) != NULL, "must have live top node");
1150   }
1151 }
1152 #endif
1153 
1154 
1155 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1156 
1157 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1158   guarantee(arr != NULL, "");
1159   int num_blocks = arr->length();
1160   if (grow_by < num_blocks)  grow_by = num_blocks;
1161   int num_notes = grow_by * _node_notes_block_size;
1162   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1163   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1164   while (num_notes > 0) {
1165     arr->append(notes);
1166     notes     += _node_notes_block_size;
1167     num_notes -= _node_notes_block_size;
1168   }
1169   assert(num_notes == 0, "exact multiple, please");
1170 }
1171 
1172 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1173   if (source == NULL || dest == NULL)  return false;
1174 
1175   if (dest->is_Con())
1176     return false;               // Do not push debug info onto constants.
1177 
1178 #ifdef ASSERT
1179   // Leave a bread crumb trail pointing to the original node:
1180   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1181     dest->set_debug_orig(source);
1182   }
1183 #endif
1184 
1185   if (node_note_array() == NULL)
1186     return false;               // Not collecting any notes now.
1187 
1188   // This is a copy onto a pre-existing node, which may already have notes.
1189   // If both nodes have notes, do not overwrite any pre-existing notes.
1190   Node_Notes* source_notes = node_notes_at(source->_idx);
1191   if (source_notes == NULL || source_notes->is_clear())  return false;
1192   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1193   if (dest_notes == NULL || dest_notes->is_clear()) {
1194     return set_node_notes_at(dest->_idx, source_notes);
1195   }
1196 
1197   Node_Notes merged_notes = (*source_notes);
1198   // The order of operations here ensures that dest notes will win...
1199   merged_notes.update_from(dest_notes);
1200   return set_node_notes_at(dest->_idx, &merged_notes);
1201 }
1202 
1203 
1204 //--------------------------allow_range_check_smearing-------------------------
1205 // Gating condition for coalescing similar range checks.
1206 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1207 // single covering check that is at least as strong as any of them.
1208 // If the optimization succeeds, the simplified (strengthened) range check
1209 // will always succeed.  If it fails, we will deopt, and then give up
1210 // on the optimization.
1211 bool Compile::allow_range_check_smearing() const {
1212   // If this method has already thrown a range-check,
1213   // assume it was because we already tried range smearing
1214   // and it failed.
1215   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1216   return !already_trapped;
1217 }
1218 
1219 
1220 //------------------------------flatten_alias_type-----------------------------
1221 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1222   int offset = tj->offset();
1223   TypePtr::PTR ptr = tj->ptr();
1224 
1225   // Known instance (scalarizable allocation) alias only with itself.
1226   bool is_known_inst = tj->isa_oopptr() != NULL &&
1227                        tj->is_oopptr()->is_known_instance();
1228 
1229   // Process weird unsafe references.
1230   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1231     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1232     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1233     tj = TypeOopPtr::BOTTOM;
1234     ptr = tj->ptr();
1235     offset = tj->offset();
1236   }
1237 
1238   // Array pointers need some flattening
1239   const TypeAryPtr *ta = tj->isa_aryptr();
1240   if (ta && ta->is_stable()) {
1241     // Erase stability property for alias analysis.
1242     tj = ta = ta->cast_to_stable(false);
1243   }
1244   if( ta && is_known_inst ) {
1245     if ( offset != Type::OffsetBot &&
1246          offset > arrayOopDesc::length_offset_in_bytes() ) {
1247       offset = Type::OffsetBot; // Flatten constant access into array body only
1248       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1249     }
1250   } else if( ta && _AliasLevel >= 2 ) {
1251     // For arrays indexed by constant indices, we flatten the alias
1252     // space to include all of the array body.  Only the header, klass
1253     // and array length can be accessed un-aliased.
1254     if( offset != Type::OffsetBot ) {
1255       if( ta->const_oop() ) { // MethodData* or Method*
1256         offset = Type::OffsetBot;   // Flatten constant access into array body
1257         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1258       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1259         // range is OK as-is.
1260         tj = ta = TypeAryPtr::RANGE;
1261       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1262         tj = TypeInstPtr::KLASS; // all klass loads look alike
1263         ta = TypeAryPtr::RANGE; // generic ignored junk
1264         ptr = TypePtr::BotPTR;
1265       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1266         tj = TypeInstPtr::MARK;
1267         ta = TypeAryPtr::RANGE; // generic ignored junk
1268         ptr = TypePtr::BotPTR;
1269       } else {                  // Random constant offset into array body
1270         offset = Type::OffsetBot;   // Flatten constant access into array body
1271         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1272       }
1273     }
1274     // Arrays of fixed size alias with arrays of unknown size.
1275     if (ta->size() != TypeInt::POS) {
1276       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1277       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1278     }
1279     // Arrays of known objects become arrays of unknown objects.
1280     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1281       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1282       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1283     }
1284     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1285       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1286       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1287     }
1288     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1289     // cannot be distinguished by bytecode alone.
1290     if (ta->elem() == TypeInt::BOOL) {
1291       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1292       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1293       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1294     }
1295     // During the 2nd round of IterGVN, NotNull castings are removed.
1296     // Make sure the Bottom and NotNull variants alias the same.
1297     // Also, make sure exact and non-exact variants alias the same.
1298     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1299       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1300     }
1301   }
1302 
1303   // Oop pointers need some flattening
1304   const TypeInstPtr *to = tj->isa_instptr();
1305   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1306     ciInstanceKlass *k = to->klass()->as_instance_klass();
1307     if( ptr == TypePtr::Constant ) {
1308       if (to->klass() != ciEnv::current()->Class_klass() ||
1309           offset < k->size_helper() * wordSize) {
1310         // No constant oop pointers (such as Strings); they alias with
1311         // unknown strings.
1312         assert(!is_known_inst, "not scalarizable allocation");
1313         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1314       }
1315     } else if( is_known_inst ) {
1316       tj = to; // Keep NotNull and klass_is_exact for instance type
1317     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1318       // During the 2nd round of IterGVN, NotNull castings are removed.
1319       // Make sure the Bottom and NotNull variants alias the same.
1320       // Also, make sure exact and non-exact variants alias the same.
1321       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1322     }
1323     if (to->speculative() != NULL) {
1324       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1325     }
1326     // Canonicalize the holder of this field
1327     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1328       // First handle header references such as a LoadKlassNode, even if the
1329       // object's klass is unloaded at compile time (4965979).
1330       if (!is_known_inst) { // Do it only for non-instance types
1331         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1332       }
1333     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1334       // Static fields are in the space above the normal instance
1335       // fields in the java.lang.Class instance.
1336       if (to->klass() != ciEnv::current()->Class_klass()) {
1337         to = NULL;
1338         tj = TypeOopPtr::BOTTOM;
1339         offset = tj->offset();
1340       }
1341     } else {
1342       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1343       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1344         if( is_known_inst ) {
1345           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1346         } else {
1347           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1348         }
1349       }
1350     }
1351   }
1352 
1353   // Klass pointers to object array klasses need some flattening
1354   const TypeKlassPtr *tk = tj->isa_klassptr();
1355   if( tk ) {
1356     // If we are referencing a field within a Klass, we need
1357     // to assume the worst case of an Object.  Both exact and
1358     // inexact types must flatten to the same alias class so
1359     // use NotNull as the PTR.
1360     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1361 
1362       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1363                                    TypeKlassPtr::OBJECT->klass(),
1364                                    offset);
1365     }
1366 
1367     ciKlass* klass = tk->klass();
1368     if( klass->is_obj_array_klass() ) {
1369       ciKlass* k = TypeAryPtr::OOPS->klass();
1370       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1371         k = TypeInstPtr::BOTTOM->klass();
1372       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1373     }
1374 
1375     // Check for precise loads from the primary supertype array and force them
1376     // to the supertype cache alias index.  Check for generic array loads from
1377     // the primary supertype array and also force them to the supertype cache
1378     // alias index.  Since the same load can reach both, we need to merge
1379     // these 2 disparate memories into the same alias class.  Since the
1380     // primary supertype array is read-only, there's no chance of confusion
1381     // where we bypass an array load and an array store.
1382     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1383     if (offset == Type::OffsetBot ||
1384         (offset >= primary_supers_offset &&
1385          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1386         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1387       offset = in_bytes(Klass::secondary_super_cache_offset());
1388       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1389     }
1390   }
1391 
1392   // Flatten all Raw pointers together.
1393   if (tj->base() == Type::RawPtr)
1394     tj = TypeRawPtr::BOTTOM;
1395 
1396   if (tj->base() == Type::AnyPtr)
1397     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1398 
1399   // Flatten all to bottom for now
1400   switch( _AliasLevel ) {
1401   case 0:
1402     tj = TypePtr::BOTTOM;
1403     break;
1404   case 1:                       // Flatten to: oop, static, field or array
1405     switch (tj->base()) {
1406     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1407     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1408     case Type::AryPtr:   // do not distinguish arrays at all
1409     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1410     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1411     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1412     default: ShouldNotReachHere();
1413     }
1414     break;
1415   case 2:                       // No collapsing at level 2; keep all splits
1416   case 3:                       // No collapsing at level 3; keep all splits
1417     break;
1418   default:
1419     Unimplemented();
1420   }
1421 
1422   offset = tj->offset();
1423   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1424 
1425   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1426           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1427           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1428           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1429           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1430           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1431           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1432           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1433   assert( tj->ptr() != TypePtr::TopPTR &&
1434           tj->ptr() != TypePtr::AnyNull &&
1435           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1436 //    assert( tj->ptr() != TypePtr::Constant ||
1437 //            tj->base() == Type::RawPtr ||
1438 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1439 
1440   return tj;
1441 }
1442 
1443 void Compile::AliasType::Init(int i, const TypePtr* at) {
1444   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1445   _index = i;
1446   _adr_type = at;
1447   _field = NULL;
1448   _element = NULL;
1449   _is_rewritable = true; // default
1450   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1451   if (atoop != NULL && atoop->is_known_instance()) {
1452     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1453     _general_index = Compile::current()->get_alias_index(gt);
1454   } else {
1455     _general_index = 0;
1456   }
1457 }
1458 
1459 BasicType Compile::AliasType::basic_type() const {
1460   if (element() != NULL) {
1461     const Type* element = adr_type()->is_aryptr()->elem();
1462     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1463   } if (field() != NULL) {
1464     return field()->layout_type();
1465   } else {
1466     return T_ILLEGAL; // unknown
1467   }
1468 }
1469 
1470 //---------------------------------print_on------------------------------------
1471 #ifndef PRODUCT
1472 void Compile::AliasType::print_on(outputStream* st) {
1473   if (index() < 10)
1474         st->print("@ <%d> ", index());
1475   else  st->print("@ <%d>",  index());
1476   st->print(is_rewritable() ? "   " : " RO");
1477   int offset = adr_type()->offset();
1478   if (offset == Type::OffsetBot)
1479         st->print(" +any");
1480   else  st->print(" +%-3d", offset);
1481   st->print(" in ");
1482   adr_type()->dump_on(st);
1483   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1484   if (field() != NULL && tjp) {
1485     if (tjp->klass()  != field()->holder() ||
1486         tjp->offset() != field()->offset_in_bytes()) {
1487       st->print(" != ");
1488       field()->print();
1489       st->print(" ***");
1490     }
1491   }
1492 }
1493 
1494 void print_alias_types() {
1495   Compile* C = Compile::current();
1496   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1497   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1498     C->alias_type(idx)->print_on(tty);
1499     tty->cr();
1500   }
1501 }
1502 #endif
1503 
1504 
1505 //----------------------------probe_alias_cache--------------------------------
1506 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1507   intptr_t key = (intptr_t) adr_type;
1508   key ^= key >> logAliasCacheSize;
1509   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1510 }
1511 
1512 
1513 //-----------------------------grow_alias_types--------------------------------
1514 void Compile::grow_alias_types() {
1515   const int old_ats  = _max_alias_types; // how many before?
1516   const int new_ats  = old_ats;          // how many more?
1517   const int grow_ats = old_ats+new_ats;  // how many now?
1518   _max_alias_types = grow_ats;
1519   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1520   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1521   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1522   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1523 }
1524 
1525 
1526 //--------------------------------find_alias_type------------------------------
1527 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1528   if (_AliasLevel == 0)
1529     return alias_type(AliasIdxBot);
1530 
1531   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1532   if (ace->_adr_type == adr_type) {
1533     return alias_type(ace->_index);
1534   }
1535 
1536   // Handle special cases.
1537   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1538   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1539 
1540   // Do it the slow way.
1541   const TypePtr* flat = flatten_alias_type(adr_type);
1542 
1543 #ifdef ASSERT
1544   {
1545     ResourceMark rm;
1546     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1547            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1548     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1549            Type::str(adr_type));
1550     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1551       const TypeOopPtr* foop = flat->is_oopptr();
1552       // Scalarizable allocations have exact klass always.
1553       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1554       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1555       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1556              Type::str(foop), Type::str(xoop));
1557     }
1558   }
1559 #endif
1560 
1561   int idx = AliasIdxTop;
1562   for (int i = 0; i < num_alias_types(); i++) {
1563     if (alias_type(i)->adr_type() == flat) {
1564       idx = i;
1565       break;
1566     }
1567   }
1568 
1569   if (idx == AliasIdxTop) {
1570     if (no_create)  return NULL;
1571     // Grow the array if necessary.
1572     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1573     // Add a new alias type.
1574     idx = _num_alias_types++;
1575     _alias_types[idx]->Init(idx, flat);
1576     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1577     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1578     if (flat->isa_instptr()) {
1579       if (flat->offset() == java_lang_Class::klass_offset()
1580           && flat->is_instptr()->klass() == env()->Class_klass())
1581         alias_type(idx)->set_rewritable(false);
1582     }
1583     if (flat->isa_aryptr()) {
1584 #ifdef ASSERT
1585       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1586       // (T_BYTE has the weakest alignment and size restrictions...)
1587       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1588 #endif
1589       if (flat->offset() == TypePtr::OffsetBot) {
1590         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1591       }
1592     }
1593     if (flat->isa_klassptr()) {
1594       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1595         alias_type(idx)->set_rewritable(false);
1596       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1597         alias_type(idx)->set_rewritable(false);
1598       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1599         alias_type(idx)->set_rewritable(false);
1600       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1601         alias_type(idx)->set_rewritable(false);
1602       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1603         alias_type(idx)->set_rewritable(false);
1604     }
1605     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1606     // but the base pointer type is not distinctive enough to identify
1607     // references into JavaThread.)
