1 /* 2 * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSet.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "jfr/jfrEvents.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "opto/addnode.hpp" 41 #include "opto/block.hpp" 42 #include "opto/c2compiler.hpp" 43 #include "opto/callGenerator.hpp" 44 #include "opto/callnode.hpp" 45 #include "opto/castnode.hpp" 46 #include "opto/cfgnode.hpp" 47 #include "opto/chaitin.hpp" 48 #include "opto/compile.hpp" 49 #include "opto/connode.hpp" 50 #include "opto/convertnode.hpp" 51 #include "opto/divnode.hpp" 52 #include "opto/escape.hpp" 53 #include "opto/idealGraphPrinter.hpp" 54 #include "opto/loopnode.hpp" 55 #include "opto/machnode.hpp" 56 #include "opto/macro.hpp" 57 #include "opto/matcher.hpp" 58 #include "opto/mathexactnode.hpp" 59 #include "opto/memnode.hpp" 60 #include "opto/mulnode.hpp" 61 #include "opto/narrowptrnode.hpp" 62 #include "opto/node.hpp" 63 #include "opto/opcodes.hpp" 64 #include "opto/output.hpp" 65 #include "opto/parse.hpp" 66 #include "opto/phaseX.hpp" 67 #include "opto/rootnode.hpp" 68 #include "opto/runtime.hpp" 69 #include "opto/stringopts.hpp" 70 #include "opto/type.hpp" 71 #include "opto/vectornode.hpp" 72 #include "runtime/arguments.hpp" 73 #include "runtime/sharedRuntime.hpp" 74 #include "runtime/signature.hpp" 75 #include "runtime/stubRoutines.hpp" 76 #include "runtime/timer.hpp" 77 #include "utilities/align.hpp" 78 #include "utilities/copy.hpp" 79 #include "utilities/macros.hpp" 80 #include "utilities/resourceHash.hpp" 81 82 83 // -------------------- Compile::mach_constant_base_node ----------------------- 84 // Constant table base node singleton. 85 MachConstantBaseNode* Compile::mach_constant_base_node() { 86 if (_mach_constant_base_node == NULL) { 87 _mach_constant_base_node = new MachConstantBaseNode(); 88 _mach_constant_base_node->add_req(C->root()); 89 } 90 return _mach_constant_base_node; 91 } 92 93 94 /// Support for intrinsics. 95 96 // Return the index at which m must be inserted (or already exists). 97 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 98 class IntrinsicDescPair { 99 private: 100 ciMethod* _m; 101 bool _is_virtual; 102 public: 103 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 104 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 105 ciMethod* m= elt->method(); 106 ciMethod* key_m = key->_m; 107 if (key_m < m) return -1; 108 else if (key_m > m) return 1; 109 else { 110 bool is_virtual = elt->is_virtual(); 111 bool key_virtual = key->_is_virtual; 112 if (key_virtual < is_virtual) return -1; 113 else if (key_virtual > is_virtual) return 1; 114 else return 0; 115 } 116 } 117 }; 118 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 119 #ifdef ASSERT 120 for (int i = 1; i < _intrinsics->length(); i++) { 121 CallGenerator* cg1 = _intrinsics->at(i-1); 122 CallGenerator* cg2 = _intrinsics->at(i); 123 assert(cg1->method() != cg2->method() 124 ? cg1->method() < cg2->method() 125 : cg1->is_virtual() < cg2->is_virtual(), 126 "compiler intrinsics list must stay sorted"); 127 } 128 #endif 129 IntrinsicDescPair pair(m, is_virtual); 130 return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 131 } 132 133 void Compile::register_intrinsic(CallGenerator* cg) { 134 if (_intrinsics == NULL) { 135 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL); 136 } 137 int len = _intrinsics->length(); 138 bool found = false; 139 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 140 assert(!found, "registering twice"); 141 _intrinsics->insert_before(index, cg); 142 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 143 } 144 145 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 146 assert(m->is_loaded(), "don't try this on unloaded methods"); 147 if (_intrinsics != NULL) { 148 bool found = false; 149 int index = intrinsic_insertion_index(m, is_virtual, found); 150 if (found) { 151 return _intrinsics->at(index); 152 } 153 } 154 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 155 if (m->intrinsic_id() != vmIntrinsics::_none && 156 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 157 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 158 if (cg != NULL) { 159 // Save it for next time: 160 register_intrinsic(cg); 161 return cg; 162 } else { 163 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 164 } 165 } 166 return NULL; 167 } 168 169 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined 170 // in library_call.cpp. 171 172 173 #ifndef PRODUCT 174 // statistics gathering... 175 176 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0}; 177 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0}; 178 179 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 180 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 181 int oflags = _intrinsic_hist_flags[id]; 182 assert(flags != 0, "what happened?"); 183 if (is_virtual) { 184 flags |= _intrinsic_virtual; 185 } 186 bool changed = (flags != oflags); 187 if ((flags & _intrinsic_worked) != 0) { 188 juint count = (_intrinsic_hist_count[id] += 1); 189 if (count == 1) { 190 changed = true; // first time 191 } 192 // increment the overall count also: 193 _intrinsic_hist_count[vmIntrinsics::_none] += 1; 194 } 195 if (changed) { 196 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 197 // Something changed about the intrinsic's virtuality. 198 if ((flags & _intrinsic_virtual) != 0) { 199 // This is the first use of this intrinsic as a virtual call. 200 if (oflags != 0) { 201 // We already saw it as a non-virtual, so note both cases. 202 flags |= _intrinsic_both; 203 } 204 } else if ((oflags & _intrinsic_both) == 0) { 205 // This is the first use of this intrinsic as a non-virtual 206 flags |= _intrinsic_both; 207 } 208 } 209 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags); 210 } 211 // update the overall flags also: 212 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags; 213 return changed; 214 } 215 216 static char* format_flags(int flags, char* buf) { 217 buf[0] = 0; 218 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 219 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 220 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 221 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 222 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 223 if (buf[0] == 0) strcat(buf, ","); 224 assert(buf[0] == ',', "must be"); 225 return &buf[1]; 226 } 227 228 void Compile::print_intrinsic_statistics() { 229 char flagsbuf[100]; 230 ttyLocker ttyl; 231 if (xtty != NULL) xtty->head("statistics type='intrinsic'"); 232 tty->print_cr("Compiler intrinsic usage:"); 233 juint total = _intrinsic_hist_count[vmIntrinsics::_none]; 234 if (total == 0) total = 1; // avoid div0 in case of no successes 235 #define PRINT_STAT_LINE(name, c, f) \ 236 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 237 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) { 238 vmIntrinsics::ID id = (vmIntrinsics::ID) index; 239 int flags = _intrinsic_hist_flags[id]; 240 juint count = _intrinsic_hist_count[id]; 241 if ((flags | count) != 0) { 242 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 243 } 244 } 245 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf)); 246 if (xtty != NULL) xtty->tail("statistics"); 247 } 248 249 void Compile::print_statistics() { 250 { ttyLocker ttyl; 251 if (xtty != NULL) xtty->head("statistics type='opto'"); 252 Parse::print_statistics(); 253 PhaseCCP::print_statistics(); 254 PhaseRegAlloc::print_statistics(); 255 PhaseOutput::print_statistics(); 256 PhasePeephole::print_statistics(); 257 PhaseIdealLoop::print_statistics(); 258 if (xtty != NULL) xtty->tail("statistics"); 259 } 260 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) { 261 // put this under its own <statistics> element. 262 print_intrinsic_statistics(); 263 } 264 } 265 #endif //PRODUCT 266 267 void Compile::gvn_replace_by(Node* n, Node* nn) { 268 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 269 Node* use = n->last_out(i); 270 bool is_in_table = initial_gvn()->hash_delete(use); 271 uint uses_found = 0; 272 for (uint j = 0; j < use->len(); j++) { 273 if (use->in(j) == n) { 274 if (j < use->req()) 275 use->set_req(j, nn); 276 else 277 use->set_prec(j, nn); 278 uses_found++; 279 } 280 } 281 if (is_in_table) { 282 // reinsert into table 283 initial_gvn()->hash_find_insert(use); 284 } 285 record_for_igvn(use); 286 i -= uses_found; // we deleted 1 or more copies of this edge 287 } 288 } 289 290 291 static inline bool not_a_node(const Node* n) { 292 if (n == NULL) return true; 293 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 294 if (*(address*)n == badAddress) return true; // kill by Node::destruct 295 return false; 296 } 297 298 // Identify all nodes that are reachable from below, useful. 299 // Use breadth-first pass that records state in a Unique_Node_List, 300 // recursive traversal is slower. 301 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 302 int estimated_worklist_size = live_nodes(); 303 useful.map( estimated_worklist_size, NULL ); // preallocate space 304 305 // Initialize worklist 306 if (root() != NULL) { useful.push(root()); } 307 // If 'top' is cached, declare it useful to preserve cached node 308 if( cached_top_node() ) { useful.push(cached_top_node()); } 309 310 // Push all useful nodes onto the list, breadthfirst 311 for( uint next = 0; next < useful.size(); ++next ) { 312 assert( next < unique(), "Unique useful nodes < total nodes"); 313 Node *n = useful.at(next); 314 uint max = n->len(); 315 for( uint i = 0; i < max; ++i ) { 316 Node *m = n->in(i); 317 if (not_a_node(m)) continue; 318 useful.push(m); 319 } 320 } 321 } 322 323 // Update dead_node_list with any missing dead nodes using useful 324 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 325 void Compile::update_dead_node_list(Unique_Node_List &useful) { 326 uint max_idx = unique(); 327 VectorSet& useful_node_set = useful.member_set(); 328 329 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 330 // If node with index node_idx is not in useful set, 331 // mark it as dead in dead node list. 332 if (!useful_node_set.test(node_idx)) { 333 record_dead_node(node_idx); 334 } 335 } 336 } 337 338 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 339 int shift = 0; 340 for (int i = 0; i < inlines->length(); i++) { 341 CallGenerator* cg = inlines->at(i); 342 CallNode* call = cg->call_node(); 343 if (shift > 0) { 344 inlines->at_put(i-shift, cg); 345 } 346 if (!useful.member(call)) { 347 shift++; 348 } 349 } 350 inlines->trunc_to(inlines->length()-shift); 351 } 352 353 // Disconnect all useless nodes by disconnecting those at the boundary. 354 void Compile::remove_useless_nodes(Unique_Node_List &useful) { 355 uint next = 0; 356 while (next < useful.size()) { 357 Node *n = useful.at(next++); 358 if (n->is_SafePoint()) { 359 // We're done with a parsing phase. Replaced nodes are not valid 360 // beyond that point. 361 n->as_SafePoint()->delete_replaced_nodes(); 362 } 363 // Use raw traversal of out edges since this code removes out edges 364 int max = n->outcnt(); 365 for (int j = 0; j < max; ++j) { 366 Node* child = n->raw_out(j); 367 if (! useful.member(child)) { 368 assert(!child->is_top() || child != top(), 369 "If top is cached in Compile object it is in useful list"); 370 // Only need to remove this out-edge to the useless node 371 n->raw_del_out(j); 372 --j; 373 --max; 374 } 375 } 376 if (n->outcnt() == 1 && n->has_special_unique_user()) { 377 record_for_igvn(n->unique_out()); 378 } 379 } 380 // Remove useless macro and predicate opaq nodes 381 for (int i = C->macro_count()-1; i >= 0; i--) { 382 Node* n = C->macro_node(i); 383 if (!useful.member(n)) { 384 remove_macro_node(n); 385 } 386 } 387 // Remove useless CastII nodes with range check dependency 388 for (int i = range_check_cast_count() - 1; i >= 0; i--) { 389 Node* cast = range_check_cast_node(i); 390 if (!useful.member(cast)) { 391 remove_range_check_cast(cast); 392 } 393 } 394 // Remove useless expensive nodes 395 for (int i = C->expensive_count()-1; i >= 0; i--) { 396 Node* n = C->expensive_node(i); 397 if (!useful.member(n)) { 398 remove_expensive_node(n); 399 } 400 } 401 // Remove useless Opaque4 nodes 402 for (int i = opaque4_count() - 1; i >= 0; i--) { 403 Node* opaq = opaque4_node(i); 404 if (!useful.member(opaq)) { 405 remove_opaque4_node(opaq); 406 } 407 } 408 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 409 bs->eliminate_useless_gc_barriers(useful, this); 410 // clean up the late inline lists 411 remove_useless_late_inlines(&_string_late_inlines, useful); 412 remove_useless_late_inlines(&_boxing_late_inlines, useful); 413 remove_useless_late_inlines(&_late_inlines, useful); 414 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 415 } 416 417 // ============================================================================ 418 //------------------------------CompileWrapper--------------------------------- 419 class CompileWrapper : public StackObj { 420 Compile *const _compile; 421 public: 422 CompileWrapper(Compile* compile); 423 424 ~CompileWrapper(); 425 }; 426 427 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 428 // the Compile* pointer is stored in the current ciEnv: 429 ciEnv* env = compile->env(); 430 assert(env == ciEnv::current(), "must already be a ciEnv active"); 431 assert(env->compiler_data() == NULL, "compile already active?"); 432 env->set_compiler_data(compile); 433 assert(compile == Compile::current(), "sanity"); 434 435 compile->set_type_dict(NULL); 436 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 437 compile->clone_map().set_clone_idx(0); 438 compile->set_type_last_size(0); 439 compile->set_last_tf(NULL, NULL); 440 compile->set_indexSet_arena(NULL); 441 compile->set_indexSet_free_block_list(NULL); 442 compile->init_type_arena(); 443 Type::Initialize(compile); 444 _compile->begin_method(); 445 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 446 } 447 CompileWrapper::~CompileWrapper() { 448 _compile->end_method(); 449 _compile->env()->set_compiler_data(NULL); 450 } 451 452 453 //----------------------------print_compile_messages--------------------------- 454 void Compile::print_compile_messages() { 455 #ifndef PRODUCT 456 // Check if recompiling 457 if (_subsume_loads == false && PrintOpto) { 458 // Recompiling without allowing machine instructions to subsume loads 459 tty->print_cr("*********************************************************"); 460 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 461 tty->print_cr("*********************************************************"); 462 } 463 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) { 464 // Recompiling without escape analysis 465 tty->print_cr("*********************************************************"); 466 tty->print_cr("** Bailout: Recompile without escape analysis **"); 467 tty->print_cr("*********************************************************"); 468 } 469 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) { 470 // Recompiling without boxing elimination 471 tty->print_cr("*********************************************************"); 472 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 473 tty->print_cr("*********************************************************"); 474 } 475 if (C->directive()->BreakAtCompileOption) { 476 // Open the debugger when compiling this method. 