1608 
1609     // Check for final fields.
1610     const TypeInstPtr* tinst = flat->isa_instptr();
1611     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1612       ciField* field;
1613       if (tinst->const_oop() != NULL &&
1614           tinst->klass() == ciEnv::current()->Class_klass() &&
1615           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1616         // static field
1617         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1618         field = k->get_field_by_offset(tinst->offset(), true);
1619       } else {
1620         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1621         field = k->get_field_by_offset(tinst->offset(), false);
1622       }
1623       assert(field == NULL ||
1624              original_field == NULL ||
1625              (field->holder() == original_field->holder() &&
1626               field->offset() == original_field->offset() &&
1627               field->is_static() == original_field->is_static()), "wrong field?");
1628       // Set field() and is_rewritable() attributes.
1629       if (field != NULL)  alias_type(idx)->set_field(field);
1630     }
1631   }
1632 
1633   // Fill the cache for next time.
1634   ace->_adr_type = adr_type;
1635   ace->_index    = idx;
1636   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1637 
1638   // Might as well try to fill the cache for the flattened version, too.
1639   AliasCacheEntry* face = probe_alias_cache(flat);
1640   if (face->_adr_type == NULL) {
1641     face->_adr_type = flat;
1642     face->_index    = idx;
1643     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1644   }
1645 
1646   return alias_type(idx);
1647 }
1648 
1649 
1650 Compile::AliasType* Compile::alias_type(ciField* field) {
1651   const TypeOopPtr* t;
1652   if (field->is_static())
1653     t = TypeInstPtr::make(field->holder()->java_mirror());
1654   else
1655     t = TypeOopPtr::make_from_klass_raw(field->holder());
1656   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1657   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1658   return atp;
1659 }
1660 
1661 
1662 //------------------------------have_alias_type--------------------------------
1663 bool Compile::have_alias_type(const TypePtr* adr_type) {
1664   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1665   if (ace->_adr_type == adr_type) {
1666     return true;
1667   }
1668 
1669   // Handle special cases.
1670   if (adr_type == NULL)             return true;
1671   if (adr_type == TypePtr::BOTTOM)  return true;
1672 
1673   return find_alias_type(adr_type, true, NULL) != NULL;
1674 }
1675 
1676 //-----------------------------must_alias--------------------------------------
1677 // True if all values of the given address type are in the given alias category.
1678 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1679   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1680   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1681   if (alias_idx == AliasIdxTop)         return false; // the empty category
1682   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1683 
1684   // the only remaining possible overlap is identity
1685   int adr_idx = get_alias_index(adr_type);
1686   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1687   assert(adr_idx == alias_idx ||
1688          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1689           && adr_type                       != TypeOopPtr::BOTTOM),
1690          "should not be testing for overlap with an unsafe pointer");
1691   return adr_idx == alias_idx;
1692 }
1693 
1694 //------------------------------can_alias--------------------------------------
1695 // True if any values of the given address type are in the given alias category.
1696 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1697   if (alias_idx == AliasIdxTop)         return false; // the empty category
1698   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1699   // Known instance doesn't alias with bottom memory
1700   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1701   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1702 
1703   // the only remaining possible overlap is identity
1704   int adr_idx = get_alias_index(adr_type);
1705   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1706   return adr_idx == alias_idx;
1707 }
1708 
1709 
1710 
1711 //---------------------------pop_warm_call-------------------------------------
1712 WarmCallInfo* Compile::pop_warm_call() {
1713   WarmCallInfo* wci = _warm_calls;
1714   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1715   return wci;
1716 }
1717 
1718 //----------------------------Inline_Warm--------------------------------------
1719 int Compile::Inline_Warm() {
1720   // If there is room, try to inline some more warm call sites.
1721   // %%% Do a graph index compaction pass when we think we're out of space?
1722   if (!InlineWarmCalls)  return 0;
1723 
1724   int calls_made_hot = 0;
1725   int room_to_grow   = NodeCountInliningCutoff - unique();
1726   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1727   int amount_grown   = 0;
1728   WarmCallInfo* call;
1729   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1730     int est_size = (int)call->size();
1731     if (est_size > (room_to_grow - amount_grown)) {
1732       // This one won't fit anyway.  Get rid of it.
1733       call->make_cold();
1734       continue;
1735     }
1736     call->make_hot();
1737     calls_made_hot++;
1738     amount_grown   += est_size;
1739     amount_to_grow -= est_size;
1740   }
1741 
1742   if (calls_made_hot > 0)  set_major_progress();
1743   return calls_made_hot;
1744 }
1745 
1746 
1747 //----------------------------Finish_Warm--------------------------------------
1748 void Compile::Finish_Warm() {
1749   if (!InlineWarmCalls)  return;
1750   if (failing())  return;
1751   if (warm_calls() == NULL)  return;
1752 
1753   // Clean up loose ends, if we are out of space for inlining.
1754   WarmCallInfo* call;
1755   while ((call = pop_warm_call()) != NULL) {
1756     call->make_cold();
1757   }
1758 }
1759 
1760 //---------------------cleanup_loop_predicates-----------------------
1761 // Remove the opaque nodes that protect the predicates so that all unused
1762 // checks and uncommon_traps will be eliminated from the ideal graph
1763 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1764   if (predicate_count()==0) return;
1765   for (int i = predicate_count(); i > 0; i--) {
1766     Node * n = predicate_opaque1_node(i-1);
1767     assert(n->Opcode() == Op_Opaque1, "must be");
1768     igvn.replace_node(n, n->in(1));
1769   }
1770   assert(predicate_count()==0, "should be clean!");
1771 }
1772 
1773 void Compile::add_range_check_cast(Node* n) {
1774   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1775   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1776   _range_check_casts->append(n);
1777 }
1778 
1779 // Remove all range check dependent CastIINodes.
1780 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1781   for (int i = range_check_cast_count(); i > 0; i--) {
1782     Node* cast = range_check_cast_node(i-1);
1783     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1784     igvn.replace_node(cast, cast->in(1));
1785   }
1786   assert(range_check_cast_count() == 0, "should be empty");
1787 }
1788 
1789 void Compile::add_opaque4_node(Node* n) {
1790   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1791   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1792   _opaque4_nodes->append(n);
1793 }
1794 
1795 // Remove all Opaque4 nodes.
1796 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
1797   for (int i = opaque4_count(); i > 0; i--) {
1798     Node* opaq = opaque4_node(i-1);
1799     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
1800     igvn.replace_node(opaq, opaq->in(2));
1801   }
1802   assert(opaque4_count() == 0, "should be empty");
1803 }
1804 
1805 // StringOpts and late inlining of string methods
1806 void Compile::inline_string_calls(bool parse_time) {
1807   {
1808     // remove useless nodes to make the usage analysis simpler
1809     ResourceMark rm;
1810     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1811   }
1812 
1813   {
1814     ResourceMark rm;
1815     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1816     PhaseStringOpts pso(initial_gvn(), for_igvn());
1817     print_method(PHASE_AFTER_STRINGOPTS, 3);
1818   }
1819 
1820   // now inline anything that we skipped the first time around
1821   if (!parse_time) {
1822     _late_inlines_pos = _late_inlines.length();
1823   }
1824 
1825   while (_string_late_inlines.length() > 0) {
1826     CallGenerator* cg = _string_late_inlines.pop();
1827     cg->do_late_inline();
1828     if (failing())  return;
1829   }
1830   _string_late_inlines.trunc_to(0);
1831 }
1832 
1833 // Late inlining of boxing methods
1834 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1835   if (_boxing_late_inlines.length() > 0) {
1836     assert(has_boxed_value(), "inconsistent");
1837 
1838     PhaseGVN* gvn = initial_gvn();
1839     set_inlining_incrementally(true);
1840 
1841     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1842     for_igvn()->clear();
1843     gvn->replace_with(&igvn);
1844 
1845     _late_inlines_pos = _late_inlines.length();
1846 
1847     while (_boxing_late_inlines.length() > 0) {
1848       CallGenerator* cg = _boxing_late_inlines.pop();
1849       cg->do_late_inline();
1850       if (failing())  return;
1851     }
1852     _boxing_late_inlines.trunc_to(0);
1853 
1854     inline_incrementally_cleanup(igvn);
1855 
1856     set_inlining_incrementally(false);
1857   }
1858 }
1859 
1860 bool Compile::inline_incrementally_one() {
1861   assert(IncrementalInline, "incremental inlining should be on");
1862 
1863   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1864   set_inlining_progress(false);
1865   set_do_cleanup(false);
1866   int i = 0;
1867   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1868     CallGenerator* cg = _late_inlines.at(i);
1869     _late_inlines_pos = i+1;
1870     cg->do_late_inline();
1871     if (failing())  return false;
1872   }
1873   int j = 0;
1874   for (; i < _late_inlines.length(); i++, j++) {
1875     _late_inlines.at_put(j, _late_inlines.at(i));
1876   }
1877   _late_inlines.trunc_to(j);
1878   assert(inlining_progress() || _late_inlines.length() == 0, "");
1879 
1880   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
1881 
1882   set_inlining_progress(false);
1883   set_do_cleanup(false);
1884   return (_late_inlines.length() > 0) && !needs_cleanup;
1885 }
1886 
1887 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
1888   {
1889     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
1890     ResourceMark rm;
1891     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1892   }
1893   {
1894     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
1895     igvn = PhaseIterGVN(initial_gvn());
1896     igvn.optimize();
1897   }
1898 }
1899 
1900 // Perform incremental inlining until bound on number of live nodes is reached
1901 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1902   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
1903 
1904   set_inlining_incrementally(true);
1905   uint low_live_nodes = 0;
1906 
1907   while (_late_inlines.length() > 0) {
1908     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1909       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1910         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
1911         // PhaseIdealLoop is expensive so we only try it once we are
1912         // out of live nodes and we only try it again if the previous
1913         // helped got the number of nodes down significantly
1914         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
1915         if (failing())  return;
1916         low_live_nodes = live_nodes();
1917         _major_progress = true;
1918       }
1919 
1920       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1921         break; // finish
1922       }
1923     }
1924 
1925     for_igvn()->clear();
1926     initial_gvn()->replace_with(&igvn);
1927 
1928     while (inline_incrementally_one()) {
1929       assert(!failing(), "inconsistent");
1930     }
1931 
1932     if (failing())  return;
1933 
1934     inline_incrementally_cleanup(igvn);
1935 
1936     if (failing())  return;
1937   }
1938   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1939 
1940   if (_string_late_inlines.length() > 0) {
1941     assert(has_stringbuilder(), "inconsistent");
1942     for_igvn()->clear();
1943     initial_gvn()->replace_with(&igvn);
1944 
1945     inline_string_calls(false);
1946 
1947     if (failing())  return;
1948 
1949     inline_incrementally_cleanup(igvn);
1950   }
1951 
1952   set_inlining_incrementally(false);
1953 }
1954 
1955 
1956 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
1957   if(_loop_opts_cnt > 0) {
1958     debug_only( int cnt = 0; );
1959     while(major_progress() && (_loop_opts_cnt > 0)) {
1960       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
1961       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1962       PhaseIdealLoop::optimize(igvn, mode);
1963       _loop_opts_cnt--;
1964       if (failing())  return false;
1965       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
1966     }
1967   }
1968   return true;
1969 }
1970 
1971 // Remove edges from "root" to each SafePoint at a backward branch.
1972 // They were inserted during parsing (see add_safepoint()) to make
1973 // infinite loops without calls or exceptions visible to root, i.e.,
1974 // useful.
1975 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
1976   Node *r = root();
1977   if (r != NULL) {
1978     for (uint i = r->req(); i < r->len(); ++i) {
1979       Node *n = r->in(i);
1980       if (n != NULL && n->is_SafePoint()) {
1981         r->rm_prec(i);
1982         if (n->outcnt() == 0) {
1983           igvn.remove_dead_node(n);
1984         }
1985         --i;
1986       }
1987     }
1988     // Parsing may have added top inputs to the root node (Path
1989     // leading to the Halt node proven dead). Make sure we get a
1990     // chance to clean them up.
1991     igvn._worklist.push(r);
1992     igvn.optimize();
1993   }
1994 }
1995 
1996 //------------------------------Optimize---------------------------------------
1997 // Given a graph, optimize it.
1998 void Compile::Optimize() {
1999   TracePhase tp("optimizer", &timers[_t_optimizer]);
2000 
2001 #ifndef PRODUCT
2002   if (_directive->BreakAtCompileOption) {
2003     BREAKPOINT;
2004   }
2005 
2006 #endif
2007 
2008   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2009 #ifdef ASSERT
2010   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2011 #endif
2012 
2013   ResourceMark rm;
2014 
2015   print_inlining_reinit();
2016 
2017   NOT_PRODUCT( verify_graph_edges(); )
2018 
2019   print_method(PHASE_AFTER_PARSING);
2020 
2021  {
2022   // Iterative Global Value Numbering, including ideal transforms
2023   // Initialize IterGVN with types and values from parse-time GVN
2024   PhaseIterGVN igvn(initial_gvn());
2025 #ifdef ASSERT
2026   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2027 #endif
2028   {
2029     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2030     igvn.optimize();
2031   }
2032 
2033   if (failing())  return;
2034 
2035   print_method(PHASE_ITER_GVN1, 2);
2036 
2037   inline_incrementally(igvn);
2038 
2039   print_method(PHASE_INCREMENTAL_INLINE, 2);
2040 
2041   if (failing())  return;
2042 
2043   if (eliminate_boxing()) {
2044     // Inline valueOf() methods now.
2045     inline_boxing_calls(igvn);
2046 
2047     if (AlwaysIncrementalInline) {
2048       inline_incrementally(igvn);
2049     }
2050 
2051     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2052 
2053     if (failing())  return;
2054   }
2055 
2056   // Now that all inlining is over, cut edge from root to loop
2057   // safepoints
2058   remove_root_to_sfpts_edges(igvn);
2059 
2060   // Remove the speculative part of types and clean up the graph from
2061   // the extra CastPP nodes whose only purpose is to carry them. Do
2062   // that early so that optimizations are not disrupted by the extra
2063   // CastPP nodes.
2064   remove_speculative_types(igvn);
2065 
2066   // No more new expensive nodes will be added to the list from here
2067   // so keep only the actual candidates for optimizations.
2068   cleanup_expensive_nodes(igvn);
2069 
2070   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2071     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2072     initial_gvn()->replace_with(&igvn);
2073     for_igvn()->clear();
2074     Unique_Node_List new_worklist(C->comp_arena());
2075     {
2076       ResourceMark rm;
2077       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2078     }
2079     set_for_igvn(&new_worklist);
2080     igvn = PhaseIterGVN(initial_gvn());
2081     igvn.optimize();
2082   }
2083 
2084   // Perform escape analysis
2085   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2086     if (has_loops()) {
2087       // Cleanup graph (remove dead nodes).
2088       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2089       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2090       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2091       if (failing())  return;
2092     }
2093     ConnectionGraph::do_analysis(this, &igvn);
2094 
2095     if (failing())  return;
2096 
2097     // Optimize out fields loads from scalar replaceable allocations.
2098     igvn.optimize();
2099     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2100 
2101     if (failing())  return;
2102 
2103     if (congraph() != NULL && macro_count() > 0) {
2104       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2105       PhaseMacroExpand mexp(igvn);
2106       mexp.eliminate_macro_nodes();
2107       igvn.set_delay_transform(false);
2108 
2109       igvn.optimize();
2110       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2111 
2112       if (failing())  return;
2113     }
2114   }
2115 
2116   // Loop transforms on the ideal graph.  Range Check Elimination,
2117   // peeling, unrolling, etc.
2118 
2119   // Set loop opts counter
2120   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2121     {
2122       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2123       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2124       _loop_opts_cnt--;
2125       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2126       if (failing())  return;
2127     }
2128     // Loop opts pass if partial peeling occurred in previous pass
2129     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2130       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2131       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2132       _loop_opts_cnt--;
2133       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2134       if (failing())  return;
2135     }
2136     // Loop opts pass for loop-unrolling before CCP
2137     if(major_progress() && (_loop_opts_cnt > 0)) {
2138       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2139       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2140       _loop_opts_cnt--;
2141       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2142     }
2143     if (!failing()) {
2144       // Verify that last round of loop opts produced a valid graph
2145       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2146       PhaseIdealLoop::verify(igvn);
2147     }
2148   }
2149   if (failing())  return;
2150 
2151   // Conditional Constant Propagation;
2152   PhaseCCP ccp( &igvn );
2153   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2154   {
2155     TracePhase tp("ccp", &timers[_t_ccp]);
2156     ccp.do_transform();
2157   }
2158   print_method(PHASE_CPP1, 2);
2159 
2160   assert( true, "Break here to ccp.dump_old2new_map()");
2161 
2162   // Iterative Global Value Numbering, including ideal transforms
2163   {
2164     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2165     igvn = ccp;
2166     igvn.optimize();
2167   }
2168   print_method(PHASE_ITER_GVN2, 2);
2169 
2170   if (failing())  return;
2171 
2172   // Loop transforms on the ideal graph.  Range Check Elimination,
2173   // peeling, unrolling, etc.
2174   if (!optimize_loops(igvn, LoopOptsDefault)) {
2175     return;
2176   }
2177 
2178   if (failing())  return;
2179 
2180   // Ensure that major progress is now clear
2181   C->clear_major_progress();
2182 
2183   {
2184     // Verify that all previous optimizations produced a valid graph
2185     // at least to this point, even if no loop optimizations were done.
2186     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2187     PhaseIdealLoop::verify(igvn);
2188   }
2189 
2190   if (range_check_cast_count() > 0) {
2191     // No more loop optimizations. Remove all range check dependent CastIINodes.
2192     C->remove_range_check_casts(igvn);
2193     igvn.optimize();
2194   }
2195 
2196 #ifdef ASSERT
2197   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2198 #endif
2199 
2200   {
2201     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2202     PhaseMacroExpand  mex(igvn);
2203     if (mex.expand_macro_nodes()) {
2204       assert(failing(), "must bail out w/ explicit message");
2205       return;
2206     }
2207     print_method(PHASE_MACRO_EXPANSION, 2);
2208   }
2209 
2210   {
2211     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2212     if (bs->expand_barriers(this, igvn)) {
2213       assert(failing(), "must bail out w/ explicit message");
2214       return;
2215     }
2216     print_method(PHASE_BARRIER_EXPANSION, 2);
2217   }
2218 
2219   if (opaque4_count() > 0) {
2220     C->remove_opaque4_nodes(igvn);
2221     igvn.optimize();
2222   }
2223 
2224   if (C->max_vector_size() > 0) {
2225     C->optimize_logic_cones(igvn);
2226     igvn.optimize();
2227   }
2228 
2229   DEBUG_ONLY( _modified_nodes = NULL; )
2230  } // (End scope of igvn; run destructor if necessary for asserts.)
2231 
2232  process_print_inlining();
2233  // A method with only infinite loops has no edges entering loops from root
2234  {
2235    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2236    if (final_graph_reshaping()) {
2237      assert(failing(), "must bail out w/ explicit message");
2238      return;
2239    }
2240  }
2241 
2242  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2243 }
2244 
2245 //---------------------------- Bitwise operation packing optimization ---------------------------
2246 
2247 static bool is_vector_unary_bitwise_op(Node* n) {
2248   return n->Opcode() == Op_XorV &&
2249          VectorNode::is_vector_bitwise_not_pattern(n);
2250 }
2251 
2252 static bool is_vector_binary_bitwise_op(Node* n) {
2253   switch (n->Opcode()) {
2254     case Op_AndV:
2255     case Op_OrV:
2256       return true;
2257 
2258     case Op_XorV:
2259       return !is_vector_unary_bitwise_op(n);
2260 
2261     default:
2262       return false;
2263   }
2264 }
2265 
2266 static bool is_vector_ternary_bitwise_op(Node* n) {
2267   return n->Opcode() == Op_MacroLogicV;
2268 }
2269 
2270 static bool is_vector_bitwise_op(Node* n) {
2271   return is_vector_unary_bitwise_op(n)  ||
2272          is_vector_binary_bitwise_op(n) ||
2273          is_vector_ternary_bitwise_op(n);
2274 }
2275 
2276 static bool is_vector_bitwise_cone_root(Node* n) {
2277   if (!is_vector_bitwise_op(n)) {
2278     return false;
2279   }
2280   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2281     if (is_vector_bitwise_op(n->fast_out(i))) {
2282       return false;
2283     }
2284   }
2285   return true;
2286 }
2287 
2288 static uint collect_unique_inputs(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2289   uint cnt = 0;
2290   if (is_vector_bitwise_op(n)) {
2291     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2292       for (uint i = 1; i < n->req(); i++) {
2293         Node* in = n->in(i);
2294         bool skip = VectorNode::is_all_ones_vector(in);
2295         if (!skip && !inputs.member(in)) {
2296           inputs.push(in);
2297           cnt++;
2298         }
2299       }
2300       assert(cnt <= 1, "not unary");
2301     } else {
2302       uint last_req = n->req();
2303       if (is_vector_ternary_bitwise_op(n)) {
2304         last_req = n->req() - 1; // skip last input
2305       }
2306       for (uint i = 1; i < last_req; i++) {
2307         Node* def = n->in(i);
2308         if (!inputs.member(def)) {
2309           inputs.push(def);
2310           cnt++;
2311         }
2312       }
2313     }
2314     partition.push(n);
2315   } else { // not a bitwise operations
2316     if (!inputs.member(n)) {
2317       inputs.push(n);
2318       cnt++;
2319     }
2320   }
2321   return cnt;
2322 }
2323 
2324 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2325   Unique_Node_List useful_nodes;
2326   C->identify_useful_nodes(useful_nodes);
2327 
2328   for (uint i = 0; i < useful_nodes.size(); i++) {
2329     Node* n = useful_nodes.at(i);
2330     if (is_vector_bitwise_cone_root(n)) {
2331       list.push(n);
2332     }
2333   }
2334 }
2335 
2336 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2337                                     const TypeVect* vt,
2338                                     Unique_Node_List& partition,
2339                                     Unique_Node_List& inputs) {
2340   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2341   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2342   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2343 
2344   Node* in1 = inputs.at(0);
2345   Node* in2 = inputs.at(1);
2346   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2347 
2348   uint func = compute_truth_table(partition, inputs);
2349   return igvn.transform(MacroLogicVNode::make(igvn, in3, in2, in1, func, vt));
2350 }
2351 
2352 static uint extract_bit(uint func, uint pos) {
2353   return (func & (1 << pos)) >> pos;
2354 }
2355 
2356 //
2357 //  A macro logic node represents a truth table. It has 4 inputs,
2358 //  First three inputs corresponds to 3 columns of a truth table
2359 //  and fourth input captures the logic function.
2360 //
2361 //  eg.  fn = (in1 AND in2) OR in3;
2362 //
2363 //      MacroNode(in1,in2,in3,fn)
2364 //
2365 //  -----------------
2366 //  in1 in2 in3  fn
2367 //  -----------------
2368 //  0    0   0    0
2369 //  0    0   1    1
2370 //  0    1   0    0
2371 //  0    1   1    1
2372 //  1    0   0    0
2373 //  1    0   1    1
2374 //  1    1   0    1
2375 //  1    1   1    1
2376 //
2377 
2378 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2379   int res = 0;
2380   for (int i = 0; i < 8; i++) {
2381     int bit1 = extract_bit(in1, i);
2382     int bit2 = extract_bit(in2, i);
2383     int bit3 = extract_bit(in3, i);
2384 
2385     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2386     int func_bit = extract_bit(func, func_bit_pos);
2387 
2388     res |= func_bit << i;
2389   }
2390   return res;
2391 }
2392 
2393 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2394   assert(n != NULL, "");
2395   assert(eval_map.contains(n), "absent");
2396   return *(eval_map.get(n));
2397 }
2398 
2399 static void eval_operands(Node* n,
2400                           uint& func1, uint& func2, uint& func3,
2401                           ResourceHashtable<Node*,uint>& eval_map) {
2402   assert(is_vector_bitwise_op(n), "");
2403   func1 = eval_operand(n->in(1), eval_map);
2404 
2405   if (is_vector_binary_bitwise_op(n)) {
2406     func2 = eval_operand(n->in(2), eval_map);
2407   } else if (is_vector_ternary_bitwise_op(n)) {
2408     func2 = eval_operand(n->in(2), eval_map);
2409     func3 = eval_operand(n->in(3), eval_map);
2410   } else {
2411     assert(is_vector_unary_bitwise_op(n), "not unary");
2412   }
2413 }
2414 
2415 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2416   assert(inputs.size() <= 3, "sanity");
2417   ResourceMark rm;
2418   uint res = 0;
2419   ResourceHashtable<Node*,uint> eval_map;
2420 
2421   // Populate precomputed functions for inputs.
2422   // Each input corresponds to one column of 3 input truth-table.
2423   uint input_funcs[] = { 0xAA,   // (_, _, a) -> a
2424                          0xCC,   // (_, b, _) -> b
2425                          0xF0 }; // (c, _, _) -> c
2426   for (uint i = 0; i < inputs.size(); i++) {
2427     eval_map.put(inputs.at(i), input_funcs[i]);
2428   }
2429 
2430   for (uint i = 0; i < partition.size(); i++) {
2431     Node* n = partition.at(i);
2432 
2433     uint func1 = 0, func2 = 0, func3 = 0;
2434     eval_operands(n, func1, func2, func3, eval_map);
2435 
2436     switch (n->Opcode()) {
2437       case Op_OrV:
2438         assert(func3 == 0, "not binary");
2439         res = func1 | func2;
2440         break;
2441       case Op_AndV:
2442         assert(func3 == 0, "not binary");
2443         res = func1 & func2;
2444         break;
2445       case Op_XorV:
2446         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2447           assert(func2 == 0 && func3 == 0, "not unary");
2448           res = (~func1) & 0xFF;
2449         } else {
2450           assert(func3 == 0, "not binary");
2451           res = func1 ^ func2;
2452         }
2453         break;
2454       case Op_MacroLogicV:
2455         // Ordering of inputs may change during evaluation of sub-tree
2456         // containing MacroLogic node as a child node, thus a re-evaluation
2457         // makes sure that function is evaluated in context of current
2458         // inputs.
2459         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2460         break;
2461 
2462       default: assert(false, "not supported: %s", n->Name());
2463     }
2464     assert(res <= 0xFF, "invalid");
2465     eval_map.put(n, res);
2466   }
2467   return res;
2468 }
2469 
2470 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2471   assert(partition.size() == 0, "not empty");
2472   assert(inputs.size() == 0, "not empty");
2473   if (is_vector_ternary_bitwise_op(n)) {
2474     return false;
2475   }
2476 
2477   bool is_unary_op = is_vector_unary_bitwise_op(n);
2478   if (is_unary_op) {
2479     assert(collect_unique_inputs(n, partition, inputs) == 1, "not unary");
2480     return false; // too few inputs
2481   }
2482 
2483   assert(is_vector_binary_bitwise_op(n), "not binary");
2484   Node* in1 = n->in(1);
2485   Node* in2 = n->in(2);
2486 
2487   int in1_unique_inputs_cnt = collect_unique_inputs(in1, partition, inputs);
2488   int in2_unique_inputs_cnt = collect_unique_inputs(in2, partition, inputs);
2489   partition.push(n);
2490 
2491   // Too many inputs?
2492   if (inputs.size() > 3) {
2493     partition.clear();
2494     inputs.clear();
2495     { // Recompute in2 inputs
2496       Unique_Node_List not_used;
2497       in2_unique_inputs_cnt = collect_unique_inputs(in2, not_used, not_used);
2498     }
2499     // Pick the node with minimum number of inputs.
2500     if (in1_unique_inputs_cnt >= 3 && in2_unique_inputs_cnt >= 3) {
2501       return false; // still too many inputs
2502     }
2503     // Recompute partition & inputs.
2504     Node* child       = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in1 : in2);
2505     collect_unique_inputs(child, partition, inputs);
2506 
2507     Node* other_input = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in2 : in1);
2508     inputs.push(other_input);
2509 
2510     partition.push(n);
2511   }
2512 
2513   return (partition.size() == 2 || partition.size() == 3) &&
2514          (inputs.size()    == 2 || inputs.size()    == 3);
2515 }
2516 
2517 
2518 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2519   assert(is_vector_bitwise_op(n), "not a root");
2520 
2521   visited.set(n->_idx);
2522 
2523   // 1) Do a DFS walk over the logic cone.
2524   for (uint i = 1; i < n->req(); i++) {
2525     Node* in = n->in(i);
2526     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2527       process_logic_cone_root(igvn, in, visited);
2528     }
2529   }
2530 
2531   // 2) Bottom up traversal: Merge node[s] with
2532   // the parent to form macro logic node.