477 tty->print("### Breaking when compiling: "); 478 method()->print_short_name(); 479 tty->cr(); 480 BREAKPOINT; 481 } 482 483 if( PrintOpto ) { 484 if (is_osr_compilation()) { 485 tty->print("[OSR]%3d", _compile_id); 486 } else { 487 tty->print("%3d", _compile_id); 488 } 489 } 490 #endif 491 } 492 493 // ============================================================================ 494 //------------------------------Compile standard------------------------------- 495 debug_only( int Compile::_debug_idx = 100000; ) 496 497 // Compile a method. entry_bci is -1 for normal compilations and indicates 498 // the continuation bci for on stack replacement. 499 500 501 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 502 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive) 503 : Phase(Compiler), 504 _compile_id(ci_env->compile_id()), 505 _save_argument_registers(false), 506 _subsume_loads(subsume_loads), 507 _do_escape_analysis(do_escape_analysis), 508 _eliminate_boxing(eliminate_boxing), 509 _method(target), 510 _entry_bci(osr_bci), 511 _stub_function(NULL), 512 _stub_name(NULL), 513 _stub_entry_point(NULL), 514 _max_node_limit(MaxNodeLimit), 515 _inlining_progress(false), 516 _inlining_incrementally(false), 517 _do_cleanup(false), 518 _has_reserved_stack_access(target->has_reserved_stack_access()), 519 #ifndef PRODUCT 520 _trace_opto_output(directive->TraceOptoOutputOption), 521 _print_ideal(directive->PrintIdealOption), 522 #endif 523 _has_method_handle_invokes(false), 524 _clinit_barrier_on_entry(false), 525 _comp_arena(mtCompiler), 526 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 527 _env(ci_env), 528 _directive(directive), 529 _log(ci_env->log()), 530 _failure_reason(NULL), 531 _congraph(NULL), 532 NOT_PRODUCT(_printer(NULL) COMMA) 533 _dead_node_list(comp_arena()), 534 _dead_node_count(0), 535 _node_arena(mtCompiler), 536 _old_arena(mtCompiler), 537 _mach_constant_base_node(NULL), 538 _Compile_types(mtCompiler), 539 _initial_gvn(NULL), 540 _for_igvn(NULL), 541 _warm_calls(NULL), 542 _late_inlines(comp_arena(), 2, 0, NULL), 543 _string_late_inlines(comp_arena(), 2, 0, NULL), 544 _boxing_late_inlines(comp_arena(), 2, 0, NULL), 545 _late_inlines_pos(0), 546 _number_of_mh_late_inlines(0), 547 _print_inlining_stream(NULL), 548 _print_inlining_list(NULL), 549 _print_inlining_idx(0), 550 _print_inlining_output(NULL), 551 _replay_inline_data(NULL), 552 _java_calls(0), 553 _inner_loops(0), 554 _interpreter_frame_size(0) 555 #ifndef PRODUCT 556 , _in_dump_cnt(0) 557 #endif 558 { 559 C = this; 560 CompileWrapper cw(this); 561 562 if (CITimeVerbose) { 563 tty->print(" "); 564 target->holder()->name()->print(); 565 tty->print("."); 566 target->print_short_name(); 567 tty->print(" "); 568 } 569 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 570 TraceTime t2(NULL, &_t_methodCompilation, CITime, false); 571 572 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 573 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 574 // We can always print a disassembly, either abstract (hex dump) or 575 // with the help of a suitable hsdis library. Thus, we should not 576 // couple print_assembly and print_opto_assembly controls. 577 // But: always print opto and regular assembly on compile command 'print'. 578 bool print_assembly = directive->PrintAssemblyOption; 579 set_print_assembly(print_opto_assembly || print_assembly); 580 #else 581 set_print_assembly(false); // must initialize. 582 #endif 583 584 #ifndef PRODUCT 585 set_parsed_irreducible_loop(false); 586 587 if (directive->ReplayInlineOption) { 588 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 589 } 590 #endif 591 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 592 set_print_intrinsics(directive->PrintIntrinsicsOption); 593 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 594 595 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 596 // Make sure the method being compiled gets its own MDO, 597 // so we can at least track the decompile_count(). 598 // Need MDO to record RTM code generation state. 599 method()->ensure_method_data(); 600 } 601 602 Init(::AliasLevel); 603 604 605 print_compile_messages(); 606 607 _ilt = InlineTree::build_inline_tree_root(); 608 609 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 610 assert(num_alias_types() >= AliasIdxRaw, ""); 611 612 #define MINIMUM_NODE_HASH 1023 613 // Node list that Iterative GVN will start with 614 Unique_Node_List for_igvn(comp_arena()); 615 set_for_igvn(&for_igvn); 616 617 // GVN that will be run immediately on new nodes 618 uint estimated_size = method()->code_size()*4+64; 619 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 620 PhaseGVN gvn(node_arena(), estimated_size); 621 set_initial_gvn(&gvn); 622 623 print_inlining_init(); 624 { // Scope for timing the parser 625 TracePhase tp("parse", &timers[_t_parser]); 626 627 // Put top into the hash table ASAP. 628 initial_gvn()->transform_no_reclaim(top()); 629 630 // Set up tf(), start(), and find a CallGenerator. 631 CallGenerator* cg = NULL; 632 if (is_osr_compilation()) { 633 const TypeTuple *domain = StartOSRNode::osr_domain(); 634 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 635 init_tf(TypeFunc::make(domain, range)); 636 StartNode* s = new StartOSRNode(root(), domain); 637 initial_gvn()->set_type_bottom(s); 638 init_start(s); 639 cg = CallGenerator::for_osr(method(), entry_bci()); 640 } else { 641 // Normal case. 642 init_tf(TypeFunc::make(method())); 643 StartNode* s = new StartNode(root(), tf()->domain()); 644 initial_gvn()->set_type_bottom(s); 645 init_start(s); 646 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 647 // With java.lang.ref.reference.get() we must go through the 648 // intrinsic - even when get() is the root 649 // method of the compile - so that, if necessary, the value in 650 // the referent field of the reference object gets recorded by 651 // the pre-barrier code. 652 cg = find_intrinsic(method(), false); 653 } 654 if (cg == NULL) { 655 float past_uses = method()->interpreter_invocation_count(); 656 float expected_uses = past_uses; 657 cg = CallGenerator::for_inline(method(), expected_uses); 658 } 659 } 660 if (failing()) return; 661 if (cg == NULL) { 662 record_method_not_compilable("cannot parse method"); 663 return; 664 } 665 JVMState* jvms = build_start_state(start(), tf()); 666 if ((jvms = cg->generate(jvms)) == NULL) { 667 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 668 record_method_not_compilable("method parse failed"); 669 } 670 return; 671 } 672 GraphKit kit(jvms); 673 674 if (!kit.stopped()) { 675 // Accept return values, and transfer control we know not where. 676 // This is done by a special, unique ReturnNode bound to root. 677 return_values(kit.jvms()); 678 } 679 680 if (kit.has_exceptions()) { 681 // Any exceptions that escape from this call must be rethrown 682 // to whatever caller is dynamically above us on the stack. 683 // This is done by a special, unique RethrowNode bound to root. 684 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 685 } 686 687 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 688 689 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 690 inline_string_calls(true); 691 } 692 693 if (failing()) return; 694 695 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 696 697 // Remove clutter produced by parsing. 698 if (!failing()) { 699 ResourceMark rm; 700 PhaseRemoveUseless pru(initial_gvn(), &for_igvn); 701 } 702 } 703 704 // Note: Large methods are capped off in do_one_bytecode(). 705 if (failing()) return; 706 707 // After parsing, node notes are no longer automagic. 708 // They must be propagated by register_new_node_with_optimizer(), 709 // clone(), or the like. 710 set_default_node_notes(NULL); 711 712 for (;;) { 713 int successes = Inline_Warm(); 714 if (failing()) return; 715 if (successes == 0) break; 716 } 717 718 // Drain the list. 719 Finish_Warm(); 720 #ifndef PRODUCT 721 if (should_print(1)) { 722 _printer->print_inlining(); 723 } 724 #endif 725 726 if (failing()) return; 727 NOT_PRODUCT( verify_graph_edges(); ) 728 729 // Now optimize 730 Optimize(); 731 if (failing()) return; 732 NOT_PRODUCT( verify_graph_edges(); ) 733 734 #ifndef PRODUCT 735 if (print_ideal()) { 736 ttyLocker ttyl; // keep the following output all in one block 737 // This output goes directly to the tty, not the compiler log. 738 // To enable tools to match it up with the compilation activity, 739 // be sure to tag this tty output with the compile ID. 740 if (xtty != NULL) { 741 xtty->head("ideal compile_id='%d'%s", compile_id(), 742 is_osr_compilation() ? " compile_kind='osr'" : 743 ""); 744 } 745 root()->dump(9999); 746 if (xtty != NULL) { 747 xtty->tail("ideal"); 748 } 749 } 750 #endif 751 752 #ifdef ASSERT 753 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 754 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 755 #endif 756 757 // Dump compilation data to replay it. 758 if (directive->DumpReplayOption) { 759 env()->dump_replay_data(_compile_id); 760 } 761 if (directive->DumpInlineOption && (ilt() != NULL)) { 762 env()->dump_inline_data(_compile_id); 763 } 764 765 // Now that we know the size of all the monitors we can add a fixed slot 766 // for the original deopt pc. 767 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 768 set_fixed_slots(next_slot); 769 770 // Compute when to use implicit null checks. Used by matching trap based 771 // nodes and NullCheck optimization. 772 set_allowed_deopt_reasons(); 773 774 // Now generate code 775 Code_Gen(); 776 } 777 778 //------------------------------Compile---------------------------------------- 779 // Compile a runtime stub 780 Compile::Compile( ciEnv* ci_env, 781 TypeFunc_generator generator, 782 address stub_function, 783 const char *stub_name, 784 int is_fancy_jump, 785 bool pass_tls, 786 bool save_arg_registers, 787 bool return_pc, 788 DirectiveSet* directive) 789 : Phase(Compiler), 790 _compile_id(0), 791 _save_argument_registers(save_arg_registers), 792 _subsume_loads(true), 793 _do_escape_analysis(false), 794 _eliminate_boxing(false), 795 _method(NULL), 796 _entry_bci(InvocationEntryBci), 797 _stub_function(stub_function), 798 _stub_name(stub_name), 799 _stub_entry_point(NULL), 800 _max_node_limit(MaxNodeLimit), 801 _inlining_progress(false), 802 _inlining_incrementally(false), 803 _has_reserved_stack_access(false), 804 #ifndef PRODUCT 805 _trace_opto_output(directive->TraceOptoOutputOption), 806 _print_ideal(directive->PrintIdealOption), 807 #endif 808 _has_method_handle_invokes(false), 809 _clinit_barrier_on_entry(false), 810 _comp_arena(mtCompiler), 811 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 812 _env(ci_env), 813 _directive(directive), 814 _log(ci_env->log()), 815 _failure_reason(NULL), 816 _congraph(NULL), 817 NOT_PRODUCT(_printer(NULL) COMMA) 818 _dead_node_list(comp_arena()), 819 _dead_node_count(0), 820 _node_arena(mtCompiler), 821 _old_arena(mtCompiler), 822 _mach_constant_base_node(NULL), 823 _Compile_types(mtCompiler), 824 _initial_gvn(NULL), 825 _for_igvn(NULL), 826 _warm_calls(NULL), 827 _number_of_mh_late_inlines(0), 828 _print_inlining_stream(NULL), 829 _print_inlining_list(NULL), 830 _print_inlining_idx(0), 831 _print_inlining_output(NULL), 832 _replay_inline_data(NULL), 833 _java_calls(0), 834 _inner_loops(0), 835 _interpreter_frame_size(0), 836 #ifndef PRODUCT 837 _in_dump_cnt(0), 838 #endif 839 _allowed_reasons(0) { 840 C = this; 841 842 TraceTime t1(NULL, &_t_totalCompilation, CITime, false); 843 TraceTime t2(NULL, &_t_stubCompilation, CITime, false); 844 845 #ifndef PRODUCT 846 set_print_assembly(PrintFrameConverterAssembly); 847 set_parsed_irreducible_loop(false); 848 #else 849 set_print_assembly(false); // Must initialize. 850 #endif 851 set_has_irreducible_loop(false); // no loops 852 853 CompileWrapper cw(this); 854 Init(/*AliasLevel=*/ 0); 855 init_tf((*generator)()); 856 857 { 858 // The following is a dummy for the sake of GraphKit::gen_stub 859 Unique_Node_List for_igvn(comp_arena()); 860 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this 861 PhaseGVN gvn(Thread::current()->resource_area(),255); 862 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 863 gvn.transform_no_reclaim(top()); 864 865 GraphKit kit; 866 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 867 } 868 869 NOT_PRODUCT( verify_graph_edges(); ) 870 871 Code_Gen(); 872 } 873 874 //------------------------------Init------------------------------------------- 875 // Prepare for a single compilation 876 void Compile::Init(int aliaslevel) { 877 _unique = 0; 878 _regalloc = NULL; 879 880 _tf = NULL; // filled in later 881 _top = NULL; // cached later 882 _matcher = NULL; // filled in later 883 _cfg = NULL; // filled in later 884 885 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 886 887 _node_note_array = NULL; 888 _default_node_notes = NULL; 889 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize() 890 891 _immutable_memory = NULL; // filled in at first inquiry 892 893 // Globally visible Nodes 894 // First set TOP to NULL to give safe behavior during creation of RootNode 895 set_cached_top_node(NULL); 896 set_root(new RootNode()); 897 // Now that you have a Root to point to, create the real TOP 898 set_cached_top_node( new ConNode(Type::TOP) ); 899 set_recent_alloc(NULL, NULL); 900 901 // Create Debug Information Recorder to record scopes, oopmaps, etc. 902 env()->set_oop_recorder(new OopRecorder(env()->arena())); 903 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 904 env()->set_dependencies(new Dependencies(env())); 905 906 _fixed_slots = 0; 907 _stack_allocated_slots = 0; 908 set_fail_stack_allocation_with_references(false); 909 set_has_split_ifs(false); 910 set_has_loops(has_method() && method()->has_loops()); // first approximation 911 set_has_stringbuilder(false); 912 set_has_boxed_value(false); 913 _trap_can_recompile = false; // no traps emitted yet 914 _major_progress = true; // start out assuming good things will happen 915 set_has_unsafe_access(false); 916 set_max_vector_size(0); 917 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 918 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 919 set_decompile_count(0); 920 921 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 922 _loop_opts_cnt = LoopOptsCount; 923 set_do_inlining(Inline); 924 set_max_inline_size(MaxInlineSize); 925 set_freq_inline_size(FreqInlineSize); 926 set_do_scheduling(OptoScheduling); 927 set_do_count_invocations(false); 928 set_do_method_data_update(false); 929 930 set_do_vector_loop(false); 931 932 if (AllowVectorizeOnDemand) { 933 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) { 934 set_do_vector_loop(true); 935 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 936 } else if (has_method() && method()->name() != 0 && 937 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 938 set_do_vector_loop(true); 939 } 940 } 941 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 942 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 943 944 set_age_code(has_method() && method()->profile_aging()); 945 set_rtm_state(NoRTM); // No RTM lock eliding by default 946 _max_node_limit = _directive->MaxNodeLimitOption; 947 948 #if INCLUDE_RTM_OPT 949 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) { 950 int rtm_state = method()->method_data()->rtm_state(); 951 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) { 952 // Don't generate RTM lock eliding code. 953 set_rtm_state(NoRTM); 954 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 955 // Generate RTM lock eliding code without abort ratio calculation code. 956 set_rtm_state(UseRTM); 957 } else if (UseRTMDeopt) { 958 // Generate RTM lock eliding code and include abort ratio calculation 959 // code if UseRTMDeopt is on. 960 set_rtm_state(ProfileRTM); 961 } 962 } 963 #endif 964 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 965 set_clinit_barrier_on_entry(true); 966 } 967 if (debug_info()->recording_non_safepoints()) { 968 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 969 (comp_arena(), 8, 0, NULL)); 970 set_default_node_notes(Node_Notes::make(this)); 971 } 972 973 // // -- Initialize types before each compile -- 974 // // Update cached type information 975 // if( _method && _method->constants() ) 976 // Type::update_loaded_types(_method, _method->constants()); 977 978 // Init alias_type map. 979 if (!_do_escape_analysis && aliaslevel == 3) 980 aliaslevel = 2; // No unique types without escape analysis 981 _AliasLevel = aliaslevel; 982 const int grow_ats = 16; 983 _max_alias_types = grow_ats; 984 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 985 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 986 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 987 { 988 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 989 } 990 // Initialize the first few types. 991 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL); 992 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 993 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 994 _num_alias_types = AliasIdxRaw+1; 995 // Zero out the alias type cache. 996 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 997 // A NULL adr_type hits in the cache right away. Preload the right answer. 998 probe_alias_cache(NULL)->_index = AliasIdxTop; 999 1000 _intrinsics = NULL; 1001 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1002 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1003 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1004 _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1005 _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1006 register_library_intrinsics(); 1007 #ifdef ASSERT 1008 _type_verify_symmetry = true; 1009 #endif 1010 } 1011 1012 //---------------------------init_start---------------------------------------- 1013 // Install the StartNode on this compile object. 1014 void Compile::init_start(StartNode* s) { 1015 if (failing()) 1016 return; // already failing 1017 assert(s == start(), ""); 1018 } 1019 1020 /** 1021 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1022 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1023 * the ideal graph. 1024 */ 1025 StartNode* Compile::start() const { 1026 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1027 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1028 Node* start = root()->fast_out(i); 1029 if (start->is_Start()) { 1030 return start->as_Start(); 1031 } 1032 } 1033 fatal("Did not find Start node!"); 1034 return NULL; 1035 } 1036 1037 //-------------------------------immutable_memory------------------------------------- 1038 // Access immutable memory 1039 Node* Compile::immutable_memory() { 1040 if (_immutable_memory != NULL) { 1041 return _immutable_memory; 1042 } 1043 StartNode* s = start(); 1044 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1045 Node *p = s->fast_out(i); 1046 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1047 _immutable_memory = p; 1048 return _immutable_memory; 1049 } 1050 } 1051 ShouldNotReachHere(); 1052 return NULL; 1053 } 1054 1055 //----------------------set_cached_top_node------------------------------------ 1056 // Install the cached top node, and make sure Node::is_top works correctly. 1057 void Compile::set_cached_top_node(Node* tn) { 1058 if (tn != NULL) verify_top(tn); 1059 Node* old_top = _top; 1060 _top = tn; 1061 // Calling Node::setup_is_top allows the nodes the chance to adjust 1062 // their _out arrays. 1063 if (_top != NULL) _top->setup_is_top(); 1064 if (old_top != NULL) old_top->setup_is_top(); 1065 assert(_top == NULL || top()->is_top(), ""); 1066 } 1067 1068 #ifdef ASSERT 1069 uint Compile::count_live_nodes_by_graph_walk() { 1070 Unique_Node_List useful(comp_arena()); 1071 // Get useful node list by walking the graph. 1072 identify_useful_nodes(useful); 1073 return useful.size(); 1074 } 1075 1076 void Compile::print_missing_nodes() { 1077 1078 // Return if CompileLog is NULL and PrintIdealNodeCount is false. 1079 if ((_log == NULL) && (! PrintIdealNodeCount)) { 1080 return; 1081 } 1082 1083 // This is an expensive function. It is executed only when the user 1084 // specifies VerifyIdealNodeCount option or otherwise knows the 1085 // additional work that needs to be done to identify reachable nodes 1086 // by walking the flow graph and find the missing ones using 1087 // _dead_node_list. 1088 1089 Unique_Node_List useful(comp_arena()); 1090 // Get useful node list by walking the graph. 1091 identify_useful_nodes(useful); 1092 1093 uint l_nodes = C->live_nodes(); 1094 uint l_nodes_by_walk = useful.size(); 1095 1096 if (l_nodes != l_nodes_by_walk) { 1097 if (_log != NULL) { 1098 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1099 _log->stamp(); 1100 _log->end_head(); 1101 } 1102 VectorSet& useful_member_set = useful.member_set(); 1103 int last_idx = l_nodes_by_walk; 1104 for (int i = 0; i < last_idx; i++) { 1105 if (useful_member_set.test(i)) { 1106 if (_dead_node_list.test(i)) { 1107 if (_log != NULL) { 1108 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1109 } 1110 if (PrintIdealNodeCount) { 1111 // Print the log message to tty 1112 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1113 useful.at(i)->dump(); 1114 } 1115 } 1116 } 1117 else if (! _dead_node_list.test(i)) { 1118 if (_log != NULL) { 1119 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1120 } 1121 if (PrintIdealNodeCount) { 1122 // Print the log message to tty 1123 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1124 } 1125 } 1126 } 1127 if (_log != NULL) { 1128 _log->tail("mismatched_nodes"); 1129 } 1130 } 1131 } 1132 void Compile::record_modified_node(Node* n) { 1133 if (_modified_nodes != NULL && !_inlining_incrementally && 1134 n->outcnt() != 0 && !n->is_Con()) { 1135 _modified_nodes->push(n); 1136 } 1137 } 1138 1139 void Compile::remove_modified_node(Node* n) { 1140 if (_modified_nodes != NULL) { 1141 _modified_nodes->remove(n); 1142 } 1143 } 1144 #endif 1145 1146 #ifndef PRODUCT 1147 void Compile::verify_top(Node* tn) const { 1148 if (tn != NULL) { 1149 assert(tn->is_Con(), "top node must be a constant"); 1150 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1151 assert(tn->in(0) != NULL, "must have live top node"); 1152 } 1153 } 1154 #endif 1155 1156 1157 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1158 1159 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1160 guarantee(arr != NULL, ""); 1161 int num_blocks = arr->length(); 1162 if (grow_by < num_blocks) grow_by = num_blocks; 1163 int num_notes = grow_by * _node_notes_block_size; 1164 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1165 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1166 while (num_notes > 0) { 1167 arr->append(notes); 1168 notes += _node_notes_block_size; 1169 num_notes -= _node_notes_block_size; 1170 } 1171 assert(num_notes == 0, "exact multiple, please"); 1172 } 1173 1174 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1175 if (source == NULL || dest == NULL) return false; 1176 1177 if (dest->is_Con()) 1178 return false; // Do not push debug info onto constants. 1179 1180 #ifdef ASSERT 1181 // Leave a bread crumb trail pointing to the original node: 1182 if (dest != NULL && dest != source && dest->debug_orig() == NULL) { 1183 dest->set_debug_orig(source); 1184 } 1185 #endif 1186 1187 if (node_note_array() == NULL) 1188 return false; // Not collecting any notes now. 1189 1190 // This is a copy onto a pre-existing node, which may already have notes. 1191 // If both nodes have notes, do not overwrite any pre-existing notes. 1192 Node_Notes* source_notes = node_notes_at(source->_idx); 1193 if (source_notes == NULL || source_notes->is_clear()) return false; 1194 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1195 if (dest_notes == NULL || dest_notes->is_clear()) { 1196 return set_node_notes_at(dest->_idx, source_notes); 1197 } 1198 1199 Node_Notes merged_notes = (*source_notes); 1200 // The order of operations here ensures that dest notes will win... 1201 merged_notes.update_from(dest_notes); 1202 return set_node_notes_at(dest->_idx, &merged_notes); 1203 } 1204 1205 1206 //--------------------------allow_range_check_smearing------------------------- 1207 // Gating condition for coalescing similar range checks. 1208 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1209 // single covering check that is at least as strong as any of them. 1210 // If the optimization succeeds, the simplified (strengthened) range check 1211 // will always succeed. If it fails, we will deopt, and then give up 1212 // on the optimization. 1213 bool Compile::allow_range_check_smearing() const { 1214 // If this method has already thrown a range-check, 1215 // assume it was because we already tried range smearing 1216 // and it failed. 1217 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1218 return !already_trapped; 1219 } 1220 1221 1222 //------------------------------flatten_alias_type----------------------------- 1223 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1224 int offset = tj->offset(); 1225 TypePtr::PTR ptr = tj->ptr(); 1226 1227 // Known instance (scalarizable allocation) alias only with itself. 1228 bool is_known_inst = tj->isa_oopptr() != NULL && 1229 tj->is_oopptr()->is_known_instance(); 1230 1231 // Process weird unsafe references. 1232 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1233 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops"); 1234 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1235 tj = TypeOopPtr::BOTTOM; 1236 ptr = tj->ptr(); 1237 offset = tj->offset(); 1238 } 1239 1240 // Array pointers need some flattening 1241 const TypeAryPtr *ta = tj->isa_aryptr(); 1242 if (ta && ta->is_stable()) { 1243 // Erase stability property for alias analysis. 