2533   Unique_Node_List partition;
2534   Unique_Node_List inputs;
2535   if (compute_logic_cone(n, partition, inputs)) {
2536     const TypeVect* vt = n->bottom_type()->is_vect();
2537     Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2538     igvn.replace_node(n, macro_logic);
2539   }
2540 }
2541 
2542 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2543   ResourceMark rm;
2544   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2545     Unique_Node_List list;
2546     collect_logic_cone_roots(list);
2547 
2548     while (list.size() > 0) {
2549       Node* n = list.pop();
2550       const TypeVect* vt = n->bottom_type()->is_vect();
2551       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2552       if (supported) {
2553         VectorSet visited(comp_arena());
2554         process_logic_cone_root(igvn, n, visited);
2555       }
2556     }
2557   }
2558 }
2559 
2560 //------------------------------Code_Gen---------------------------------------
2561 // Given a graph, generate code for it
2562 void Compile::Code_Gen() {
2563   if (failing()) {
2564     return;
2565   }
2566 
2567   // Perform instruction selection.  You might think we could reclaim Matcher
2568   // memory PDQ, but actually the Matcher is used in generating spill code.
2569   // Internals of the Matcher (including some VectorSets) must remain live
2570   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2571   // set a bit in reclaimed memory.
2572 
2573   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2574   // nodes.  Mapping is only valid at the root of each matched subtree.
2575   NOT_PRODUCT( verify_graph_edges(); )
2576 
2577   Matcher matcher;
2578   _matcher = &matcher;
2579   {
2580     TracePhase tp("matcher", &timers[_t_matcher]);
2581     matcher.match();
2582     if (failing()) {
2583       return;
2584     }
2585   }
2586 
2587   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2588   // nodes.  Mapping is only valid at the root of each matched subtree.
2589   NOT_PRODUCT( verify_graph_edges(); )
2590 
2591   // If you have too many nodes, or if matching has failed, bail out
2592   check_node_count(0, "out of nodes matching instructions");
2593   if (failing()) {
2594     return;
2595   }
2596 
2597   print_method(PHASE_MATCHING, 2);
2598 
2599   // Build a proper-looking CFG
2600   PhaseCFG cfg(node_arena(), root(), matcher);
2601   _cfg = &cfg;
2602   {
2603     TracePhase tp("scheduler", &timers[_t_scheduler]);
2604     bool success = cfg.do_global_code_motion();
2605     if (!success) {
2606       return;
2607     }
2608 
2609     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2610     NOT_PRODUCT( verify_graph_edges(); )
2611     debug_only( cfg.verify(); )
2612   }
2613 
2614   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2615   _regalloc = &regalloc;
2616   {
2617     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2618     // Perform register allocation.  After Chaitin, use-def chains are
2619     // no longer accurate (at spill code) and so must be ignored.
2620     // Node->LRG->reg mappings are still accurate.
2621     _regalloc->Register_Allocate();
2622 
2623     // Bail out if the allocator builds too many nodes
2624     if (failing()) {
2625       return;
2626     }
2627   }
2628 
2629   // Prior to register allocation we kept empty basic blocks in case the
2630   // the allocator needed a place to spill.  After register allocation we
2631   // are not adding any new instructions.  If any basic block is empty, we
2632   // can now safely remove it.
2633   {
2634     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2635     cfg.remove_empty_blocks();
2636     if (do_freq_based_layout()) {
2637       PhaseBlockLayout layout(cfg);
2638     } else {
2639       cfg.set_loop_alignment();
2640     }
2641     cfg.fixup_flow();
2642   }
2643 
2644   // Apply peephole optimizations
2645   if( OptoPeephole ) {
2646     TracePhase tp("peephole", &timers[_t_peephole]);
2647     PhasePeephole peep( _regalloc, cfg);
2648     peep.do_transform();
2649   }
2650 
2651   // Do late expand if CPU requires this.
2652   if (Matcher::require_postalloc_expand) {
2653     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2654     cfg.postalloc_expand(_regalloc);
2655   }
2656 
2657   // Convert Nodes to instruction bits in a buffer
2658   {
2659     TracePhase tp("output", &timers[_t_output]);
2660     PhaseOutput output;
2661     output.Output();
2662     if (failing())  return;
2663     output.install();
2664   }
2665 
2666   print_method(PHASE_FINAL_CODE);
2667 
2668   // He's dead, Jim.
2669   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2670   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2671 }
2672 
2673 //------------------------------Final_Reshape_Counts---------------------------
2674 // This class defines counters to help identify when a method
2675 // may/must be executed using hardware with only 24-bit precision.
2676 struct Final_Reshape_Counts : public StackObj {
2677   int  _call_count;             // count non-inlined 'common' calls
2678   int  _float_count;            // count float ops requiring 24-bit precision
2679   int  _double_count;           // count double ops requiring more precision
2680   int  _java_call_count;        // count non-inlined 'java' calls
2681   int  _inner_loop_count;       // count loops which need alignment
2682   VectorSet _visited;           // Visitation flags
2683   Node_List _tests;             // Set of IfNodes & PCTableNodes
2684 
2685   Final_Reshape_Counts() :
2686     _call_count(0), _float_count(0), _double_count(0),
2687     _java_call_count(0), _inner_loop_count(0),
2688     _visited( Thread::current()->resource_area() ) { }
2689 
2690   void inc_call_count  () { _call_count  ++; }
2691   void inc_float_count () { _float_count ++; }
2692   void inc_double_count() { _double_count++; }
2693   void inc_java_call_count() { _java_call_count++; }
2694   void inc_inner_loop_count() { _inner_loop_count++; }
2695 
2696   int  get_call_count  () const { return _call_count  ; }
2697   int  get_float_count () const { return _float_count ; }
2698   int  get_double_count() const { return _double_count; }
2699   int  get_java_call_count() const { return _java_call_count; }
2700   int  get_inner_loop_count() const { return _inner_loop_count; }
2701 };
2702 
2703 #ifdef ASSERT
2704 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2705   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2706   // Make sure the offset goes inside the instance layout.
2707   return k->contains_field_offset(tp->offset());
2708   // Note that OffsetBot and OffsetTop are very negative.
2709 }
2710 #endif
2711 
2712 // Eliminate trivially redundant StoreCMs and accumulate their
2713 // precedence edges.
2714 void Compile::eliminate_redundant_card_marks(Node* n) {
2715   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2716   if (n->in(MemNode::Address)->outcnt() > 1) {
2717     // There are multiple users of the same address so it might be
2718     // possible to eliminate some of the StoreCMs
2719     Node* mem = n->in(MemNode::Memory);
2720     Node* adr = n->in(MemNode::Address);
2721     Node* val = n->in(MemNode::ValueIn);
2722     Node* prev = n;
2723     bool done = false;
2724     // Walk the chain of StoreCMs eliminating ones that match.  As
2725     // long as it's a chain of single users then the optimization is
2726     // safe.  Eliminating partially redundant StoreCMs would require
2727     // cloning copies down the other paths.
2728     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2729       if (adr == mem->in(MemNode::Address) &&
2730           val == mem->in(MemNode::ValueIn)) {
2731         // redundant StoreCM
2732         if (mem->req() > MemNode::OopStore) {
2733           // Hasn't been processed by this code yet.
2734           n->add_prec(mem->in(MemNode::OopStore));
2735         } else {
2736           // Already converted to precedence edge
2737           for (uint i = mem->req(); i < mem->len(); i++) {
2738             // Accumulate any precedence edges
2739             if (mem->in(i) != NULL) {
2740               n->add_prec(mem->in(i));
2741             }
2742           }
2743           // Everything above this point has been processed.
2744           done = true;
2745         }
2746         // Eliminate the previous StoreCM
2747         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2748         assert(mem->outcnt() == 0, "should be dead");
2749         mem->disconnect_inputs(NULL, this);
2750       } else {
2751         prev = mem;
2752       }
2753       mem = prev->in(MemNode::Memory);
2754     }
2755   }
2756 }
2757 
2758 //------------------------------final_graph_reshaping_impl----------------------
2759 // Implement items 1-5 from final_graph_reshaping below.
2760 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2761 
2762   if ( n->outcnt() == 0 ) return; // dead node
2763   uint nop = n->Opcode();
2764 
2765   // Check for 2-input instruction with "last use" on right input.
2766   // Swap to left input.  Implements item (2).
2767   if( n->req() == 3 &&          // two-input instruction
2768       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2769       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2770       n->in(2)->outcnt() == 1 &&// right use IS a last use
2771       !n->in(2)->is_Con() ) {   // right use is not a constant
2772     // Check for commutative opcode
2773     switch( nop ) {
2774     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2775     case Op_MaxI:  case Op_MinI:
2776     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2777     case Op_AndL:  case Op_XorL:  case Op_OrL:
2778     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2779       // Move "last use" input to left by swapping inputs
2780       n->swap_edges(1, 2);
2781       break;
2782     }
2783     default:
2784       break;
2785     }
2786   }
2787 
2788 #ifdef ASSERT
2789   if( n->is_Mem() ) {
2790     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2791     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2792             // oop will be recorded in oop map if load crosses safepoint
2793             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2794                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2795             "raw memory operations should have control edge");
2796   }
2797   if (n->is_MemBar()) {
2798     MemBarNode* mb = n->as_MemBar();
2799     if (mb->trailing_store() || mb->trailing_load_store()) {
2800       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2801       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
2802       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2803              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2804     } else if (mb->leading()) {
2805       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2806     }
2807   }
2808 #endif
2809   // Count FPU ops and common calls, implements item (3)
2810   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
2811   if (!gc_handled) {
2812     final_graph_reshaping_main_switch(n, frc, nop);
2813   }
2814 
2815   // Collect CFG split points
2816   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
2817     frc._tests.push(n);
2818   }
2819 }
2820 
2821 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
2822   switch( nop ) {
2823   // Count all float operations that may use FPU
2824   case Op_AddF:
2825   case Op_SubF:
2826   case Op_MulF:
2827   case Op_DivF:
2828   case Op_NegF:
2829   case Op_ModF:
2830   case Op_ConvI2F:
2831   case Op_ConF:
2832   case Op_CmpF:
2833   case Op_CmpF3:
2834   // case Op_ConvL2F: // longs are split into 32-bit halves
2835     frc.inc_float_count();
2836     break;
2837 
2838   case Op_ConvF2D:
2839   case Op_ConvD2F:
2840     frc.inc_float_count();
2841     frc.inc_double_count();
2842     break;
2843 
2844   // Count all double operations that may use FPU
2845   case Op_AddD:
2846   case Op_SubD:
2847   case Op_MulD:
2848   case Op_DivD:
2849   case Op_NegD:
2850   case Op_ModD:
2851   case Op_ConvI2D:
2852   case Op_ConvD2I:
2853   // case Op_ConvL2D: // handled by leaf call
2854   // case Op_ConvD2L: // handled by leaf call
2855   case Op_ConD:
2856   case Op_CmpD:
2857   case Op_CmpD3:
2858     frc.inc_double_count();
2859     break;
2860   case Op_Opaque1:              // Remove Opaque Nodes before matching
2861   case Op_Opaque2:              // Remove Opaque Nodes before matching
2862   case Op_Opaque3:
2863     n->subsume_by(n->in(1), this);
2864     break;
2865   case Op_CallStaticJava:
2866   case Op_CallJava:
2867   case Op_CallDynamicJava:
2868     frc.inc_java_call_count(); // Count java call site;
2869   case Op_CallRuntime:
2870   case Op_CallLeaf:
2871   case Op_CallLeafNoFP: {
2872     assert (n->is_Call(), "");
2873     CallNode *call = n->as_Call();
2874     // Count call sites where the FP mode bit would have to be flipped.
2875     // Do not count uncommon runtime calls:
2876     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2877     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2878     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2879       frc.inc_call_count();   // Count the call site
2880     } else {                  // See if uncommon argument is shared
2881       Node *n = call->in(TypeFunc::Parms);
2882       int nop = n->Opcode();
2883       // Clone shared simple arguments to uncommon calls, item (1).
2884       if (n->outcnt() > 1 &&
2885           !n->is_Proj() &&
2886           nop != Op_CreateEx &&
2887           nop != Op_CheckCastPP &&
2888           nop != Op_DecodeN &&
2889           nop != Op_DecodeNKlass &&
2890           !n->is_Mem() &&
2891           !n->is_Phi()) {
2892         Node *x = n->clone();
2893         call->set_req(TypeFunc::Parms, x);
2894       }
2895     }
2896     break;
2897   }
2898 
2899   case Op_StoreD:
2900   case Op_LoadD:
2901   case Op_LoadD_unaligned:
2902     frc.inc_double_count();
2903     goto handle_mem;
2904   case Op_StoreF:
2905   case Op_LoadF:
2906     frc.inc_float_count();
2907     goto handle_mem;
2908 
2909   case Op_StoreCM:
2910     {
2911       // Convert OopStore dependence into precedence edge
2912       Node* prec = n->in(MemNode::OopStore);
2913       n->del_req(MemNode::OopStore);
2914       n->add_prec(prec);
2915       eliminate_redundant_card_marks(n);
2916     }
2917 
2918     // fall through
2919 
2920   case Op_StoreB:
2921   case Op_StoreC:
2922   case Op_StorePConditional:
2923   case Op_StoreI:
2924   case Op_StoreL:
2925   case Op_StoreIConditional:
2926   case Op_StoreLConditional:
2927   case Op_CompareAndSwapB:
2928   case Op_CompareAndSwapS:
2929   case Op_CompareAndSwapI:
2930   case Op_CompareAndSwapL:
2931   case Op_CompareAndSwapP:
2932   case Op_CompareAndSwapN:
2933   case Op_WeakCompareAndSwapB:
2934   case Op_WeakCompareAndSwapS:
2935   case Op_WeakCompareAndSwapI:
2936   case Op_WeakCompareAndSwapL:
2937   case Op_WeakCompareAndSwapP:
2938   case Op_WeakCompareAndSwapN:
2939   case Op_CompareAndExchangeB:
2940   case Op_CompareAndExchangeS:
2941   case Op_CompareAndExchangeI:
2942   case Op_CompareAndExchangeL:
2943   case Op_CompareAndExchangeP:
2944   case Op_CompareAndExchangeN:
2945   case Op_GetAndAddS:
2946   case Op_GetAndAddB:
2947   case Op_GetAndAddI:
2948   case Op_GetAndAddL:
2949   case Op_GetAndSetS:
2950   case Op_GetAndSetB:
2951   case Op_GetAndSetI:
2952   case Op_GetAndSetL:
2953   case Op_GetAndSetP:
2954   case Op_GetAndSetN:
2955   case Op_StoreP:
2956   case Op_StoreN:
2957   case Op_StoreNKlass:
2958   case Op_LoadB:
2959   case Op_LoadUB:
2960   case Op_LoadUS:
2961   case Op_LoadI:
2962   case Op_LoadKlass:
2963   case Op_LoadNKlass:
2964   case Op_LoadL:
2965   case Op_LoadL_unaligned:
2966   case Op_LoadPLocked:
2967   case Op_LoadP:
2968   case Op_LoadN:
2969   case Op_LoadRange:
2970   case Op_LoadS: {
2971   handle_mem:
2972 #ifdef ASSERT
2973     if( VerifyOptoOopOffsets ) {
2974       MemNode* mem  = n->as_Mem();
2975       // Check to see if address types have grounded out somehow.
2976       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2977       assert( !tp || oop_offset_is_sane(tp), "" );
2978     }
2979 #endif
2980     break;
2981   }
2982 
2983   case Op_AddP: {               // Assert sane base pointers
2984     Node *addp = n->in(AddPNode::Address);
2985     assert( !addp->is_AddP() ||
2986             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2987             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2988             "Base pointers must match (addp %u)", addp->_idx );
2989 #ifdef _LP64
2990     if ((UseCompressedOops || UseCompressedClassPointers) &&
2991         addp->Opcode() == Op_ConP &&
2992         addp == n->in(AddPNode::Base) &&
2993         n->in(AddPNode::Offset)->is_Con()) {
2994       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2995       // on the platform and on the compressed oops mode.
2996       // Use addressing with narrow klass to load with offset on x86.
2997       // Some platforms can use the constant pool to load ConP.
2998       // Do this transformation here since IGVN will convert ConN back to ConP.
2999       const Type* t = addp->bottom_type();
3000       bool is_oop   = t->isa_oopptr() != NULL;
3001       bool is_klass = t->isa_klassptr() != NULL;
3002 
3003       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3004           (is_klass && Matcher::const_klass_prefer_decode())) {
3005         Node* nn = NULL;
3006 
3007         int op = is_oop ? Op_ConN : Op_ConNKlass;
3008 
3009         // Look for existing ConN node of the same exact type.
3010         Node* r  = root();
3011         uint cnt = r->outcnt();
3012         for (uint i = 0; i < cnt; i++) {
3013           Node* m = r->raw_out(i);
3014           if (m!= NULL && m->Opcode() == op &&
3015               m->bottom_type()->make_ptr() == t) {
3016             nn = m;
3017             break;
3018           }
3019         }
3020         if (nn != NULL) {
3021           // Decode a narrow oop to match address
3022           // [R12 + narrow_oop_reg<<3 + offset]
3023           if (is_oop) {
3024             nn = new DecodeNNode(nn, t);
3025           } else {
3026             nn = new DecodeNKlassNode(nn, t);
3027           }
3028           // Check for succeeding AddP which uses the same Base.
3029           // Otherwise we will run into the assertion above when visiting that guy.
3030           for (uint i = 0; i < n->outcnt(); ++i) {
3031             Node *out_i = n->raw_out(i);
3032             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3033               out_i->set_req(AddPNode::Base, nn);
3034 #ifdef ASSERT
3035               for (uint j = 0; j < out_i->outcnt(); ++j) {
3036                 Node *out_j = out_i->raw_out(j);
3037                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3038                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3039               }
3040 #endif
3041             }
3042           }
3043           n->set_req(AddPNode::Base, nn);
3044           n->set_req(AddPNode::Address, nn);
3045           if (addp->outcnt() == 0) {
3046             addp->disconnect_inputs(NULL, this);
3047           }
3048         }
3049       }
3050     }
3051 #endif
3052     // platform dependent reshaping of the address expression
3053     reshape_address(n->as_AddP());
3054     break;
3055   }
3056 
3057   case Op_CastPP: {
3058     // Remove CastPP nodes to gain more freedom during scheduling but
3059     // keep the dependency they encode as control or precedence edges
3060     // (if control is set already) on memory operations. Some CastPP
3061     // nodes don't have a control (don't carry a dependency): skip
3062     // those.
3063     if (n->in(0) != NULL) {
3064       ResourceMark rm;
3065       Unique_Node_List wq;
3066       wq.push(n);
3067       for (uint next = 0; next < wq.size(); ++next) {
3068         Node *m = wq.at(next);
3069         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3070           Node* use = m->fast_out(i);
3071           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3072             use->ensure_control_or_add_prec(n->in(0));
3073           } else {
3074             switch(use->Opcode()) {
3075             case Op_AddP:
3076             case Op_DecodeN:
3077             case Op_DecodeNKlass:
3078             case Op_CheckCastPP:
3079             case Op_CastPP:
3080               wq.push(use);
3081               break;
3082             }
3083           }
3084         }
3085       }
3086     }
3087     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3088     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3089       Node* in1 = n->in(1);
3090       const Type* t = n->bottom_type();
3091       Node* new_in1 = in1->clone();
3092       new_in1->as_DecodeN()->set_type(t);
3093 
3094       if (!Matcher::narrow_oop_use_complex_address()) {
3095         //
3096         // x86, ARM and friends can handle 2 adds in addressing mode
3097         // and Matcher can fold a DecodeN node into address by using
3098         // a narrow oop directly and do implicit NULL check in address:
3099         //
3100         // [R12 + narrow_oop_reg<<3 + offset]
3101         // NullCheck narrow_oop_reg
3102         //
3103         // On other platforms (Sparc) we have to keep new DecodeN node and
3104         // use it to do implicit NULL check in address:
3105         //
3106         // decode_not_null narrow_oop_reg, base_reg
3107         // [base_reg + offset]
3108         // NullCheck base_reg
3109         //
3110         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3111         // to keep the information to which NULL check the new DecodeN node
3112         // corresponds to use it as value in implicit_null_check().
3113         //
3114         new_in1->set_req(0, n->in(0));
3115       }
3116 
3117       n->subsume_by(new_in1, this);
3118       if (in1->outcnt() == 0) {
3119         in1->disconnect_inputs(NULL, this);
3120       }
3121     } else {
3122       n->subsume_by(n->in(1), this);
3123       if (n->outcnt() == 0) {
3124         n->disconnect_inputs(NULL, this);
3125       }
3126     }
3127     break;
3128   }
3129 #ifdef _LP64
3130   case Op_CmpP:
3131     // Do this transformation here to preserve CmpPNode::sub() and
3132     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3133     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3134       Node* in1 = n->in(1);
3135       Node* in2 = n->in(2);
3136       if (!in1->is_DecodeNarrowPtr()) {
3137         in2 = in1;
3138         in1 = n->in(2);
3139       }
3140       assert(in1->is_DecodeNarrowPtr(), "sanity");
3141 
3142       Node* new_in2 = NULL;
3143       if (in2->is_DecodeNarrowPtr()) {
3144         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3145         new_in2 = in2->in(1);
3146       } else if (in2->Opcode() == Op_ConP) {
3147         const Type* t = in2->bottom_type();
3148         if (t == TypePtr::NULL_PTR) {
3149           assert(in1->is_DecodeN(), "compare klass to null?");
3150           // Don't convert CmpP null check into CmpN if compressed
3151           // oops implicit null check is not generated.
3152           // This will allow to generate normal oop implicit null check.
3153           if (Matcher::gen_narrow_oop_implicit_null_checks())
3154             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3155           //
3156           // This transformation together with CastPP transformation above
3157           // will generated code for implicit NULL checks for compressed oops.
3158           //
3159           // The original code after Optimize()
3160           //
3161           //    LoadN memory, narrow_oop_reg
3162           //    decode narrow_oop_reg, base_reg
3163           //    CmpP base_reg, NULL
3164           //    CastPP base_reg // NotNull
3165           //    Load [base_reg + offset], val_reg
3166           //
3167           // after these transformations will be
3168           //
3169           //    LoadN memory, narrow_oop_reg
3170           //    CmpN narrow_oop_reg, NULL
3171           //    decode_not_null narrow_oop_reg, base_reg
3172           //    Load [base_reg + offset], val_reg
3173           //
3174           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3175           // since narrow oops can be used in debug info now (see the code in
3176           // final_graph_reshaping_walk()).
3177           //
3178           // At the end the code will be matched to
3179           // on x86:
3180           //
3181           //    Load_narrow_oop memory, narrow_oop_reg
3182           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3183           //    NullCheck narrow_oop_reg
3184           //
3185           // and on sparc:
3186           //
3187           //    Load_narrow_oop memory, narrow_oop_reg
3188           //    decode_not_null narrow_oop_reg, base_reg
3189           //    Load [base_reg + offset], val_reg
3190           //    NullCheck base_reg
3191           //
3192         } else if (t->isa_oopptr()) {
3193           new_in2 = ConNode::make(t->make_narrowoop());
3194         } else if (t->isa_klassptr()) {
3195           new_in2 = ConNode::make(t->make_narrowklass());
3196         }
3197       }
3198       if (new_in2 != NULL) {
3199         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3200         n->subsume_by(cmpN, this);
3201         if (in1->outcnt() == 0) {
3202           in1->disconnect_inputs(NULL, this);
3203         }
3204         if (in2->outcnt() == 0) {
3205           in2->disconnect_inputs(NULL, this);
3206         }
3207       }
3208     }
3209     break;
3210 
3211   case Op_DecodeN:
3212   case Op_DecodeNKlass:
3213     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3214     // DecodeN could be pinned when it can't be fold into
3215     // an address expression, see the code for Op_CastPP above.
3216     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3217     break;
3218 
3219   case Op_EncodeP:
3220   case Op_EncodePKlass: {
3221     Node* in1 = n->in(1);
3222     if (in1->is_DecodeNarrowPtr()) {
3223       n->subsume_by(in1->in(1), this);
3224     } else if (in1->Opcode() == Op_ConP) {
3225       const Type* t = in1->bottom_type();
3226       if (t == TypePtr::NULL_PTR) {
3227         assert(t->isa_oopptr(), "null klass?");
3228         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3229       } else if (t->isa_oopptr()) {
3230         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3231       } else if (t->isa_klassptr()) {
3232         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3233       }
3234     }
3235     if (in1->outcnt() == 0) {
3236       in1->disconnect_inputs(NULL, this);
3237     }
3238     break;
3239   }
3240 
3241   case Op_Proj: {
3242     if (OptimizeStringConcat) {
3243       ProjNode* p = n->as_Proj();
3244       if (p->_is_io_use) {
3245         // Separate projections were used for the exception path which
3246         // are normally removed by a late inline.  If it wasn't inlined
3247         // then they will hang around and should just be replaced with
3248         // the original one.
3249         Node* proj = NULL;
3250         // Replace with just one
3251         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3252           Node *use = i.get();
3253           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3254             proj = use;
3255             break;
3256           }
3257         }
3258         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3259         if (proj != NULL) {
3260           p->subsume_by(proj, this);
3261         }
3262       }
3263     }
3264     break;
3265   }
3266 
3267   case Op_Phi:
3268     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3269       // The EncodeP optimization may create Phi with the same edges
3270       // for all paths. It is not handled well by Register Allocator.
3271       Node* unique_in = n->in(1);
3272       assert(unique_in != NULL, "");
3273       uint cnt = n->req();
3274       for (uint i = 2; i < cnt; i++) {
3275         Node* m = n->in(i);
3276         assert(m != NULL, "");
3277         if (unique_in != m)
3278           unique_in = NULL;
3279       }
3280       if (unique_in != NULL) {
3281         n->subsume_by(unique_in, this);
3282       }
3283     }
3284     break;
3285 
3286 #endif
3287 
3288 #ifdef ASSERT
3289   case Op_CastII:
3290     // Verify that all range check dependent CastII nodes were removed.
3291     if (n->isa_CastII()->has_range_check()) {
3292       n->dump(3);
3293       assert(false, "Range check dependent CastII node was not removed");
3294     }
3295     break;
3296 #endif
3297 
3298   case Op_ModI:
3299     if (UseDivMod) {
3300       // Check if a%b and a/b both exist
3301       Node* d = n->find_similar(Op_DivI);
3302       if (d) {
3303         // Replace them with a fused divmod if supported
3304         if (Matcher::has_match_rule(Op_DivModI)) {
3305           DivModINode* divmod = DivModINode::make(n);
3306           d->subsume_by(divmod->div_proj(), this);
3307           n->subsume_by(divmod->mod_proj(), this);
3308         } else {
3309           // replace a%b with a-((a/b)*b)
3310           Node* mult = new MulINode(d, d->in(2));
3311           Node* sub  = new SubINode(d->in(1), mult);
3312           n->subsume_by(sub, this);
3313         }
3314       }
3315     }
3316     break;
3317 
3318   case Op_ModL:
3319     if (UseDivMod) {
3320       // Check if a%b and a/b both exist
3321       Node* d = n->find_similar(Op_DivL);
3322       if (d) {
3323         // Replace them with a fused divmod if supported
3324         if (Matcher::has_match_rule(Op_DivModL)) {
3325           DivModLNode* divmod = DivModLNode::make(n);
3326           d->subsume_by(divmod->div_proj(), this);
3327           n->subsume_by(divmod->mod_proj(), this);
3328         } else {
3329           // replace a%b with a-((a/b)*b)
3330           Node* mult = new MulLNode(d, d->in(2));
3331           Node* sub  = new SubLNode(d->in(1), mult);
3332           n->subsume_by(sub, this);
3333         }
3334       }
3335     }
3336     break;
3337 
3338   case Op_LoadVector:
3339   case Op_StoreVector:
3340     break;
3341 
3342   case Op_AddReductionVI:
3343   case Op_AddReductionVL:
3344   case Op_AddReductionVF:
3345   case Op_AddReductionVD:
3346   case Op_MulReductionVI:
3347   case Op_MulReductionVL:
3348   case Op_MulReductionVF:
3349   case Op_MulReductionVD:
3350   case Op_MinReductionV:
3351   case Op_MaxReductionV:
3352   case Op_AndReductionV:
3353   case Op_OrReductionV:
3354   case Op_XorReductionV:
3355     break;
3356 
3357   case Op_PackB:
3358   case Op_PackS:
3359   case Op_PackI:
3360   case Op_PackF:
3361   case Op_PackL:
3362   case Op_PackD:
3363     if (n->req()-1 > 2) {
3364       // Replace many operand PackNodes with a binary tree for matching
3365       PackNode* p = (PackNode*) n;
3366       Node* btp = p->binary_tree_pack(1, n->req());
3367       n->subsume_by(btp, this);
3368     }
3369     break;
3370   case Op_Loop:
3371   case Op_CountedLoop:
3372   case Op_OuterStripMinedLoop:
3373     if (n->as_Loop()->is_inner_loop()) {
3374       frc.inc_inner_loop_count();
3375     }
3376     n->as_Loop()->verify_strip_mined(0);
3377     break;
3378   case Op_LShiftI:
3379   case Op_RShiftI:
3380   case Op_URShiftI:
3381   case Op_LShiftL:
3382   case Op_RShiftL:
3383   case Op_URShiftL:
3384     if (Matcher::need_masked_shift_count) {
3385       // The cpu's shift instructions don't restrict the count to the
3386       // lower 5/6 bits. We need to do the masking ourselves.