1244 tj = ta = ta->cast_to_stable(false); 1245 } 1246 if( ta && is_known_inst ) { 1247 if ( offset != Type::OffsetBot && 1248 offset > arrayOopDesc::length_offset_in_bytes() ) { 1249 offset = Type::OffsetBot; // Flatten constant access into array body only 1250 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id()); 1251 } 1252 } else if( ta && _AliasLevel >= 2 ) { 1253 // For arrays indexed by constant indices, we flatten the alias 1254 // space to include all of the array body. Only the header, klass 1255 // and array length can be accessed un-aliased. 1256 if( offset != Type::OffsetBot ) { 1257 if( ta->const_oop() ) { // MethodData* or Method* 1258 offset = Type::OffsetBot; // Flatten constant access into array body 1259 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset); 1260 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1261 // range is OK as-is. 1262 tj = ta = TypeAryPtr::RANGE; 1263 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1264 tj = TypeInstPtr::KLASS; // all klass loads look alike 1265 ta = TypeAryPtr::RANGE; // generic ignored junk 1266 ptr = TypePtr::BotPTR; 1267 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1268 tj = TypeInstPtr::MARK; 1269 ta = TypeAryPtr::RANGE; // generic ignored junk 1270 ptr = TypePtr::BotPTR; 1271 } else { // Random constant offset into array body 1272 offset = Type::OffsetBot; // Flatten constant access into array body 1273 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset); 1274 } 1275 } 1276 // Arrays of fixed size alias with arrays of unknown size. 1277 if (ta->size() != TypeInt::POS) { 1278 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1279 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset); 1280 } 1281 // Arrays of known objects become arrays of unknown objects. 1282 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1283 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1284 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1285 } 1286 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1287 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1288 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1289 } 1290 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1291 // cannot be distinguished by bytecode alone. 1292 if (ta->elem() == TypeInt::BOOL) { 1293 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1294 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1295 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1296 } 1297 // During the 2nd round of IterGVN, NotNull castings are removed. 1298 // Make sure the Bottom and NotNull variants alias the same. 1299 // Also, make sure exact and non-exact variants alias the same. 1300 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) { 1301 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset); 1302 } 1303 } 1304 1305 // Oop pointers need some flattening 1306 const TypeInstPtr *to = tj->isa_instptr(); 1307 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) { 1308 ciInstanceKlass *k = to->klass()->as_instance_klass(); 1309 if( ptr == TypePtr::Constant ) { 1310 if (to->klass() != ciEnv::current()->Class_klass() || 1311 offset < k->size_helper() * wordSize) { 1312 // No constant oop pointers (such as Strings); they alias with 1313 // unknown strings. 1314 assert(!is_known_inst, "not scalarizable allocation"); 1315 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1316 } 1317 } else if( is_known_inst ) { 1318 tj = to; // Keep NotNull and klass_is_exact for instance type 1319 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1320 // During the 2nd round of IterGVN, NotNull castings are removed. 1321 // Make sure the Bottom and NotNull variants alias the same. 1322 // Also, make sure exact and non-exact variants alias the same. 1323 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1324 } 1325 if (to->speculative() != NULL) { 1326 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id()); 1327 } 1328 // Canonicalize the holder of this field 1329 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1330 // First handle header references such as a LoadKlassNode, even if the 1331 // object's klass is unloaded at compile time (4965979). 1332 if (!is_known_inst) { // Do it only for non-instance types 1333 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset); 1334 } 1335 } else if (offset < 0 || offset >= k->size_helper() * wordSize) { 1336 // Static fields are in the space above the normal instance 1337 // fields in the java.lang.Class instance. 1338 if (to->klass() != ciEnv::current()->Class_klass()) { 1339 to = NULL; 1340 tj = TypeOopPtr::BOTTOM; 1341 offset = tj->offset(); 1342 } 1343 } else { 1344 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset); 1345 if (!k->equals(canonical_holder) || tj->offset() != offset) { 1346 if( is_known_inst ) { 1347 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id()); 1348 } else { 1349 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset); 1350 } 1351 } 1352 } 1353 } 1354 1355 // Klass pointers to object array klasses need some flattening 1356 const TypeKlassPtr *tk = tj->isa_klassptr(); 1357 if( tk ) { 1358 // If we are referencing a field within a Klass, we need 1359 // to assume the worst case of an Object. Both exact and 1360 // inexact types must flatten to the same alias class so 1361 // use NotNull as the PTR. 1362 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1363 1364 tj = tk = TypeKlassPtr::make(TypePtr::NotNull, 1365 TypeKlassPtr::OBJECT->klass(), 1366 offset); 1367 } 1368 1369 ciKlass* klass = tk->klass(); 1370 if( klass->is_obj_array_klass() ) { 1371 ciKlass* k = TypeAryPtr::OOPS->klass(); 1372 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs 1373 k = TypeInstPtr::BOTTOM->klass(); 1374 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset ); 1375 } 1376 1377 // Check for precise loads from the primary supertype array and force them 1378 // to the supertype cache alias index. Check for generic array loads from 1379 // the primary supertype array and also force them to the supertype cache 1380 // alias index. Since the same load can reach both, we need to merge 1381 // these 2 disparate memories into the same alias class. Since the 1382 // primary supertype array is read-only, there's no chance of confusion 1383 // where we bypass an array load and an array store. 1384 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1385 if (offset == Type::OffsetBot || 1386 (offset >= primary_supers_offset && 1387 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1388 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1389 offset = in_bytes(Klass::secondary_super_cache_offset()); 1390 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset ); 1391 } 1392 } 1393 1394 // Flatten all Raw pointers together. 1395 if (tj->base() == Type::RawPtr) 1396 tj = TypeRawPtr::BOTTOM; 1397 1398 if (tj->base() == Type::AnyPtr) 1399 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1400 1401 // Flatten all to bottom for now 1402 switch( _AliasLevel ) { 1403 case 0: 1404 tj = TypePtr::BOTTOM; 1405 break; 1406 case 1: // Flatten to: oop, static, field or array 1407 switch (tj->base()) { 1408 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break; 1409 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break; 1410 case Type::AryPtr: // do not distinguish arrays at all 1411 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break; 1412 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break; 1413 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it 1414 default: ShouldNotReachHere(); 1415 } 1416 break; 1417 case 2: // No collapsing at level 2; keep all splits 1418 case 3: // No collapsing at level 3; keep all splits 1419 break; 1420 default: 1421 Unimplemented(); 1422 } 1423 1424 offset = tj->offset(); 1425 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1426 1427 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1428 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1429 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1430 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1431 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1432 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1433 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1434 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1435 assert( tj->ptr() != TypePtr::TopPTR && 1436 tj->ptr() != TypePtr::AnyNull && 1437 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1438 // assert( tj->ptr() != TypePtr::Constant || 1439 // tj->base() == Type::RawPtr || 1440 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1441 1442 return tj; 1443 } 1444 1445 void Compile::AliasType::Init(int i, const TypePtr* at) { 1446 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1447 _index = i; 1448 _adr_type = at; 1449 _field = NULL; 1450 _element = NULL; 1451 _is_rewritable = true; // default 1452 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL; 1453 if (atoop != NULL && atoop->is_known_instance()) { 1454 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1455 _general_index = Compile::current()->get_alias_index(gt); 1456 } else { 1457 _general_index = 0; 1458 } 1459 } 1460 1461 BasicType Compile::AliasType::basic_type() const { 1462 if (element() != NULL) { 1463 const Type* element = adr_type()->is_aryptr()->elem(); 1464 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1465 } if (field() != NULL) { 1466 return field()->layout_type(); 1467 } else { 1468 return T_ILLEGAL; // unknown 1469 } 1470 } 1471 1472 //---------------------------------print_on------------------------------------ 1473 #ifndef PRODUCT 1474 void Compile::AliasType::print_on(outputStream* st) { 1475 if (index() < 10) 1476 st->print("@ <%d> ", index()); 1477 else st->print("@ <%d>", index()); 1478 st->print(is_rewritable() ? " " : " RO"); 1479 int offset = adr_type()->offset(); 1480 if (offset == Type::OffsetBot) 1481 st->print(" +any"); 1482 else st->print(" +%-3d", offset); 1483 st->print(" in "); 1484 adr_type()->dump_on(st); 1485 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1486 if (field() != NULL && tjp) { 1487 if (tjp->klass() != field()->holder() || 1488 tjp->offset() != field()->offset_in_bytes()) { 1489 st->print(" != "); 1490 field()->print(); 1491 st->print(" ***"); 1492 } 1493 } 1494 } 1495 1496 void print_alias_types() { 1497 Compile* C = Compile::current(); 1498 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1499 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1500 C->alias_type(idx)->print_on(tty); 1501 tty->cr(); 1502 } 1503 } 1504 #endif 1505 1506 1507 //----------------------------probe_alias_cache-------------------------------- 1508 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1509 intptr_t key = (intptr_t) adr_type; 1510 key ^= key >> logAliasCacheSize; 1511 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1512 } 1513 1514 1515 //-----------------------------grow_alias_types-------------------------------- 1516 void Compile::grow_alias_types() { 1517 const int old_ats = _max_alias_types; // how many before? 1518 const int new_ats = old_ats; // how many more? 1519 const int grow_ats = old_ats+new_ats; // how many now? 1520 _max_alias_types = grow_ats; 1521 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1522 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1523 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1524 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1525 } 1526 1527 1528 //--------------------------------find_alias_type------------------------------ 1529 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1530 if (_AliasLevel == 0) 1531 return alias_type(AliasIdxBot); 1532 1533 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1534 if (ace->_adr_type == adr_type) { 1535 return alias_type(ace->_index); 1536 } 1537 1538 // Handle special cases. 1539 if (adr_type == NULL) return alias_type(AliasIdxTop); 1540 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1541 1542 // Do it the slow way. 1543 const TypePtr* flat = flatten_alias_type(adr_type); 1544 1545 #ifdef ASSERT 1546 { 1547 ResourceMark rm; 1548 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1549 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1550 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1551 Type::str(adr_type)); 1552 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1553 const TypeOopPtr* foop = flat->is_oopptr(); 1554 // Scalarizable allocations have exact klass always. 1555 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1556 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1557 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1558 Type::str(foop), Type::str(xoop)); 1559 } 1560 } 1561 #endif 1562 1563 int idx = AliasIdxTop; 1564 for (int i = 0; i < num_alias_types(); i++) { 1565 if (alias_type(i)->adr_type() == flat) { 1566 idx = i; 1567 break; 1568 } 1569 } 1570 1571 if (idx == AliasIdxTop) { 1572 if (no_create) return NULL; 1573 // Grow the array if necessary. 1574 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1575 // Add a new alias type. 1576 idx = _num_alias_types++; 1577 _alias_types[idx]->Init(idx, flat); 1578 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1579 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1580 if (flat->isa_instptr()) { 1581 if (flat->offset() == java_lang_Class::klass_offset() 1582 && flat->is_instptr()->klass() == env()->Class_klass()) 1583 alias_type(idx)->set_rewritable(false); 1584 } 1585 if (flat->isa_aryptr()) { 1586 #ifdef ASSERT 1587 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1588 // (T_BYTE has the weakest alignment and size restrictions...) 1589 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1590 #endif 1591 if (flat->offset() == TypePtr::OffsetBot) { 1592 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1593 } 1594 } 1595 if (flat->isa_klassptr()) { 1596 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1597 alias_type(idx)->set_rewritable(false); 1598 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1599 alias_type(idx)->set_rewritable(false); 1600 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1601 alias_type(idx)->set_rewritable(false); 1602 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1603 alias_type(idx)->set_rewritable(false); 1604 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1605 alias_type(idx)->set_rewritable(false); 1606 } 1607 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1608 // but the base pointer type is not distinctive enough to identify 1609 // references into JavaThread.) 1610 1611 // Check for final fields. 1612 const TypeInstPtr* tinst = flat->isa_instptr(); 1613 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1614 ciField* field; 1615 if (tinst->const_oop() != NULL && 1616 tinst->klass() == ciEnv::current()->Class_klass() && 1617 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) { 1618 // static field 1619 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1620 field = k->get_field_by_offset(tinst->offset(), true); 1621 } else { 1622 ciInstanceKlass *k = tinst->klass()->as_instance_klass(); 1623 field = k->get_field_by_offset(tinst->offset(), false); 1624 } 1625 assert(field == NULL || 1626 original_field == NULL || 1627 (field->holder() == original_field->holder() && 1628 field->offset() == original_field->offset() && 1629 field->is_static() == original_field->is_static()), "wrong field?"); 1630 // Set field() and is_rewritable() attributes. 1631 if (field != NULL) alias_type(idx)->set_field(field); 1632 } 1633 } 1634 1635 // Fill the cache for next time. 1636 ace->_adr_type = adr_type; 1637 ace->_index = idx; 1638 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1639 1640 // Might as well try to fill the cache for the flattened version, too. 1641 AliasCacheEntry* face = probe_alias_cache(flat); 1642 if (face->_adr_type == NULL) { 1643 face->_adr_type = flat; 1644 face->_index = idx; 1645 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1646 } 1647 1648 return alias_type(idx); 1649 } 1650 1651 1652 Compile::AliasType* Compile::alias_type(ciField* field) { 1653 const TypeOopPtr* t; 1654 if (field->is_static()) 1655 t = TypeInstPtr::make(field->holder()->java_mirror()); 1656 else 1657 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1658 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1659 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1660 return atp; 1661 } 1662 1663 1664 //------------------------------have_alias_type-------------------------------- 1665 bool Compile::have_alias_type(const TypePtr* adr_type) { 1666 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1667 if (ace->_adr_type == adr_type) { 1668 return true; 1669 } 1670 1671 // Handle special cases. 1672 if (adr_type == NULL) return true; 1673 if (adr_type == TypePtr::BOTTOM) return true; 1674 1675 return find_alias_type(adr_type, true, NULL) != NULL; 1676 } 1677 1678 //-----------------------------must_alias-------------------------------------- 1679 // True if all values of the given address type are in the given alias category. 1680 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1681 if (alias_idx == AliasIdxBot) return true; // the universal category 1682 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP 1683 if (alias_idx == AliasIdxTop) return false; // the empty category 1684 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1685 1686 // the only remaining possible overlap is identity 1687 int adr_idx = get_alias_index(adr_type); 1688 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1689 assert(adr_idx == alias_idx || 1690 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1691 && adr_type != TypeOopPtr::BOTTOM), 1692 "should not be testing for overlap with an unsafe pointer"); 1693 return adr_idx == alias_idx; 1694 } 1695 1696 //------------------------------can_alias-------------------------------------- 1697 // True if any values of the given address type are in the given alias category. 1698 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1699 if (alias_idx == AliasIdxTop) return false; // the empty category 1700 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP 1701 // Known instance doesn't alias with bottom memory 1702 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1703 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1704 1705 // the only remaining possible overlap is identity 1706 int adr_idx = get_alias_index(adr_type); 1707 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1708 return adr_idx == alias_idx; 1709 } 1710 1711 1712 1713 //---------------------------pop_warm_call------------------------------------- 1714 WarmCallInfo* Compile::pop_warm_call() { 1715 WarmCallInfo* wci = _warm_calls; 1716 if (wci != NULL) _warm_calls = wci->remove_from(wci); 1717 return wci; 1718 } 1719 1720 //----------------------------Inline_Warm-------------------------------------- 1721 int Compile::Inline_Warm() { 1722 // If there is room, try to inline some more warm call sites. 1723 // %%% Do a graph index compaction pass when we think we're out of space? 1724 if (!InlineWarmCalls) return 0; 1725 1726 int calls_made_hot = 0; 1727 int room_to_grow = NodeCountInliningCutoff - unique(); 1728 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep); 1729 int amount_grown = 0; 1730 WarmCallInfo* call; 1731 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) { 1732 int est_size = (int)call->size(); 1733 if (est_size > (room_to_grow - amount_grown)) { 1734 // This one won't fit anyway. Get rid of it. 1735 call->make_cold(); 1736 continue; 1737 } 1738 call->make_hot(); 1739 calls_made_hot++; 1740 amount_grown += est_size; 1741 amount_to_grow -= est_size; 1742 } 1743 1744 if (calls_made_hot > 0) set_major_progress(); 1745 return calls_made_hot; 1746 } 1747 1748 1749 //----------------------------Finish_Warm-------------------------------------- 1750 void Compile::Finish_Warm() { 1751 if (!InlineWarmCalls) return; 1752 if (failing()) return; 1753 if (warm_calls() == NULL) return; 1754 1755 // Clean up loose ends, if we are out of space for inlining. 1756 WarmCallInfo* call; 1757 while ((call = pop_warm_call()) != NULL) { 1758 call->make_cold(); 1759 } 1760 } 1761 1762 //---------------------cleanup_loop_predicates----------------------- 1763 // Remove the opaque nodes that protect the predicates so that all unused 1764 // checks and uncommon_traps will be eliminated from the ideal graph 1765 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) { 1766 if (predicate_count()==0) return; 1767 for (int i = predicate_count(); i > 0; i--) { 1768 Node * n = predicate_opaque1_node(i-1); 1769 assert(n->Opcode() == Op_Opaque1, "must be"); 1770 igvn.replace_node(n, n->in(1)); 1771 } 1772 assert(predicate_count()==0, "should be clean!"); 1773 } 1774 1775 void Compile::add_range_check_cast(Node* n) { 1776 assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1777 assert(!_range_check_casts->contains(n), "duplicate entry in range check casts"); 1778 _range_check_casts->append(n); 1779 } 1780 1781 // Remove all range check dependent CastIINodes. 1782 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) { 1783 for (int i = range_check_cast_count(); i > 0; i--) { 1784 Node* cast = range_check_cast_node(i-1); 1785 assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1786 igvn.replace_node(cast, cast->in(1)); 1787 } 1788 assert(range_check_cast_count() == 0, "should be empty"); 1789 } 1790 1791 void Compile::add_opaque4_node(Node* n) { 1792 assert(n->Opcode() == Op_Opaque4, "Opaque4 only"); 1793 assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list"); 1794 _opaque4_nodes->append(n); 1795 } 1796 1797 // Remove all Opaque4 nodes. 1798 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) { 1799 for (int i = opaque4_count(); i > 0; i--) { 1800 Node* opaq = opaque4_node(i-1); 1801 assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only"); 1802 igvn.replace_node(opaq, opaq->in(2)); 1803 } 1804 assert(opaque4_count() == 0, "should be empty"); 1805 } 1806 1807 // StringOpts and late inlining of string methods 1808 void Compile::inline_string_calls(bool parse_time) { 1809 { 1810 // remove useless nodes to make the usage analysis simpler 1811 ResourceMark rm; 1812 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1813 } 1814 1815 { 1816 ResourceMark rm; 1817 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1818 PhaseStringOpts pso(initial_gvn(), for_igvn()); 1819 print_method(PHASE_AFTER_STRINGOPTS, 3); 1820 } 1821 1822 // now inline anything that we skipped the first time around 1823 if (!parse_time) { 1824 _late_inlines_pos = _late_inlines.length(); 1825 } 1826 1827 while (_string_late_inlines.length() > 0) { 1828 CallGenerator* cg = _string_late_inlines.pop(); 1829 cg->do_late_inline(); 1830 if (failing()) return; 1831 } 1832 _string_late_inlines.trunc_to(0); 1833 } 1834 1835 // Late inlining of boxing methods 1836 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 1837 if (_boxing_late_inlines.length() > 0) { 1838 assert(has_boxed_value(), "inconsistent"); 1839 1840 PhaseGVN* gvn = initial_gvn(); 1841 set_inlining_incrementally(true); 1842 1843 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1844 for_igvn()->clear(); 1845 gvn->replace_with(&igvn); 1846 1847 _late_inlines_pos = _late_inlines.length(); 1848 1849 while (_boxing_late_inlines.length() > 0) { 1850 CallGenerator* cg = _boxing_late_inlines.pop(); 1851 cg->do_late_inline(); 1852 if (failing()) return; 1853 } 1854 _boxing_late_inlines.trunc_to(0); 1855 1856 inline_incrementally_cleanup(igvn); 1857 1858 set_inlining_incrementally(false); 1859 } 1860 } 1861 1862 bool Compile::inline_incrementally_one() { 1863 assert(IncrementalInline, "incremental inlining should be on"); 1864 1865 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 1866 set_inlining_progress(false); 1867 set_do_cleanup(false); 1868 int i = 0; 1869 for (; i <_late_inlines.length() && !inlining_progress(); i++) { 1870 CallGenerator* cg = _late_inlines.at(i); 1871 _late_inlines_pos = i+1; 1872 cg->do_late_inline(); 1873 if (failing()) return false; 1874 } 1875 int j = 0; 1876 for (; i < _late_inlines.length(); i++, j++) { 1877 _late_inlines.at_put(j, _late_inlines.at(i)); 1878 } 1879 _late_inlines.trunc_to(j); 1880 assert(inlining_progress() || _late_inlines.length() == 0, ""); 1881 1882 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 1883 1884 set_inlining_progress(false); 1885 set_do_cleanup(false); 1886 return (_late_inlines.length() > 0) && !needs_cleanup; 1887 } 1888 1889 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 1890 { 1891 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 1892 ResourceMark rm; 1893 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1894 } 1895 { 1896 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 1897 igvn = PhaseIterGVN(initial_gvn()); 1898 igvn.optimize(); 1899 } 1900 } 1901 1902 // Perform incremental inlining until bound on number of live nodes is reached 1903 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 1904 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 1905 1906 set_inlining_incrementally(true); 1907 uint low_live_nodes = 0; 1908 1909 while (_late_inlines.length() > 0) { 1910 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 1911 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 1912 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 1913 // PhaseIdealLoop is expensive so we only try it once we are 1914 // out of live nodes and we only try it again if the previous 1915 // helped got the number of nodes down significantly 1916 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 1917 if (failing()) return; 1918 low_live_nodes = live_nodes(); 1919 _major_progress = true; 1920 } 1921 1922 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 1923 break; // finish 1924 } 1925 } 1926 1927 for_igvn()->clear(); 1928 initial_gvn()->replace_with(&igvn); 1929 1930 while (inline_incrementally_one()) { 1931 assert(!failing(), "inconsistent"); 1932 } 1933 1934 if (failing()) return; 1935 1936 inline_incrementally_cleanup(igvn); 1937 1938 if (failing()) return; 1939 } 1940 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1941 1942 if (_string_late_inlines.length() > 0) { 1943 assert(has_stringbuilder(), "inconsistent"); 1944 for_igvn()->clear(); 1945 initial_gvn()->replace_with(&igvn); 1946 1947 inline_string_calls(false); 1948 1949 if (failing()) return; 1950 1951 inline_incrementally_cleanup(igvn); 1952 } 1953 1954 set_inlining_incrementally(false); 1955 } 1956 1957 1958 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 1959 if(_loop_opts_cnt > 0) { 1960 debug_only( int cnt = 0; ); 1961 while(major_progress() && (_loop_opts_cnt > 0)) { 1962 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 1963 assert( cnt++ < 40, "infinite cycle in loop optimization" ); 1964 PhaseIdealLoop::optimize(igvn, mode); 1965 _loop_opts_cnt--; 1966 if (failing()) return false; 1967 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 1968 } 1969 } 1970 return true; 1971 } 1972 1973 // Remove edges from "root" to each SafePoint at a backward branch. 1974 // They were inserted during parsing (see add_safepoint()) to make 1975 // infinite loops without calls or exceptions visible to root, i.e., 1976 // useful. 