3387       Node* in2 = n->in(2);
3388       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3389       const TypeInt* t = in2->find_int_type();
3390       if (t != NULL && t->is_con()) {
3391         juint shift = t->get_con();
3392         if (shift > mask) { // Unsigned cmp
3393           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3394         }
3395       } else {
3396         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3397           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3398           n->set_req(2, shift);
3399         }
3400       }
3401       if (in2->outcnt() == 0) { // Remove dead node
3402         in2->disconnect_inputs(NULL, this);
3403       }
3404     }
3405     break;
3406   case Op_MemBarStoreStore:
3407   case Op_MemBarRelease:
3408     // Break the link with AllocateNode: it is no longer useful and
3409     // confuses register allocation.
3410     if (n->req() > MemBarNode::Precedent) {
3411       n->set_req(MemBarNode::Precedent, top());
3412     }
3413     break;
3414   case Op_MemBarAcquire: {
3415     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3416       // At parse time, the trailing MemBarAcquire for a volatile load
3417       // is created with an edge to the load. After optimizations,
3418       // that input may be a chain of Phis. If those phis have no
3419       // other use, then the MemBarAcquire keeps them alive and
3420       // register allocation can be confused.
3421       ResourceMark rm;
3422       Unique_Node_List wq;
3423       wq.push(n->in(MemBarNode::Precedent));
3424       n->set_req(MemBarNode::Precedent, top());
3425       while (wq.size() > 0) {
3426         Node* m = wq.pop();
3427         if (m->outcnt() == 0) {
3428           for (uint j = 0; j < m->req(); j++) {
3429             Node* in = m->in(j);
3430             if (in != NULL) {
3431               wq.push(in);
3432             }
3433           }
3434           m->disconnect_inputs(NULL, this);
3435         }
3436       }
3437     }
3438     break;
3439   }
3440   case Op_RangeCheck: {
3441     RangeCheckNode* rc = n->as_RangeCheck();
3442     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3443     n->subsume_by(iff, this);
3444     frc._tests.push(iff);
3445     break;
3446   }
3447   case Op_ConvI2L: {
3448     if (!Matcher::convi2l_type_required) {
3449       // Code generation on some platforms doesn't need accurate
3450       // ConvI2L types. Widening the type can help remove redundant
3451       // address computations.
3452       n->as_Type()->set_type(TypeLong::INT);
3453       ResourceMark rm;
3454       Unique_Node_List wq;
3455       wq.push(n);
3456       for (uint next = 0; next < wq.size(); next++) {
3457         Node *m = wq.at(next);
3458 
3459         for(;;) {
3460           // Loop over all nodes with identical inputs edges as m
3461           Node* k = m->find_similar(m->Opcode());
3462           if (k == NULL) {
3463             break;
3464           }
3465           // Push their uses so we get a chance to remove node made
3466           // redundant
3467           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3468             Node* u = k->fast_out(i);
3469             if (u->Opcode() == Op_LShiftL ||
3470                 u->Opcode() == Op_AddL ||
3471                 u->Opcode() == Op_SubL ||
3472                 u->Opcode() == Op_AddP) {
3473               wq.push(u);
3474             }
3475           }
3476           // Replace all nodes with identical edges as m with m
3477           k->subsume_by(m, this);
3478         }
3479       }
3480     }
3481     break;
3482   }
3483   case Op_CmpUL: {
3484     if (!Matcher::has_match_rule(Op_CmpUL)) {
3485       // No support for unsigned long comparisons
3486       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3487       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3488       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3489       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3490       Node* andl = new AndLNode(orl, remove_sign_mask);
3491       Node* cmp = new CmpLNode(andl, n->in(2));
3492       n->subsume_by(cmp, this);
3493     }
3494     break;
3495   }
3496   default:
3497     assert(!n->is_Call(), "");
3498     assert(!n->is_Mem(), "");
3499     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3500     break;
3501   }
3502 }
3503 
3504 //------------------------------final_graph_reshaping_walk---------------------
3505 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3506 // requires that the walk visits a node's inputs before visiting the node.
3507 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3508   ResourceArea *area = Thread::current()->resource_area();
3509   Unique_Node_List sfpt(area);
3510 
3511   frc._visited.set(root->_idx); // first, mark node as visited
3512   uint cnt = root->req();
3513   Node *n = root;
3514   uint  i = 0;
3515   while (true) {
3516     if (i < cnt) {
3517       // Place all non-visited non-null inputs onto stack
3518       Node* m = n->in(i);
3519       ++i;
3520       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3521         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3522           // compute worst case interpreter size in case of a deoptimization
3523           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3524 
3525           sfpt.push(m);
3526         }
3527         cnt = m->req();
3528         nstack.push(n, i); // put on stack parent and next input's index
3529         n = m;
3530         i = 0;
3531       }
3532     } else {
3533       // Now do post-visit work
3534       final_graph_reshaping_impl( n, frc );
3535       if (nstack.is_empty())
3536         break;             // finished
3537       n = nstack.node();   // Get node from stack
3538       cnt = n->req();
3539       i = nstack.index();
3540       nstack.pop();        // Shift to the next node on stack
3541     }
3542   }
3543 
3544   // Skip next transformation if compressed oops are not used.
3545   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3546       (!UseCompressedOops && !UseCompressedClassPointers))
3547     return;
3548 
3549   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3550   // It could be done for an uncommon traps or any safepoints/calls
3551   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3552   while (sfpt.size() > 0) {
3553     n = sfpt.pop();
3554     JVMState *jvms = n->as_SafePoint()->jvms();
3555     assert(jvms != NULL, "sanity");
3556     int start = jvms->debug_start();
3557     int end   = n->req();
3558     bool is_uncommon = (n->is_CallStaticJava() &&
3559                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3560     for (int j = start; j < end; j++) {
3561       Node* in = n->in(j);
3562       if (in->is_DecodeNarrowPtr()) {
3563         bool safe_to_skip = true;
3564         if (!is_uncommon ) {
3565           // Is it safe to skip?
3566           for (uint i = 0; i < in->outcnt(); i++) {
3567             Node* u = in->raw_out(i);
3568             if (!u->is_SafePoint() ||
3569                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3570               safe_to_skip = false;
3571             }
3572           }
3573         }
3574         if (safe_to_skip) {
3575           n->set_req(j, in->in(1));
3576         }
3577         if (in->outcnt() == 0) {
3578           in->disconnect_inputs(NULL, this);
3579         }
3580       }
3581     }
3582   }
3583 }
3584 
3585 //------------------------------final_graph_reshaping--------------------------
3586 // Final Graph Reshaping.
3587 //
3588 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3589 //     and not commoned up and forced early.  Must come after regular
3590 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3591 //     inputs to Loop Phis; these will be split by the allocator anyways.
3592 //     Remove Opaque nodes.
3593 // (2) Move last-uses by commutative operations to the left input to encourage
3594 //     Intel update-in-place two-address operations and better register usage
3595 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3596 //     calls canonicalizing them back.
3597 // (3) Count the number of double-precision FP ops, single-precision FP ops
3598 //     and call sites.  On Intel, we can get correct rounding either by
3599 //     forcing singles to memory (requires extra stores and loads after each
3600 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3601 //     clearing the mode bit around call sites).  The mode bit is only used
3602 //     if the relative frequency of single FP ops to calls is low enough.
3603 //     This is a key transform for SPEC mpeg_audio.
3604 // (4) Detect infinite loops; blobs of code reachable from above but not
3605 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3606 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3607 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3608 //     Detection is by looking for IfNodes where only 1 projection is
3609 //     reachable from below or CatchNodes missing some targets.
3610 // (5) Assert for insane oop offsets in debug mode.
3611 
3612 bool Compile::final_graph_reshaping() {
3613   // an infinite loop may have been eliminated by the optimizer,
3614   // in which case the graph will be empty.
3615   if (root()->req() == 1) {
3616     record_method_not_compilable("trivial infinite loop");
3617     return true;
3618   }
3619 
3620   // Expensive nodes have their control input set to prevent the GVN
3621   // from freely commoning them. There's no GVN beyond this point so
3622   // no need to keep the control input. We want the expensive nodes to
3623   // be freely moved to the least frequent code path by gcm.
3624   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3625   for (int i = 0; i < expensive_count(); i++) {
3626     _expensive_nodes->at(i)->set_req(0, NULL);
3627   }
3628 
3629   Final_Reshape_Counts frc;
3630 
3631   // Visit everybody reachable!
3632   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3633   Node_Stack nstack(live_nodes() >> 1);
3634   final_graph_reshaping_walk(nstack, root(), frc);
3635 
3636   // Check for unreachable (from below) code (i.e., infinite loops).
3637   for( uint i = 0; i < frc._tests.size(); i++ ) {
3638     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3639     // Get number of CFG targets.
3640     // Note that PCTables include exception targets after calls.
3641     uint required_outcnt = n->required_outcnt();
3642     if (n->outcnt() != required_outcnt) {
3643       // Check for a few special cases.  Rethrow Nodes never take the
3644       // 'fall-thru' path, so expected kids is 1 less.
3645       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3646         if (n->in(0)->in(0)->is_Call()) {
3647           CallNode *call = n->in(0)->in(0)->as_Call();
3648           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3649             required_outcnt--;      // Rethrow always has 1 less kid
3650           } else if (call->req() > TypeFunc::Parms &&
3651                      call->is_CallDynamicJava()) {
3652             // Check for null receiver. In such case, the optimizer has
3653             // detected that the virtual call will always result in a null
3654             // pointer exception. The fall-through projection of this CatchNode
3655             // will not be populated.
3656             Node *arg0 = call->in(TypeFunc::Parms);
3657             if (arg0->is_Type() &&
3658                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3659               required_outcnt--;
3660             }
3661           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3662                      call->req() > TypeFunc::Parms+1 &&
3663                      call->is_CallStaticJava()) {
3664             // Check for negative array length. In such case, the optimizer has
3665             // detected that the allocation attempt will always result in an
3666             // exception. There is no fall-through projection of this CatchNode .
3667             Node *arg1 = call->in(TypeFunc::Parms+1);
3668             if (arg1->is_Type() &&
3669                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3670               required_outcnt--;
3671             }
3672           }
3673         }
3674       }
3675       // Recheck with a better notion of 'required_outcnt'
3676       if (n->outcnt() != required_outcnt) {
3677         record_method_not_compilable("malformed control flow");
3678         return true;            // Not all targets reachable!
3679       }
3680     }
3681     // Check that I actually visited all kids.  Unreached kids
3682     // must be infinite loops.
3683     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3684       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3685         record_method_not_compilable("infinite loop");
3686         return true;            // Found unvisited kid; must be unreach
3687       }
3688 
3689     // Here so verification code in final_graph_reshaping_walk()
3690     // always see an OuterStripMinedLoopEnd
3691     if (n->is_OuterStripMinedLoopEnd()) {
3692       IfNode* init_iff = n->as_If();
3693       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3694       n->subsume_by(iff, this);
3695     }
3696   }
3697 
3698 #ifdef IA32
3699   // If original bytecodes contained a mixture of floats and doubles
3700   // check if the optimizer has made it homogenous, item (3).
3701   if (UseSSE == 0 &&
3702       frc.get_float_count() > 32 &&
3703       frc.get_double_count() == 0 &&
3704       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3705     set_24_bit_selection_and_mode(false, true);
3706   }
3707 #endif // IA32
3708 
3709   set_java_calls(frc.get_java_call_count());
3710   set_inner_loops(frc.get_inner_loop_count());
3711 
3712   // No infinite loops, no reason to bail out.
3713   return false;
3714 }
3715 
3716 //-----------------------------too_many_traps----------------------------------
3717 // Report if there are too many traps at the current method and bci.
3718 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3719 bool Compile::too_many_traps(ciMethod* method,
3720                              int bci,
3721                              Deoptimization::DeoptReason reason) {
3722   ciMethodData* md = method->method_data();
3723   if (md->is_empty()) {
3724     // Assume the trap has not occurred, or that it occurred only
3725     // because of a transient condition during start-up in the interpreter.
3726     return false;
3727   }
3728   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3729   if (md->has_trap_at(bci, m, reason) != 0) {
3730     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3731     // Also, if there are multiple reasons, or if there is no per-BCI record,
3732     // assume the worst.
3733     if (log())
3734       log()->elem("observe trap='%s' count='%d'",
3735                   Deoptimization::trap_reason_name(reason),
3736                   md->trap_count(reason));
3737     return true;
3738   } else {
3739     // Ignore method/bci and see if there have been too many globally.
3740     return too_many_traps(reason, md);
3741   }
3742 }
3743 
3744 // Less-accurate variant which does not require a method and bci.
3745 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3746                              ciMethodData* logmd) {
3747   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3748     // Too many traps globally.
3749     // Note that we use cumulative trap_count, not just md->trap_count.
3750     if (log()) {
3751       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3752       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3753                   Deoptimization::trap_reason_name(reason),
3754                   mcount, trap_count(reason));
3755     }
3756     return true;
3757   } else {
3758     // The coast is clear.
3759     return false;
3760   }
3761 }
3762 
3763 //--------------------------too_many_recompiles--------------------------------
3764 // Report if there are too many recompiles at the current method and bci.
3765 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3766 // Is not eager to return true, since this will cause the compiler to use
3767 // Action_none for a trap point, to avoid too many recompilations.
3768 bool Compile::too_many_recompiles(ciMethod* method,
3769                                   int bci,
3770                                   Deoptimization::DeoptReason reason) {
3771   ciMethodData* md = method->method_data();
3772   if (md->is_empty()) {
3773     // Assume the trap has not occurred, or that it occurred only
3774     // because of a transient condition during start-up in the interpreter.