1977 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 1978 Node *r = root(); 1979 if (r != NULL) { 1980 for (uint i = r->req(); i < r->len(); ++i) { 1981 Node *n = r->in(i); 1982 if (n != NULL && n->is_SafePoint()) { 1983 r->rm_prec(i); 1984 if (n->outcnt() == 0) { 1985 igvn.remove_dead_node(n); 1986 } 1987 --i; 1988 } 1989 } 1990 // Parsing may have added top inputs to the root node (Path 1991 // leading to the Halt node proven dead). Make sure we get a 1992 // chance to clean them up. 1993 igvn._worklist.push(r); 1994 igvn.optimize(); 1995 } 1996 } 1997 1998 //------------------------------Optimize--------------------------------------- 1999 // Given a graph, optimize it. 2000 void Compile::Optimize() { 2001 TracePhase tp("optimizer", &timers[_t_optimizer]); 2002 2003 #ifndef PRODUCT 2004 if (_directive->BreakAtCompileOption) { 2005 BREAKPOINT; 2006 } 2007 2008 #endif 2009 2010 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2011 #ifdef ASSERT 2012 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2013 #endif 2014 2015 ResourceMark rm; 2016 2017 print_inlining_reinit(); 2018 2019 NOT_PRODUCT( verify_graph_edges(); ) 2020 2021 print_method(PHASE_AFTER_PARSING); 2022 2023 { 2024 // Iterative Global Value Numbering, including ideal transforms 2025 // Initialize IterGVN with types and values from parse-time GVN 2026 PhaseIterGVN igvn(initial_gvn()); 2027 #ifdef ASSERT 2028 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2029 #endif 2030 { 2031 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2032 igvn.optimize(); 2033 } 2034 2035 if (failing()) return; 2036 2037 print_method(PHASE_ITER_GVN1, 2); 2038 2039 inline_incrementally(igvn); 2040 2041 print_method(PHASE_INCREMENTAL_INLINE, 2); 2042 2043 if (failing()) return; 2044 2045 if (eliminate_boxing()) { 2046 // Inline valueOf() methods now. 2047 inline_boxing_calls(igvn); 2048 2049 if (AlwaysIncrementalInline) { 2050 inline_incrementally(igvn); 2051 } 2052 2053 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2054 2055 if (failing()) return; 2056 } 2057 2058 // Now that all inlining is over, cut edge from root to loop 2059 // safepoints 2060 remove_root_to_sfpts_edges(igvn); 2061 2062 // Remove the speculative part of types and clean up the graph from 2063 // the extra CastPP nodes whose only purpose is to carry them. Do 2064 // that early so that optimizations are not disrupted by the extra 2065 // CastPP nodes. 2066 remove_speculative_types(igvn); 2067 2068 // No more new expensive nodes will be added to the list from here 2069 // so keep only the actual candidates for optimizations. 2070 cleanup_expensive_nodes(igvn); 2071 2072 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2073 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2074 initial_gvn()->replace_with(&igvn); 2075 for_igvn()->clear(); 2076 Unique_Node_List new_worklist(C->comp_arena()); 2077 { 2078 ResourceMark rm; 2079 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist); 2080 } 2081 set_for_igvn(&new_worklist); 2082 igvn = PhaseIterGVN(initial_gvn()); 2083 igvn.optimize(); 2084 } 2085 2086 // Perform escape analysis 2087 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) { 2088 if (has_loops()) { 2089 // Cleanup graph (remove dead nodes). 2090 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2091 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2092 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2093 if (failing()) return; 2094 } 2095 ConnectionGraph::do_analysis(this, &igvn); 2096 2097 if (failing()) return; 2098 2099 // Optimize out fields loads from scalar replaceable allocations. 2100 igvn.optimize(); 2101 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2102 2103 if (failing()) return; 2104 2105 if (congraph() != NULL && macro_count() > 0) { 2106 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2107 PhaseMacroExpand mexp(igvn); 2108 mexp.eliminate_macro_nodes(); 2109 igvn.set_delay_transform(false); 2110 2111 igvn.optimize(); 2112 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2113 2114 if (failing()) return; 2115 } 2116 } 2117 2118 // Loop transforms on the ideal graph. Range Check Elimination, 2119 // peeling, unrolling, etc. 2120 2121 // Set loop opts counter 2122 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2123 { 2124 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2125 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2126 _loop_opts_cnt--; 2127 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2128 if (failing()) return; 2129 } 2130 // Loop opts pass if partial peeling occurred in previous pass 2131 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2132 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2133 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2134 _loop_opts_cnt--; 2135 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2136 if (failing()) return; 2137 } 2138 // Loop opts pass for loop-unrolling before CCP 2139 if(major_progress() && (_loop_opts_cnt > 0)) { 2140 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2141 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2142 _loop_opts_cnt--; 2143 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2144 } 2145 if (!failing()) { 2146 // Verify that last round of loop opts produced a valid graph 2147 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2148 PhaseIdealLoop::verify(igvn); 2149 } 2150 } 2151 if (failing()) return; 2152 2153 // Conditional Constant Propagation; 2154 PhaseCCP ccp( &igvn ); 2155 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2156 { 2157 TracePhase tp("ccp", &timers[_t_ccp]); 2158 ccp.do_transform(); 2159 } 2160 print_method(PHASE_CPP1, 2); 2161 2162 assert( true, "Break here to ccp.dump_old2new_map()"); 2163 2164 // Iterative Global Value Numbering, including ideal transforms 2165 { 2166 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2167 igvn = ccp; 2168 igvn.optimize(); 2169 } 2170 print_method(PHASE_ITER_GVN2, 2); 2171 2172 if (failing()) return; 2173 2174 // Loop transforms on the ideal graph. Range Check Elimination, 2175 // peeling, unrolling, etc. 2176 if (!optimize_loops(igvn, LoopOptsDefault)) { 2177 return; 2178 } 2179 2180 if (failing()) return; 2181 2182 // Ensure that major progress is now clear 2183 C->clear_major_progress(); 2184 2185 { 2186 // Verify that all previous optimizations produced a valid graph 2187 // at least to this point, even if no loop optimizations were done. 2188 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2189 PhaseIdealLoop::verify(igvn); 2190 } 2191 2192 if (range_check_cast_count() > 0) { 2193 // No more loop optimizations. Remove all range check dependent CastIINodes. 2194 C->remove_range_check_casts(igvn); 2195 igvn.optimize(); 2196 } 2197 2198 #ifdef ASSERT 2199 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2200 #endif 2201 2202 { 2203 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2204 PhaseMacroExpand mex(igvn); 2205 if (mex.expand_macro_nodes()) { 2206 assert(failing(), "must bail out w/ explicit message"); 2207 return; 2208 } 2209 print_method(PHASE_MACRO_EXPANSION, 2); 2210 } 2211 2212 { 2213 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2214 if (bs->expand_barriers(this, igvn)) { 2215 assert(failing(), "must bail out w/ explicit message"); 2216 return; 2217 } 2218 print_method(PHASE_BARRIER_EXPANSION, 2); 2219 } 2220 2221 if (opaque4_count() > 0) { 2222 C->remove_opaque4_nodes(igvn); 2223 igvn.optimize(); 2224 } 2225 2226 if (C->max_vector_size() > 0) { 2227 C->optimize_logic_cones(igvn); 2228 igvn.optimize(); 2229 } 2230 2231 DEBUG_ONLY( _modified_nodes = NULL; ) 2232 } // (End scope of igvn; run destructor if necessary for asserts.) 2233 2234 process_print_inlining(); 2235 // A method with only infinite loops has no edges entering loops from root 2236 { 2237 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2238 if (final_graph_reshaping()) { 2239 assert(failing(), "must bail out w/ explicit message"); 2240 return; 2241 } 2242 } 2243 2244 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2245 } 2246 2247 //---------------------------- Bitwise operation packing optimization --------------------------- 2248 2249 static bool is_vector_unary_bitwise_op(Node* n) { 2250 return n->Opcode() == Op_XorV && 2251 VectorNode::is_vector_bitwise_not_pattern(n); 2252 } 2253 2254 static bool is_vector_binary_bitwise_op(Node* n) { 2255 switch (n->Opcode()) { 2256 case Op_AndV: 2257 case Op_OrV: 2258 return true; 2259 2260 case Op_XorV: 2261 return !is_vector_unary_bitwise_op(n); 2262 2263 default: 2264 return false; 2265 } 2266 } 2267 2268 static bool is_vector_ternary_bitwise_op(Node* n) { 2269 return n->Opcode() == Op_MacroLogicV; 2270 } 2271 2272 static bool is_vector_bitwise_op(Node* n) { 2273 return is_vector_unary_bitwise_op(n) || 2274 is_vector_binary_bitwise_op(n) || 2275 is_vector_ternary_bitwise_op(n); 2276 } 2277 2278 static bool is_vector_bitwise_cone_root(Node* n) { 2279 if (!is_vector_bitwise_op(n)) { 2280 return false; 2281 } 2282 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2283 if (is_vector_bitwise_op(n->fast_out(i))) { 2284 return false; 2285 } 2286 } 2287 return true; 2288 } 2289 2290 static uint collect_unique_inputs(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2291 uint cnt = 0; 2292 if (is_vector_bitwise_op(n)) { 2293 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2294 for (uint i = 1; i < n->req(); i++) { 2295 Node* in = n->in(i); 2296 bool skip = VectorNode::is_all_ones_vector(in); 2297 if (!skip && !inputs.member(in)) { 2298 inputs.push(in); 2299 cnt++; 2300 } 2301 } 2302 assert(cnt <= 1, "not unary"); 2303 } else { 2304 uint last_req = n->req(); 2305 if (is_vector_ternary_bitwise_op(n)) { 2306 last_req = n->req() - 1; // skip last input 2307 } 2308 for (uint i = 1; i < last_req; i++) { 2309 Node* def = n->in(i); 2310 if (!inputs.member(def)) { 2311 inputs.push(def); 2312 cnt++; 2313 } 2314 } 2315 } 2316 partition.push(n); 2317 } else { // not a bitwise operations 2318 if (!inputs.member(n)) { 2319 inputs.push(n); 2320 cnt++; 2321 } 2322 } 2323 return cnt; 2324 } 2325 2326 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2327 Unique_Node_List useful_nodes; 2328 C->identify_useful_nodes(useful_nodes); 2329 2330 for (uint i = 0; i < useful_nodes.size(); i++) { 2331 Node* n = useful_nodes.at(i); 2332 if (is_vector_bitwise_cone_root(n)) { 2333 list.push(n); 2334 } 2335 } 2336 } 2337 2338 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2339 const TypeVect* vt, 2340 Unique_Node_List& partition, 2341 Unique_Node_List& inputs) { 2342 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2343 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2344 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2345 2346 Node* in1 = inputs.at(0); 2347 Node* in2 = inputs.at(1); 2348 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2349 2350 uint func = compute_truth_table(partition, inputs); 2351 return igvn.transform(MacroLogicVNode::make(igvn, in3, in2, in1, func, vt)); 2352 } 2353 2354 static uint extract_bit(uint func, uint pos) { 2355 return (func & (1 << pos)) >> pos; 2356 } 2357 2358 // 2359 // A macro logic node represents a truth table. It has 4 inputs, 2360 // First three inputs corresponds to 3 columns of a truth table 2361 // and fourth input captures the logic function. 2362 // 2363 // eg. fn = (in1 AND in2) OR in3; 2364 // 2365 // MacroNode(in1,in2,in3,fn) 2366 // 2367 // ----------------- 2368 // in1 in2 in3 fn 2369 // ----------------- 2370 // 0 0 0 0 2371 // 0 0 1 1 2372 // 0 1 0 0 2373 // 0 1 1 1 2374 // 1 0 0 0 2375 // 1 0 1 1 2376 // 1 1 0 1 2377 // 1 1 1 1 2378 // 2379 2380 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2381 int res = 0; 2382 for (int i = 0; i < 8; i++) { 2383 int bit1 = extract_bit(in1, i); 2384 int bit2 = extract_bit(in2, i); 2385 int bit3 = extract_bit(in3, i); 2386 2387 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2388 int func_bit = extract_bit(func, func_bit_pos); 2389 2390 res |= func_bit << i; 2391 } 2392 return res; 2393 } 2394 2395 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2396 assert(n != NULL, ""); 2397 assert(eval_map.contains(n), "absent"); 2398 return *(eval_map.get(n)); 2399 } 2400 2401 static void eval_operands(Node* n, 2402 uint& func1, uint& func2, uint& func3, 2403 ResourceHashtable<Node*,uint>& eval_map) { 2404 assert(is_vector_bitwise_op(n), ""); 2405 func1 = eval_operand(n->in(1), eval_map); 2406 2407 if (is_vector_binary_bitwise_op(n)) { 2408 func2 = eval_operand(n->in(2), eval_map); 2409 } else if (is_vector_ternary_bitwise_op(n)) { 2410 func2 = eval_operand(n->in(2), eval_map); 2411 func3 = eval_operand(n->in(3), eval_map); 2412 } else { 2413 assert(is_vector_unary_bitwise_op(n), "not unary"); 2414 } 2415 } 2416 2417 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2418 assert(inputs.size() <= 3, "sanity"); 2419 ResourceMark rm; 2420 uint res = 0; 2421 ResourceHashtable<Node*,uint> eval_map; 2422 2423 // Populate precomputed functions for inputs. 2424 // Each input corresponds to one column of 3 input truth-table. 2425 uint input_funcs[] = { 0xAA, // (_, _, a) -> a 2426 0xCC, // (_, b, _) -> b 2427 0xF0 }; // (c, _, _) -> c 2428 for (uint i = 0; i < inputs.size(); i++) { 2429 eval_map.put(inputs.at(i), input_funcs[i]); 2430 } 2431 2432 for (uint i = 0; i < partition.size(); i++) { 2433 Node* n = partition.at(i); 2434 2435 uint func1 = 0, func2 = 0, func3 = 0; 2436 eval_operands(n, func1, func2, func3, eval_map); 2437 2438 switch (n->Opcode()) { 2439 case Op_OrV: 2440 assert(func3 == 0, "not binary"); 2441 res = func1 | func2; 2442 break; 2443 case Op_AndV: 2444 assert(func3 == 0, "not binary"); 2445 res = func1 & func2; 2446 break; 2447 case Op_XorV: 2448 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2449 assert(func2 == 0 && func3 == 0, "not unary"); 2450 res = (~func1) & 0xFF; 2451 } else { 2452 assert(func3 == 0, "not binary"); 2453 res = func1 ^ func2; 2454 } 2455 break; 2456 case Op_MacroLogicV: 2457 // Ordering of inputs may change during evaluation of sub-tree 2458 // containing MacroLogic node as a child node, thus a re-evaluation 2459 // makes sure that function is evaluated in context of current 2460 // inputs. 2461 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2462 break; 2463 2464 default: assert(false, "not supported: %s", n->Name()); 2465 } 2466 assert(res <= 0xFF, "invalid"); 2467 eval_map.put(n, res); 2468 } 2469 return res; 2470 } 2471 2472 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2473 assert(partition.size() == 0, "not empty"); 2474 assert(inputs.size() == 0, "not empty"); 2475 if (is_vector_ternary_bitwise_op(n)) { 2476 return false; 2477 } 2478 2479 bool is_unary_op = is_vector_unary_bitwise_op(n); 2480 if (is_unary_op) { 2481 assert(collect_unique_inputs(n, partition, inputs) == 1, "not unary"); 2482 return false; // too few inputs 2483 } 2484 2485 assert(is_vector_binary_bitwise_op(n), "not binary"); 2486 Node* in1 = n->in(1); 2487 Node* in2 = n->in(2); 2488 2489 int in1_unique_inputs_cnt = collect_unique_inputs(in1, partition, inputs); 2490 int in2_unique_inputs_cnt = collect_unique_inputs(in2, partition, inputs); 2491 partition.push(n); 2492 2493 // Too many inputs? 2494 if (inputs.size() > 3) { 2495 partition.clear(); 2496 inputs.clear(); 2497 { // Recompute in2 inputs 2498 Unique_Node_List not_used; 2499 in2_unique_inputs_cnt = collect_unique_inputs(in2, not_used, not_used); 2500 } 2501 // Pick the node with minimum number of inputs. 2502 if (in1_unique_inputs_cnt >= 3 && in2_unique_inputs_cnt >= 3) { 2503 return false; // still too many inputs 2504 } 2505 // Recompute partition & inputs. 2506 Node* child = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in1 : in2); 2507 collect_unique_inputs(child, partition, inputs); 2508 2509 Node* other_input = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in2 : in1); 2510 inputs.push(other_input); 2511 2512 partition.push(n); 2513 } 2514 2515 return (partition.size() == 2 || partition.size() == 3) && 2516 (inputs.size() == 2 || inputs.size() == 3); 2517 } 2518 2519 2520 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2521 assert(is_vector_bitwise_op(n), "not a root"); 2522 2523 visited.set(n->_idx); 2524 2525 // 1) Do a DFS walk over the logic cone. 2526 for (uint i = 1; i < n->req(); i++) { 2527 Node* in = n->in(i); 2528 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2529 process_logic_cone_root(igvn, in, visited); 2530 } 2531 } 2532 2533 // 2) Bottom up traversal: Merge node[s] with 2534 // the parent to form macro logic node. 2535 Unique_Node_List partition; 2536 Unique_Node_List inputs; 2537 if (compute_logic_cone(n, partition, inputs)) { 2538 const TypeVect* vt = n->bottom_type()->is_vect(); 2539 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2540 igvn.replace_node(n, macro_logic); 2541 } 2542 } 2543 2544 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2545 ResourceMark rm; 2546 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2547 Unique_Node_List list; 2548 collect_logic_cone_roots(list); 2549 2550 while (list.size() > 0) { 2551 Node* n = list.pop(); 2552 const TypeVect* vt = n->bottom_type()->is_vect(); 2553 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2554 if (supported) { 2555 VectorSet visited(comp_arena()); 2556 process_logic_cone_root(igvn, n, visited); 2557 } 2558 } 2559 } 2560 } 2561 2562 //------------------------------Code_Gen--------------------------------------- 2563 // Given a graph, generate code for it 2564 void Compile::Code_Gen() { 2565 if (failing()) { 2566 return; 2567 } 2568 2569 // Perform instruction selection. You might think we could reclaim Matcher 2570 // memory PDQ, but actually the Matcher is used in generating spill code. 2571 // Internals of the Matcher (including some VectorSets) must remain live 2572 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2573 // set a bit in reclaimed memory. 2574 2575 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2576 // nodes. Mapping is only valid at the root of each matched subtree. 2577 NOT_PRODUCT( verify_graph_edges(); ) 2578 2579 Matcher matcher; 2580 _matcher = &matcher; 2581 { 2582 TracePhase tp("matcher", &timers[_t_matcher]); 2583 matcher.match(); 2584 if (failing()) { 2585 return; 2586 } 2587 } 2588 2589 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2590 // nodes. Mapping is only valid at the root of each matched subtree. 2591 NOT_PRODUCT( verify_graph_edges(); ) 2592 2593 // If you have too many nodes, or if matching has failed, bail out 2594 check_node_count(0, "out of nodes matching instructions"); 2595 if (failing()) { 2596 return; 2597 } 2598 2599 print_method(PHASE_MATCHING, 2); 2600 2601 // Build a proper-looking CFG 2602 PhaseCFG cfg(node_arena(), root(), matcher); 2603 _cfg = &cfg; 2604 { 2605 TracePhase tp("scheduler", &timers[_t_scheduler]); 2606 bool success = cfg.do_global_code_motion(); 2607 if (!success) { 2608 return; 2609 } 2610 2611 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2612 NOT_PRODUCT( verify_graph_edges(); ) 2613 debug_only( cfg.verify(); ) 2614 } 2615 2616 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2617 _regalloc = ®alloc; 2618 { 2619 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2620 // Perform register allocation. After Chaitin, use-def chains are 2621 // no longer accurate (at spill code) and so must be ignored. 2622 // Node->LRG->reg mappings are still accurate. 2623 _regalloc->Register_Allocate(); 2624 2625 // Bail out if the allocator builds too many nodes 2626 if (failing()) { 2627 return; 2628 } 2629 } 2630 2631 // Prior to register allocation we kept empty basic blocks in case the 2632 // the allocator needed a place to spill. After register allocation we 2633 // are not adding any new instructions. If any basic block is empty, we 2634 // can now safely remove it. 2635 { 2636 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2637 cfg.remove_empty_blocks(); 2638 if (do_freq_based_layout()) { 2639 PhaseBlockLayout layout(cfg); 2640 } else { 2641 cfg.set_loop_alignment(); 2642 } 2643 cfg.fixup_flow(); 2644 } 2645 2646 // Apply peephole optimizations 2647 if( OptoPeephole ) { 2648 TracePhase tp("peephole", &timers[_t_peephole]); 2649 PhasePeephole peep( _regalloc, cfg); 2650 peep.do_transform(); 2651 } 2652 2653 // Do late expand if CPU requires this. 2654 if (Matcher::require_postalloc_expand) { 2655 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 2656 cfg.postalloc_expand(_regalloc); 2657 } 2658 2659 // Convert Nodes to instruction bits in a buffer 2660 { 2661 TracePhase tp("output", &timers[_t_output]); 2662 PhaseOutput output; 2663 output.Output(); 2664 if (failing()) return; 2665 output.install(); 2666 } 2667 2668 print_method(PHASE_FINAL_CODE); 2669 2670 // He's dead, Jim. 2671 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 2672 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 2673 } 2674 2675 //------------------------------Final_Reshape_Counts--------------------------- 2676 // This class defines counters to help identify when a method 2677 // may/must be executed using hardware with only 24-bit precision. 2678 struct Final_Reshape_Counts : public StackObj { 2679 int _call_count; // count non-inlined 'common' calls 2680 int _float_count; // count float ops requiring 24-bit precision 2681 int _double_count; // count double ops requiring more precision 2682 int _java_call_count; // count non-inlined 'java' calls 2683 int _inner_loop_count; // count loops which need alignment 2684 VectorSet _visited; // Visitation flags 2685 Node_List _tests; // Set of IfNodes & PCTableNodes 2686 2687 Final_Reshape_Counts() : 2688 _call_count(0), _float_count(0), _double_count(0), 2689 _java_call_count(0), _inner_loop_count(0), 2690 _visited( Thread::current()->resource_area() ) { } 2691 2692 void inc_call_count () { _call_count ++; } 2693 void inc_float_count () { _float_count ++; } 2694 void inc_double_count() { _double_count++; } 2695 void inc_java_call_count() { _java_call_count++; } 2696 void inc_inner_loop_count() { _inner_loop_count++; } 2697 2698 int get_call_count () const { return _call_count ; } 2699 int get_float_count () const { return _float_count ; } 2700 int get_double_count() const { return _double_count; } 2701 int get_java_call_count() const { return _java_call_count; } 2702 int get_inner_loop_count() const { return _inner_loop_count; } 2703 }; 2704 2705 #ifdef ASSERT 2706 static bool oop_offset_is_sane(const TypeInstPtr* tp) { 2707 ciInstanceKlass *k = tp->klass()->as_instance_klass(); 2708 // Make sure the offset goes inside the instance layout. 2709 return k->contains_field_offset(tp->offset()); 2710 // Note that OffsetBot and OffsetTop are very negative. 2711 } 2712 #endif 2713 2714 // Eliminate trivially redundant StoreCMs and accumulate their 2715 // precedence edges. 2716 void Compile::eliminate_redundant_card_marks(Node* n) { 2717 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 2718 if (n->in(MemNode::Address)->outcnt() > 1) { 2719 // There are multiple users of the same address so it might be 2720 // possible to eliminate some of the StoreCMs 2721 Node* mem = n->in(MemNode::Memory); 2722 Node* adr = n->in(MemNode::Address); 2723 Node* val = n->in(MemNode::ValueIn); 2724 Node* prev = n; 2725 bool done = false; 2726 // Walk the chain of StoreCMs eliminating ones that match. As 2727 // long as it's a chain of single users then the optimization is 2728 // safe. Eliminating partially redundant StoreCMs would require 2729 // cloning copies down the other paths. 2730 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 2731 if (adr == mem->in(MemNode::Address) && 2732 val == mem->in(MemNode::ValueIn)) { 2733 // redundant StoreCM 2734 if (mem->req() > MemNode::OopStore) { 2735 // Hasn't been processed by this code yet. 2736 n->add_prec(mem->in(MemNode::OopStore)); 2737 } else { 2738 // Already converted to precedence edge 2739 for (uint i = mem->req(); i < mem->len(); i++) { 2740 // Accumulate any precedence edges 2741 if (mem->in(i) != NULL) { 2742 n->add_prec(mem->in(i)); 2743 } 2744 } 2745 // Everything above this point has been processed. 2746 done = true; 2747 } 2748 // Eliminate the previous StoreCM 2749 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 2750 assert(mem->outcnt() == 0, "should be dead"); 2751 mem->disconnect_inputs(NULL, this); 2752 } else { 2753 prev = mem; 2754 } 2755 mem = prev->in(MemNode::Memory); 2756 } 2757 } 2758 } 2759 2760 //------------------------------final_graph_reshaping_impl---------------------- 2761 // Implement items 1-5 from final_graph_reshaping below. 2762 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) { 2763 2764 if ( n->outcnt() == 0 ) return; // dead node 2765 uint nop = n->Opcode(); 2766 2767 // Check for 2-input instruction with "last use" on right input. 2768 // Swap to left input. Implements item (2). 2769 if( n->req() == 3 && // two-input instruction 2770 n->in(1)->outcnt() > 1 && // left use is NOT a last use 2771 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 2772 n->in(2)->outcnt() == 1 &&// right use IS a last use 2773 !n->in(2)->is_Con() ) { // right use is not a constant 2774 // Check for commutative opcode 2775 switch( nop ) { 2776 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 2777 case Op_MaxI: case Op_MinI: 2778 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 2779 case Op_AndL: case Op_XorL: case Op_OrL: 2780 case Op_AndI: case Op_XorI: case Op_OrI: { 2781 // Move "last use" input to left by swapping inputs 2782 n->swap_edges(1, 2); 2783 break; 2784 } 2785 default: 2786 break; 2787 } 2788 } 2789 2790 #ifdef ASSERT 2791 if( n->is_Mem() ) { 2792 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 2793 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw || 2794 // oop will be recorded in oop map if load crosses safepoint 2795 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 2796 LoadNode::is_immutable_value(n->in(MemNode::Address))), 2797 "raw memory operations should have control edge"); 2798 } 2799 if (n->is_MemBar()) { 2800 MemBarNode* mb = n->as_MemBar(); 2801 if (mb->trailing_store() || mb->trailing_load_store()) { 2802 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 2803 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 2804 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 2805 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 2806 } else if (mb->leading()) { 2807 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 2808 } 2809 } 2810 #endif 2811 // Count FPU ops and common calls, implements item (3) 2812 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop); 2813 if (!gc_handled) { 2814 final_graph_reshaping_main_switch(n, frc, nop); 2815 } 2816 2817 // Collect CFG split points 2818 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 2819 frc._tests.push(n); 2820 } 2821 } 2822 2823 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) { 2824 switch( nop ) { 2825 // Count all float operations that may use FPU 2826 case Op_AddF: 2827 case Op_SubF: 2828 case Op_MulF: 2829 case Op_DivF: 2830 case Op_NegF: 2831 case Op_ModF: 2832 case Op_ConvI2F: 2833 case Op_ConF: 2834 case Op_CmpF: 2835 case Op_CmpF3: 2836 // case Op_ConvL2F: // longs are split into 32-bit halves 2837 frc.inc_float_count(); 2838 break; 2839 2840 case Op_ConvF2D: 2841 case Op_ConvD2F: 2842 frc.inc_float_count(); 2843 frc.inc_double_count(); 2844 break; 2845 2846 // Count all double operations that may use FPU 2847 case Op_AddD: 2848 case Op_SubD: 2849 case Op_MulD: 2850 case Op_DivD: 2851 case Op_NegD: 2852 case Op_ModD: 2853 case Op_ConvI2D: 2854 case Op_ConvD2I: 2855 // case Op_ConvL2D: // handled by leaf call 2856 // case Op_ConvD2L: // handled by leaf call 2857 case Op_ConD: 2858 case Op_CmpD: 2859 case Op_CmpD3: 2860 frc.inc_double_count(); 2861 break; 2862 case Op_Opaque1: // Remove Opaque Nodes before matching 2863 case Op_Opaque2: // Remove Opaque Nodes before matching 2864 case Op_Opaque3: 2865 n->subsume_by(n->in(1), this); 2866 break; 2867 case Op_CallStaticJava: 2868 case Op_CallJava: 2869 case Op_CallDynamicJava: 2870 frc.inc_java_call_count(); // Count java call site; 2871 case Op_CallRuntime: 2872 case Op_CallLeaf: 2873 case Op_CallLeafNoFP: { 2874 assert (n->is_Call(), ""); 2875 CallNode *call = n->as_Call(); 2876 // Count call sites where the FP mode bit would have to be flipped. 