3775     return false;
3776   }
3777   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3778   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3779   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3780   Deoptimization::DeoptReason per_bc_reason
3781     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3782   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3783   if ((per_bc_reason == Deoptimization::Reason_none
3784        || md->has_trap_at(bci, m, reason) != 0)
3785       // The trap frequency measure we care about is the recompile count:
3786       && md->trap_recompiled_at(bci, m)
3787       && md->overflow_recompile_count() >= bc_cutoff) {
3788     // Do not emit a trap here if it has already caused recompilations.
3789     // Also, if there are multiple reasons, or if there is no per-BCI record,
3790     // assume the worst.
3791     if (log())
3792       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3793                   Deoptimization::trap_reason_name(reason),
3794                   md->trap_count(reason),
3795                   md->overflow_recompile_count());
3796     return true;
3797   } else if (trap_count(reason) != 0
3798              && decompile_count() >= m_cutoff) {
3799     // Too many recompiles globally, and we have seen this sort of trap.
3800     // Use cumulative decompile_count, not just md->decompile_count.
3801     if (log())
3802       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3803                   Deoptimization::trap_reason_name(reason),
3804                   md->trap_count(reason), trap_count(reason),
3805                   md->decompile_count(), decompile_count());
3806     return true;
3807   } else {
3808     // The coast is clear.
3809     return false;
3810   }
3811 }
3812 
3813 // Compute when not to trap. Used by matching trap based nodes and
3814 // NullCheck optimization.
3815 void Compile::set_allowed_deopt_reasons() {
3816   _allowed_reasons = 0;
3817   if (is_method_compilation()) {
3818     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3819       assert(rs < BitsPerInt, "recode bit map");
3820       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3821         _allowed_reasons |= nth_bit(rs);
3822       }
3823     }
3824   }
3825 }
3826 
3827 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
3828   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
3829 }
3830 
3831 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
3832   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
3833 }
3834 
3835 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
3836   if (holder->is_initialized()) {
3837     return false;
3838   }
3839   if (holder->is_being_initialized()) {
3840     if (accessing_method->holder() == holder) {
3841       // Access inside a class. The barrier can be elided when access happens in <clinit>,
3842       // <init>, or a static method. In all those cases, there was an initialization
3843       // barrier on the holder klass passed.
3844       if (accessing_method->is_static_initializer() ||
3845           accessing_method->is_object_initializer() ||
3846           accessing_method->is_static()) {
3847         return false;
3848       }
3849     } else if (accessing_method->holder()->is_subclass_of(holder)) {
3850       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
3851       // In case of <init> or a static method, the barrier is on the subclass is not enough:
3852       // child class can become fully initialized while its parent class is still being initialized.
3853       if (accessing_method->is_static_initializer()) {
3854         return false;
3855       }
3856     }
3857     ciMethod* root = method(); // the root method of compilation
3858     if (root != accessing_method) {
3859       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
3860     }
3861   }
3862   return true;
3863 }
3864 
3865 #ifndef PRODUCT
3866 //------------------------------verify_graph_edges---------------------------
3867 // Walk the Graph and verify that there is a one-to-one correspondence
3868 // between Use-Def edges and Def-Use edges in the graph.
3869 void Compile::verify_graph_edges(bool no_dead_code) {
3870   if (VerifyGraphEdges) {
3871     ResourceArea *area = Thread::current()->resource_area();
3872     Unique_Node_List visited(area);
3873     // Call recursive graph walk to check edges
3874     _root->verify_edges(visited);
3875     if (no_dead_code) {
3876       // Now make sure that no visited node is used by an unvisited node.
3877       bool dead_nodes = false;
3878       Unique_Node_List checked(area);
3879       while (visited.size() > 0) {
3880         Node* n = visited.pop();
3881         checked.push(n);
3882         for (uint i = 0; i < n->outcnt(); i++) {
3883           Node* use = n->raw_out(i);
3884           if (checked.member(use))  continue;  // already checked
3885           if (visited.member(use))  continue;  // already in the graph
3886           if (use->is_Con())        continue;  // a dead ConNode is OK
3887           // At this point, we have found a dead node which is DU-reachable.
3888           if (!dead_nodes) {
3889             tty->print_cr("*** Dead nodes reachable via DU edges:");
3890             dead_nodes = true;
3891           }
3892           use->dump(2);
3893           tty->print_cr("---");
3894           checked.push(use);  // No repeats; pretend it is now checked.
3895         }
3896       }
3897       assert(!dead_nodes, "using nodes must be reachable from root");
3898     }
3899   }
3900 }
3901 #endif
3902 
3903 // The Compile object keeps track of failure reasons separately from the ciEnv.
3904 // This is required because there is not quite a 1-1 relation between the
3905 // ciEnv and its compilation task and the Compile object.  Note that one
3906 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3907 // to backtrack and retry without subsuming loads.  Other than this backtracking
3908 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3909 // by the logic in C2Compiler.
3910 void Compile::record_failure(const char* reason) {
3911   if (log() != NULL) {
3912     log()->elem("failure reason='%s' phase='compile'", reason);
3913   }
3914   if (_failure_reason == NULL) {
3915     // Record the first failure reason.
3916     _failure_reason = reason;
3917   }
3918 
3919   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3920     C->print_method(PHASE_FAILURE);
3921   }
3922   _root = NULL;  // flush the graph, too
3923 }
3924 
3925 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3926   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3927     _phase_name(name), _dolog(CITimeVerbose)
3928 {
3929   if (_dolog) {
3930     C = Compile::current();
3931     _log = C->log();
3932   } else {
3933     C = NULL;
3934     _log = NULL;
3935   }
3936   if (_log != NULL) {
3937     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3938     _log->stamp();
3939     _log->end_head();
3940   }
3941 }
3942 
3943 Compile::TracePhase::~TracePhase() {
3944 
3945   C = Compile::current();
3946   if (_dolog) {
3947     _log = C->log();
3948   } else {
3949     _log = NULL;
3950   }
3951 
3952 #ifdef ASSERT
3953   if (PrintIdealNodeCount) {
3954     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3955                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3956   }
3957 
3958   if (VerifyIdealNodeCount) {
3959     Compile::current()->print_missing_nodes();
3960   }
3961 #endif
3962 
3963   if (_log != NULL) {
3964     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3965   }
3966 }
3967 
3968 //----------------------------static_subtype_check-----------------------------
3969 // Shortcut important common cases when superklass is exact:
3970 // (0) superklass is java.lang.Object (can occur in reflective code)
3971 // (1) subklass is already limited to a subtype of superklass => always ok
3972 // (2) subklass does not overlap with superklass => always fail
3973 // (3) superklass has NO subtypes and we can check with a simple compare.
3974 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3975   if (StressReflectiveCode) {
3976     return SSC_full_test;       // Let caller generate the general case.
3977   }
3978 
3979   if (superk == env()->Object_klass()) {
3980     return SSC_always_true;     // (0) this test cannot fail
3981   }
3982 
3983   ciType* superelem = superk;
3984   if (superelem->is_array_klass())
3985     superelem = superelem->as_array_klass()->base_element_type();
3986 
3987   if (!subk->is_interface()) {  // cannot trust static interface types yet
3988     if (subk->is_subtype_of(superk)) {
3989       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3990     }
3991     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3992         !superk->is_subtype_of(subk)) {
3993       return SSC_always_false;
3994     }
3995   }
3996 
3997   // If casting to an instance klass, it must have no subtypes
3998   if (superk->is_interface()) {
3999     // Cannot trust interfaces yet.
4000     // %%% S.B. superk->nof_implementors() == 1
4001   } else if (superelem->is_instance_klass()) {
4002     ciInstanceKlass* ik = superelem->as_instance_klass();
4003     if (!ik->has_subklass() && !ik->is_interface()) {
4004       if (!ik->is_final()) {
4005         // Add a dependency if there is a chance of a later subclass.
4006         dependencies()->assert_leaf_type(ik);
4007       }
4008       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4009     }
4010   } else {
4011     // A primitive array type has no subtypes.
4012     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4013   }
4014 
4015   return SSC_full_test;
4016 }
4017 
4018 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4019 #ifdef _LP64
4020   // The scaled index operand to AddP must be a clean 64-bit value.
4021   // Java allows a 32-bit int to be incremented to a negative
4022   // value, which appears in a 64-bit register as a large
4023   // positive number.  Using that large positive number as an
4024   // operand in pointer arithmetic has bad consequences.
4025   // On the other hand, 32-bit overflow is rare, and the possibility
4026   // can often be excluded, if we annotate the ConvI2L node with
4027   // a type assertion that its value is known to be a small positive
4028   // number.  (The prior range check has ensured this.)
4029   // This assertion is used by ConvI2LNode::Ideal.
4030   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4031   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4032   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4033   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4034 #endif
4035   return idx;
4036 }
4037 
4038 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4039 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4040   if (ctrl != NULL) {
4041     // Express control dependency by a CastII node with a narrow type.
4042     value = new CastIINode(value, itype, false, true /* range check dependency */);
4043     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4044     // node from floating above the range check during loop optimizations. Otherwise, the
4045     // ConvI2L node may be eliminated independently of the range check, causing the data path
4046     // to become TOP while the control path is still there (although it's unreachable).
4047     value->set_req(0, ctrl);
4048     // Save CastII node to remove it after loop optimizations.
4049     phase->C->add_range_check_cast(value);
4050     value = phase->transform(value);
4051   }
4052   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4053   return phase->transform(new ConvI2LNode(value, ltype));
4054 }
4055 
4056 void Compile::print_inlining_stream_free() {
4057   if (_print_inlining_stream != NULL) {
4058     _print_inlining_stream->~stringStream();
4059     _print_inlining_stream = NULL;
4060   }
4061 }
4062 
4063 // The message about the current inlining is accumulated in
4064 // _print_inlining_stream and transfered into the _print_inlining_list
4065 // once we know whether inlining succeeds or not. For regular
4066 // inlining, messages are appended to the buffer pointed by
4067 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4068 // a new buffer is added after _print_inlining_idx in the list. This
4069 // way we can update the inlining message for late inlining call site
4070 // when the inlining is attempted again.
4071 void Compile::print_inlining_init() {
4072   if (print_inlining() || print_intrinsics()) {
4073     // print_inlining_init is actually called several times.
4074     print_inlining_stream_free();
4075     _print_inlining_stream = new stringStream();
4076     // Watch out: The memory initialized by the constructor call PrintInliningBuffer()
4077     // will be copied into the only initial element. The default destructor of
4078     // PrintInliningBuffer will be called when leaving the scope here. If it
4079     // would destuct the  enclosed stringStream _print_inlining_list[0]->_ss
4080     // would be destructed, too!
4081     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4082   }
4083 }
4084 
4085 void Compile::print_inlining_reinit() {
4086   if (print_inlining() || print_intrinsics()) {
4087     print_inlining_stream_free();
4088     // Re allocate buffer when we change ResourceMark
4089     _print_inlining_stream = new stringStream();
4090   }
4091 }
4092 
4093 void Compile::print_inlining_reset() {
4094   _print_inlining_stream->reset();
4095 }
4096 
4097 void Compile::print_inlining_commit() {
4098   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4099   // Transfer the message from _print_inlining_stream to the current
4100   // _print_inlining_list buffer and clear _print_inlining_stream.
4101   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4102   print_inlining_reset();
4103 }
4104 
4105 void Compile::print_inlining_push() {
4106   // Add new buffer to the _print_inlining_list at current position
4107   _print_inlining_idx++;
4108   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4109 }
4110 
4111 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4112   return _print_inlining_list->at(_print_inlining_idx);
4113 }
4114 
4115 void Compile::print_inlining_update(CallGenerator* cg) {
4116   if (print_inlining() || print_intrinsics()) {
4117     if (!cg->is_late_inline()) {
4118       if (print_inlining_current().cg() != NULL) {
4119         print_inlining_push();
4120       }
4121       print_inlining_commit();
4122     } else {
4123       if (print_inlining_current().cg() != cg &&
4124           (print_inlining_current().cg() != NULL ||
4125            print_inlining_current().ss()->size() != 0)) {
4126         print_inlining_push();
4127       }
4128       print_inlining_commit();
4129       print_inlining_current().set_cg(cg);
4130     }
4131   }
4132 }
4133 
4134 void Compile::print_inlining_move_to(CallGenerator* cg) {
4135   // We resume inlining at a late inlining call site. Locate the
4136   // corresponding inlining buffer so that we can update it.
4137   if (print_inlining()) {
4138     for (int i = 0; i < _print_inlining_list->length(); i++) {
4139       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4140         _print_inlining_idx = i;
4141         return;
4142       }
4143     }
4144     ShouldNotReachHere();
4145   }
4146 }
4147 
4148 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4149   if (print_inlining()) {
4150     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4151     assert(print_inlining_current().cg() == cg, "wrong entry");
4152     // replace message with new message
4153     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4154     print_inlining_commit();
4155     print_inlining_current().set_cg(cg);
4156   }
4157 }
4158 
4159 void Compile::print_inlining_assert_ready() {
4160   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4161 }
4162 
4163 void Compile::process_print_inlining() {
4164   bool do_print_inlining = print_inlining() || print_intrinsics();
4165   if (do_print_inlining || log() != NULL) {
4166     // Print inlining message for candidates that we couldn't inline
4167     // for lack of space
4168     for (int i = 0; i < _late_inlines.length(); i++) {
4169       CallGenerator* cg = _late_inlines.at(i);
4170       if (!cg->is_mh_late_inline()) {
4171         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4172         if (do_print_inlining) {
4173           cg->print_inlining_late(msg);
4174         }
4175         log_late_inline_failure(cg, msg);
4176       }
4177     }
4178   }
4179   if (do_print_inlining) {
4180     ResourceMark rm;
4181     stringStream ss;
4182     assert(_print_inlining_list != NULL, "process_print_inlining should be called only once.");
4183     for (int i = 0; i < _print_inlining_list->length(); i++) {
4184       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4185       _print_inlining_list->at(i).freeStream();
4186     }
4187     // Reset _print_inlining_list, it only contains destructed objects.
4188     // It is on the arena, so it will be freed when the arena is reset.
4189     _print_inlining_list = NULL;
4190     // _print_inlining_stream won't be used anymore, either.
4191     print_inlining_stream_free();
4192     size_t end = ss.size();
4193     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4194     strncpy(_print_inlining_output, ss.base(), end+1);
4195     _print_inlining_output[end] = 0;
4196   }
4197 }
4198 
4199 void Compile::dump_print_inlining() {
4200   if (_print_inlining_output != NULL) {
4201     tty->print_raw(_print_inlining_output);
4202   }
4203 }
4204 
4205 void Compile::log_late_inline(CallGenerator* cg) {
4206   if (log() != NULL) {
4207     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4208                 cg->unique_id());
4209     JVMState* p = cg->call_node()->jvms();
4210     while (p != NULL) {
4211       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4212       p = p->caller();
4213     }
4214     log()->tail("late_inline");
4215   }
4216 }
4217 
4218 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4219   log_late_inline(cg);
4220   if (log() != NULL) {
4221     log()->inline_fail(msg);
4222   }
4223 }
4224 
4225 void Compile::log_inline_id(CallGenerator* cg) {
4226   if (log() != NULL) {
4227     // The LogCompilation tool needs a unique way to identify late
4228     // inline call sites. This id must be unique for this call site in
4229     // this compilation. Try to have it unique across compilations as
4230     // well because it can be convenient when grepping through the log
4231     // file.
4232     // Distinguish OSR compilations from others in case CICountOSR is
4233     // on.
4234     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4235     cg->set_unique_id(id);
4236     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4237   }
4238 }
4239 
4240 void Compile::log_inline_failure(const char* msg) {
4241   if (C->log() != NULL) {
4242     C->log()->inline_fail(msg);
4243   }
4244 }
4245 
4246 
4247 // Dump inlining replay data to the stream.
4248 // Don't change thread state and acquire any locks.
4249 void Compile::dump_inline_data(outputStream* out) {
4250   InlineTree* inl_tree = ilt();
4251   if (inl_tree != NULL) {
4252     out->print(" inline %d", inl_tree->count());
4253     inl_tree->dump_replay_data(out);
4254   }
4255 }
4256 
4257 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4258   if (n1->Opcode() < n2->Opcode())      return -1;
4259   else if (n1->Opcode() > n2->Opcode()) return 1;
4260 
4261   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4262   for (uint i = 1; i < n1->req(); i++) {
4263     if (n1->in(i) < n2->in(i))      return -1;
4264     else if (n1->in(i) > n2->in(i)) return 1;
4265   }
4266 
4267   return 0;
4268 }
4269 
4270 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4271   Node* n1 = *n1p;
4272   Node* n2 = *n2p;
4273 
4274   return cmp_expensive_nodes(n1, n2);
4275 }
4276 
4277 void Compile::sort_expensive_nodes() {
4278   if (!expensive_nodes_sorted()) {
4279     _expensive_nodes->sort(cmp_expensive_nodes);
4280   }
4281 }
4282 
4283 bool Compile::expensive_nodes_sorted() const {
4284   for (int i = 1; i < _expensive_nodes->length(); i++) {
4285     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4286       return false;
4287     }
4288   }
4289   return true;
4290 }
4291 
4292 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4293   if (_expensive_nodes->length() == 0) {
4294     return false;
4295   }
4296 
4297   assert(OptimizeExpensiveOps, "optimization off?");
4298 
4299   // Take this opportunity to remove dead nodes from the list
4300   int j = 0;
4301   for (int i = 0; i < _expensive_nodes->length(); i++) {
4302     Node* n = _expensive_nodes->at(i);
4303     if (!n->is_unreachable(igvn)) {
4304       assert(n->is_expensive(), "should be expensive");
4305       _expensive_nodes->at_put(j, n);
4306       j++;
4307     }
4308   }
4309   _expensive_nodes->trunc_to(j);
4310 
4311   // Then sort the list so that similar nodes are next to each other
4312   // and check for at least two nodes of identical kind with same data
4313   // inputs.
4314   sort_expensive_nodes();
4315 
4316   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4317     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4318       return true;
4319     }
4320   }
4321 
4322   return false;
4323 }
4324 
4325 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4326   if (_expensive_nodes->length() == 0) {
4327     return;
4328   }
4329 
4330   assert(OptimizeExpensiveOps, "optimization off?");
4331 
4332   // Sort to bring similar nodes next to each other and clear the
4333   // control input of nodes for which there's only a single copy.
4334   sort_expensive_nodes();
4335 
4336   int j = 0;
4337   int identical = 0;
4338   int i = 0;
4339   bool modified = false;
4340   for (; i < _expensive_nodes->length()-1; i++) {
4341     assert(j <= i, "can't write beyond current index");
4342     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4343       identical++;
4344       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4345       continue;
4346     }
4347     if (identical > 0) {
4348       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4349       identical = 0;
4350     } else {
4351       Node* n = _expensive_nodes->at(i);
4352       igvn.replace_input_of(n, 0, NULL);
4353       igvn.hash_insert(n);
4354       modified = true;
4355     }
4356   }
4357   if (identical > 0) {
4358     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4359   } else if (_expensive_nodes->length() >= 1) {
4360     Node* n = _expensive_nodes->at(i);
4361     igvn.replace_input_of(n, 0, NULL);
4362     igvn.hash_insert(n);
4363     modified = true;
4364   }
4365   _expensive_nodes->trunc_to(j);
4366   if (modified) {
4367     igvn.optimize();
4368   }
4369 }
4370 
4371 void Compile::add_expensive_node(Node * n) {
4372   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4373   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4374   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4375   if (OptimizeExpensiveOps) {
4376     _expensive_nodes->append(n);
4377   } else {
4378     // Clear control input and let IGVN optimize expensive nodes if
4379     // OptimizeExpensiveOps is off.
4380     n->set_req(0, NULL);
4381   }
4382 }
4383 
4384 /**
4385  * Remove the speculative part of types and clean up the graph
4386  */
4387 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4388   if (UseTypeSpeculation) {
4389     Unique_Node_List worklist;
4390     worklist.push(root());
4391     int modified = 0;
4392     // Go over all type nodes that carry a speculative type, drop the
4393     // speculative part of the type and enqueue the node for an igvn
4394     // which may optimize it out.
4395     for (uint next = 0; next < worklist.size(); ++next) {
4396       Node *n  = worklist.at(next);
4397       if (n->is_Type()) {
4398         TypeNode* tn = n->as_Type();
4399         const Type* t = tn->type();
4400         const Type* t_no_spec = t->remove_speculative();
4401         if (t_no_spec != t) {
4402           bool in_hash = igvn.hash_delete(n);
4403           assert(in_hash, "node should be in igvn hash table");
4404           tn->set_type(t_no_spec);
4405           igvn.hash_insert(n);
4406           igvn._worklist.push(n); // give it a chance to go away
4407           modified++;
4408         }
4409       }
4410       uint max = n->len();
4411       for( uint i = 0; i < max; ++i ) {
4412         Node *m = n->in(i);
4413         if (not_a_node(m))  continue;
4414         worklist.push(m);
4415       }
4416     }
4417     // Drop the speculative part of all types in the igvn's type table
4418     igvn.remove_speculative_types();
4419     if (modified > 0) {
4420       igvn.optimize();
4421     }
4422 #ifdef ASSERT
4423     // Verify that after the IGVN is over no speculative type has resurfaced
4424     worklist.clear();
4425     worklist.push(root());
4426     for (uint next = 0; next < worklist.size(); ++next) {
4427       Node *n  = worklist.at(next);
4428       const Type* t = igvn.type_or_null(n);
4429       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4430       if (n->is_Type()) {
4431         t = n->as_Type()->type();
4432         assert(t == t->remove_speculative(), "no more speculative types");
4433       }
4434       uint max = n->len();
4435       for( uint i = 0; i < max; ++i ) {
4436         Node *m = n->in(i);
4437         if (not_a_node(m))  continue;
4438         worklist.push(m);
4439       }
4440     }
4441     igvn.check_no_speculative_types();
4442 #endif
4443   }
4444 }
4445 
4446 // Auxiliary method to support randomized stressing/fuzzing.
4447 //
4448 // This method can be called the arbitrary number of times, with current count
4449 // as the argument. The logic allows selecting a single candidate from the
4450 // running list of candidates as follows:
4451 //    int count = 0;
4452 //    Cand* selected = null;
4453 //    while(cand = cand->next()) {
4454 //      if (randomized_select(++count)) {
4455 //        selected = cand;
4456 //      }
4457 //    }
4458 //
4459 // Including count equalizes the chances any candidate is "selected".
4460 // This is useful when we don't have the complete list of candidates to choose
4461 // from uniformly. In this case, we need to adjust the randomicity of the
4462 // selection, or else we will end up biasing the selection towards the latter
4463 // candidates.
4464 //
4465 // Quick back-envelope calculation shows that for the list of n candidates
4466 // the equal probability for the candidate to persist as "best" can be
4467 // achieved by replacing it with "next" k-th candidate with the probability
4468 // of 1/k. It can be easily shown that by the end of the run, the
4469 // probability for any candidate is converged to 1/n, thus giving the
4470 // uniform distribution among all the candidates.
4471 //
4472 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4473 #define RANDOMIZED_DOMAIN_POW 29
4474 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4475 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4476 bool Compile::randomized_select(int count) {
4477   assert(count > 0, "only positive");
4478   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4479 }
4480 
4481 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4482 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4483 
4484 void NodeCloneInfo::dump() const {
4485   tty->print(" {%d:%d} ", idx(), gen());
4486 }
4487 
4488 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4489   uint64_t val = value(old->_idx);
4490   NodeCloneInfo cio(val);
4491   assert(val != 0, "old node should be in the map");
4492   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4493   insert(nnn->_idx, cin.get());
4494 #ifndef PRODUCT
4495   if (is_debug()) {
4496     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4497   }
4498 #endif
4499 }
4500 
4501 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4502   NodeCloneInfo cio(value(old->_idx));
4503   if (cio.get() == 0) {
4504     cio.set(old->_idx, 0);
4505     insert(old->_idx, cio.get());
4506 #ifndef PRODUCT
4507     if (is_debug()) {
4508       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4509     }
4510 #endif
4511   }
4512   clone(old, nnn, gen);
4513 }
4514 
4515 int CloneMap::max_gen() const {
4516   int g = 0;
4517   DictI di(_dict);
4518   for(; di.test(); ++di) {
4519     int t = gen(di._key);
4520     if (g < t) {
4521       g = t;
4522 #ifndef PRODUCT
4523       if (is_debug()) {
4524         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4525       }
4526 #endif
4527     }
4528   }
4529   return g;
4530 }
4531 
4532 void CloneMap::dump(node_idx_t key) const {
4533   uint64_t val = value(key);
4534   if (val != 0) {
4535     NodeCloneInfo ni(val);
4536     ni.dump();
4537   }
4538 }
4539 
4540 // Move Allocate nodes to the start of the list
4541 void Compile::sort_macro_nodes() {
4542   int count = macro_count();
4543   int allocates = 0;
4544   for (int i = 0; i < count; i++) {
4545     Node* n = macro_node(i);
4546     if (n->is_Allocate()) {
4547       if (i != allocates) {
4548         Node* tmp = macro_node(allocates);
4549         _macro_nodes->at_put(allocates, n);
4550         _macro_nodes->at_put(i, tmp);
4551       }
4552       allocates++;
4553     }
4554   }
4555 }
4556 
4557 void Compile::print_method(CompilerPhaseType cpt, int level, int idx) {
4558   EventCompilerPhase event;
4559   if (event.should_commit()) {
4560     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
4561   }
4562 
4563 #ifndef PRODUCT
4564   if (should_print(level)) {
4565     char output[1024];
4566     if (idx != 0) {
4567       jio_snprintf(output, sizeof(output), "%s:%d", CompilerPhaseTypeHelper::to_string(cpt), idx);
4568     } else {
4569       jio_snprintf(output, sizeof(output), "%s", CompilerPhaseTypeHelper::to_string(cpt));
4570     }
4571     _printer->print_method(output, level);
4572   }
4573 #endif
4574   C->_latest_stage_start_counter.stamp();
4575 }
4576 
4577 void Compile::end_method(int level) {
4578   EventCompilerPhase event;
4579   if (event.should_commit()) {
4580     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, level);
4581   }
4582 
4583 #ifndef PRODUCT
4584   if (_method != NULL && should_print(level)) {
4585     _printer->end_method();
4586   }
4587 #endif
4588 }
4589 
4590 
4591 #ifndef PRODUCT
4592 IdealGraphPrinter* Compile::_debug_file_printer = NULL;
4593 IdealGraphPrinter* Compile::_debug_network_printer = NULL;
4594 
4595 // Called from debugger. Prints method to the default file with the default phase name.
4596 // This works regardless of any Ideal Graph Visualizer flags set or not.
4597 void igv_print() {
4598   Compile::current()->igv_print_method_to_file();
4599 }
4600 
4601 // Same as igv_print() above but with a specified phase name.
4602 void igv_print(const char* phase_name) {
4603   Compile::current()->igv_print_method_to_file(phase_name);
4604 }
4605 
4606 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
4607 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
4608 // This works regardless of any Ideal Graph Visualizer flags set or not.
4609 void igv_print(bool network) {
4610   if (network) {
4611     Compile::current()->igv_print_method_to_network();
4612   } else {
4613     Compile::current()->igv_print_method_to_file();
4614   }
4615 }
4616 
4617 // Same as igv_print(bool network) above but with a specified phase name.
4618 void igv_print(bool network, const char* phase_name) {
4619   if (network) {
4620     Compile::current()->igv_print_method_to_network(phase_name);
4621   } else {
4622     Compile::current()->igv_print_method_to_file(phase_name);
4623   }
4624 }
4625 
4626 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
4627 void igv_print_default() {
4628   Compile::current()->print_method(PHASE_DEBUG, 0, 0);
4629 }
4630 
4631 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
4632 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
4633 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
4634 void igv_append() {
4635   Compile::current()->igv_print_method_to_file("Debug", true);
4636 }
4637 
4638 // Same as igv_append() above but with a specified phase name.
4639 void igv_append(const char* phase_name) {
4640   Compile::current()->igv_print_method_to_file(phase_name, true);
4641 }
4642 
4643 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
4644   const char* file_name = "custom_debug.xml";
4645   if (_debug_file_printer == NULL) {
4646     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
4647   } else {
4648     _debug_file_printer->update_compiled_method(C->method());
4649   }
4650   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
4651   _debug_file_printer->print_method(phase_name, 0);
4652 }
4653 
4654 void Compile::igv_print_method_to_network(const char* phase_name) {
4655   if (_debug_network_printer == NULL) {
4656     _debug_network_printer = new IdealGraphPrinter(C);
4657   } else {
4658     _debug_network_printer->update_compiled_method(C->method());
4659   }
4660   tty->print_cr("Method printed over network stream to IGV");
4661   _debug_network_printer->print_method(phase_name, 0);
4662 }
4663 #endif
4664