2877 // Do not count uncommon runtime calls: 2878 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 2879 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 2880 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 2881 frc.inc_call_count(); // Count the call site 2882 } else { // See if uncommon argument is shared 2883 Node *n = call->in(TypeFunc::Parms); 2884 int nop = n->Opcode(); 2885 // Clone shared simple arguments to uncommon calls, item (1). 2886 if (n->outcnt() > 1 && 2887 !n->is_Proj() && 2888 nop != Op_CreateEx && 2889 nop != Op_CheckCastPP && 2890 nop != Op_DecodeN && 2891 nop != Op_DecodeNKlass && 2892 !n->is_Mem() && 2893 !n->is_Phi()) { 2894 Node *x = n->clone(); 2895 call->set_req(TypeFunc::Parms, x); 2896 } 2897 } 2898 break; 2899 } 2900 2901 case Op_StoreD: 2902 case Op_LoadD: 2903 case Op_LoadD_unaligned: 2904 frc.inc_double_count(); 2905 goto handle_mem; 2906 case Op_StoreF: 2907 case Op_LoadF: 2908 frc.inc_float_count(); 2909 goto handle_mem; 2910 2911 case Op_StoreCM: 2912 { 2913 // Convert OopStore dependence into precedence edge 2914 Node* prec = n->in(MemNode::OopStore); 2915 n->del_req(MemNode::OopStore); 2916 n->add_prec(prec); 2917 eliminate_redundant_card_marks(n); 2918 } 2919 2920 // fall through 2921 2922 case Op_StoreB: 2923 case Op_StoreC: 2924 case Op_StorePConditional: 2925 case Op_StoreI: 2926 case Op_StoreL: 2927 case Op_StoreIConditional: 2928 case Op_StoreLConditional: 2929 case Op_CompareAndSwapB: 2930 case Op_CompareAndSwapS: 2931 case Op_CompareAndSwapI: 2932 case Op_CompareAndSwapL: 2933 case Op_CompareAndSwapP: 2934 case Op_CompareAndSwapN: 2935 case Op_WeakCompareAndSwapB: 2936 case Op_WeakCompareAndSwapS: 2937 case Op_WeakCompareAndSwapI: 2938 case Op_WeakCompareAndSwapL: 2939 case Op_WeakCompareAndSwapP: 2940 case Op_WeakCompareAndSwapN: 2941 case Op_CompareAndExchangeB: 2942 case Op_CompareAndExchangeS: 2943 case Op_CompareAndExchangeI: 2944 case Op_CompareAndExchangeL: 2945 case Op_CompareAndExchangeP: 2946 case Op_CompareAndExchangeN: 2947 case Op_GetAndAddS: 2948 case Op_GetAndAddB: 2949 case Op_GetAndAddI: 2950 case Op_GetAndAddL: 2951 case Op_GetAndSetS: 2952 case Op_GetAndSetB: 2953 case Op_GetAndSetI: 2954 case Op_GetAndSetL: 2955 case Op_GetAndSetP: 2956 case Op_GetAndSetN: 2957 case Op_StoreP: 2958 case Op_StoreN: 2959 case Op_StoreNKlass: 2960 case Op_LoadB: 2961 case Op_LoadUB: 2962 case Op_LoadUS: 2963 case Op_LoadI: 2964 case Op_LoadKlass: 2965 case Op_LoadNKlass: 2966 case Op_LoadL: 2967 case Op_LoadL_unaligned: 2968 case Op_LoadPLocked: 2969 case Op_LoadP: 2970 case Op_LoadN: 2971 case Op_LoadRange: 2972 case Op_LoadS: { 2973 handle_mem: 2974 #ifdef ASSERT 2975 if( VerifyOptoOopOffsets ) { 2976 MemNode* mem = n->as_Mem(); 2977 // Check to see if address types have grounded out somehow. 2978 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); 2979 assert( !tp || oop_offset_is_sane(tp), "" ); 2980 } 2981 #endif 2982 break; 2983 } 2984 2985 case Op_AddP: { // Assert sane base pointers 2986 Node *addp = n->in(AddPNode::Address); 2987 assert( !addp->is_AddP() || 2988 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 2989 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 2990 "Base pointers must match (addp %u)", addp->_idx ); 2991 #ifdef _LP64 2992 if ((UseCompressedOops || UseCompressedClassPointers) && 2993 addp->Opcode() == Op_ConP && 2994 addp == n->in(AddPNode::Base) && 2995 n->in(AddPNode::Offset)->is_Con()) { 2996 // If the transformation of ConP to ConN+DecodeN is beneficial depends 2997 // on the platform and on the compressed oops mode. 2998 // Use addressing with narrow klass to load with offset on x86. 2999 // Some platforms can use the constant pool to load ConP. 3000 // Do this transformation here since IGVN will convert ConN back to ConP. 3001 const Type* t = addp->bottom_type(); 3002 bool is_oop = t->isa_oopptr() != NULL; 3003 bool is_klass = t->isa_klassptr() != NULL; 3004 3005 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 3006 (is_klass && Matcher::const_klass_prefer_decode())) { 3007 Node* nn = NULL; 3008 3009 int op = is_oop ? Op_ConN : Op_ConNKlass; 3010 3011 // Look for existing ConN node of the same exact type. 3012 Node* r = root(); 3013 uint cnt = r->outcnt(); 3014 for (uint i = 0; i < cnt; i++) { 3015 Node* m = r->raw_out(i); 3016 if (m!= NULL && m->Opcode() == op && 3017 m->bottom_type()->make_ptr() == t) { 3018 nn = m; 3019 break; 3020 } 3021 } 3022 if (nn != NULL) { 3023 // Decode a narrow oop to match address 3024 // [R12 + narrow_oop_reg<<3 + offset] 3025 if (is_oop) { 3026 nn = new DecodeNNode(nn, t); 3027 } else { 3028 nn = new DecodeNKlassNode(nn, t); 3029 } 3030 // Check for succeeding AddP which uses the same Base. 3031 // Otherwise we will run into the assertion above when visiting that guy. 3032 for (uint i = 0; i < n->outcnt(); ++i) { 3033 Node *out_i = n->raw_out(i); 3034 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3035 out_i->set_req(AddPNode::Base, nn); 3036 #ifdef ASSERT 3037 for (uint j = 0; j < out_i->outcnt(); ++j) { 3038 Node *out_j = out_i->raw_out(j); 3039 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3040 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3041 } 3042 #endif 3043 } 3044 } 3045 n->set_req(AddPNode::Base, nn); 3046 n->set_req(AddPNode::Address, nn); 3047 if (addp->outcnt() == 0) { 3048 addp->disconnect_inputs(NULL, this); 3049 } 3050 } 3051 } 3052 } 3053 #endif 3054 // platform dependent reshaping of the address expression 3055 reshape_address(n->as_AddP()); 3056 break; 3057 } 3058 3059 case Op_CastPP: { 3060 // Remove CastPP nodes to gain more freedom during scheduling but 3061 // keep the dependency they encode as control or precedence edges 3062 // (if control is set already) on memory operations. Some CastPP 3063 // nodes don't have a control (don't carry a dependency): skip 3064 // those. 3065 if (n->in(0) != NULL) { 3066 ResourceMark rm; 3067 Unique_Node_List wq; 3068 wq.push(n); 3069 for (uint next = 0; next < wq.size(); ++next) { 3070 Node *m = wq.at(next); 3071 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3072 Node* use = m->fast_out(i); 3073 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3074 use->ensure_control_or_add_prec(n->in(0)); 3075 } else { 3076 switch(use->Opcode()) { 3077 case Op_AddP: 3078 case Op_DecodeN: 3079 case Op_DecodeNKlass: 3080 case Op_CheckCastPP: 3081 case Op_CastPP: 3082 wq.push(use); 3083 break; 3084 } 3085 } 3086 } 3087 } 3088 } 3089 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3090 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3091 Node* in1 = n->in(1); 3092 const Type* t = n->bottom_type(); 3093 Node* new_in1 = in1->clone(); 3094 new_in1->as_DecodeN()->set_type(t); 3095 3096 if (!Matcher::narrow_oop_use_complex_address()) { 3097 // 3098 // x86, ARM and friends can handle 2 adds in addressing mode 3099 // and Matcher can fold a DecodeN node into address by using 3100 // a narrow oop directly and do implicit NULL check in address: 3101 // 3102 // [R12 + narrow_oop_reg<<3 + offset] 3103 // NullCheck narrow_oop_reg 3104 // 3105 // On other platforms (Sparc) we have to keep new DecodeN node and 3106 // use it to do implicit NULL check in address: 3107 // 3108 // decode_not_null narrow_oop_reg, base_reg 3109 // [base_reg + offset] 3110 // NullCheck base_reg 3111 // 3112 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3113 // to keep the information to which NULL check the new DecodeN node 3114 // corresponds to use it as value in implicit_null_check(). 3115 // 3116 new_in1->set_req(0, n->in(0)); 3117 } 3118 3119 n->subsume_by(new_in1, this); 3120 if (in1->outcnt() == 0) { 3121 in1->disconnect_inputs(NULL, this); 3122 } 3123 } else { 3124 n->subsume_by(n->in(1), this); 3125 if (n->outcnt() == 0) { 3126 n->disconnect_inputs(NULL, this); 3127 } 3128 } 3129 break; 3130 } 3131 #ifdef _LP64 3132 case Op_CmpP: 3133 // Do this transformation here to preserve CmpPNode::sub() and 3134 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3135 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3136 Node* in1 = n->in(1); 3137 Node* in2 = n->in(2); 3138 if (!in1->is_DecodeNarrowPtr()) { 3139 in2 = in1; 3140 in1 = n->in(2); 3141 } 3142 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3143 3144 Node* new_in2 = NULL; 3145 if (in2->is_DecodeNarrowPtr()) { 3146 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3147 new_in2 = in2->in(1); 3148 } else if (in2->Opcode() == Op_ConP) { 3149 const Type* t = in2->bottom_type(); 3150 if (t == TypePtr::NULL_PTR) { 3151 assert(in1->is_DecodeN(), "compare klass to null?"); 3152 // Don't convert CmpP null check into CmpN if compressed 3153 // oops implicit null check is not generated. 3154 // This will allow to generate normal oop implicit null check. 3155 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3156 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3157 // 3158 // This transformation together with CastPP transformation above 3159 // will generated code for implicit NULL checks for compressed oops. 3160 // 3161 // The original code after Optimize() 3162 // 3163 // LoadN memory, narrow_oop_reg 3164 // decode narrow_oop_reg, base_reg 3165 // CmpP base_reg, NULL 3166 // CastPP base_reg // NotNull 3167 // Load [base_reg + offset], val_reg 3168 // 3169 // after these transformations will be 3170 // 3171 // LoadN memory, narrow_oop_reg 3172 // CmpN narrow_oop_reg, NULL 3173 // decode_not_null narrow_oop_reg, base_reg 3174 // Load [base_reg + offset], val_reg 3175 // 3176 // and the uncommon path (== NULL) will use narrow_oop_reg directly 3177 // since narrow oops can be used in debug info now (see the code in 3178 // final_graph_reshaping_walk()). 3179 // 3180 // At the end the code will be matched to 3181 // on x86: 3182 // 3183 // Load_narrow_oop memory, narrow_oop_reg 3184 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3185 // NullCheck narrow_oop_reg 3186 // 3187 // and on sparc: 3188 // 3189 // Load_narrow_oop memory, narrow_oop_reg 3190 // decode_not_null narrow_oop_reg, base_reg 3191 // Load [base_reg + offset], val_reg 3192 // NullCheck base_reg 3193 // 3194 } else if (t->isa_oopptr()) { 3195 new_in2 = ConNode::make(t->make_narrowoop()); 3196 } else if (t->isa_klassptr()) { 3197 new_in2 = ConNode::make(t->make_narrowklass()); 3198 } 3199 } 3200 if (new_in2 != NULL) { 3201 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3202 n->subsume_by(cmpN, this); 3203 if (in1->outcnt() == 0) { 3204 in1->disconnect_inputs(NULL, this); 3205 } 3206 if (in2->outcnt() == 0) { 3207 in2->disconnect_inputs(NULL, this); 3208 } 3209 } 3210 } 3211 break; 3212 3213 case Op_DecodeN: 3214 case Op_DecodeNKlass: 3215 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3216 // DecodeN could be pinned when it can't be fold into 3217 // an address expression, see the code for Op_CastPP above. 3218 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3219 break; 3220 3221 case Op_EncodeP: 3222 case Op_EncodePKlass: { 3223 Node* in1 = n->in(1); 3224 if (in1->is_DecodeNarrowPtr()) { 3225 n->subsume_by(in1->in(1), this); 3226 } else if (in1->Opcode() == Op_ConP) { 3227 const Type* t = in1->bottom_type(); 3228 if (t == TypePtr::NULL_PTR) { 3229 assert(t->isa_oopptr(), "null klass?"); 3230 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3231 } else if (t->isa_oopptr()) { 3232 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3233 } else if (t->isa_klassptr()) { 3234 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3235 } 3236 } 3237 if (in1->outcnt() == 0) { 3238 in1->disconnect_inputs(NULL, this); 3239 } 3240 break; 3241 } 3242 3243 case Op_Proj: { 3244 if (OptimizeStringConcat) { 3245 ProjNode* p = n->as_Proj(); 3246 if (p->_is_io_use) { 3247 // Separate projections were used for the exception path which 3248 // are normally removed by a late inline. If it wasn't inlined 3249 // then they will hang around and should just be replaced with 3250 // the original one. 3251 Node* proj = NULL; 3252 // Replace with just one 3253 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) { 3254 Node *use = i.get(); 3255 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) { 3256 proj = use; 3257 break; 3258 } 3259 } 3260 assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop"); 3261 if (proj != NULL) { 3262 p->subsume_by(proj, this); 3263 } 3264 } 3265 } 3266 break; 3267 } 3268 3269 case Op_Phi: 3270 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3271 // The EncodeP optimization may create Phi with the same edges 3272 // for all paths. It is not handled well by Register Allocator. 3273 Node* unique_in = n->in(1); 3274 assert(unique_in != NULL, ""); 3275 uint cnt = n->req(); 3276 for (uint i = 2; i < cnt; i++) { 3277 Node* m = n->in(i); 3278 assert(m != NULL, ""); 3279 if (unique_in != m) 3280 unique_in = NULL; 3281 } 3282 if (unique_in != NULL) { 3283 n->subsume_by(unique_in, this); 3284 } 3285 } 3286 break; 3287 3288 #endif 3289 3290 #ifdef ASSERT 3291 case Op_CastII: 3292 // Verify that all range check dependent CastII nodes were removed. 3293 if (n->isa_CastII()->has_range_check()) { 3294 n->dump(3); 3295 assert(false, "Range check dependent CastII node was not removed"); 3296 } 3297 break; 3298 #endif 3299 3300 case Op_ModI: 3301 if (UseDivMod) { 3302 // Check if a%b and a/b both exist 3303 Node* d = n->find_similar(Op_DivI); 3304 if (d) { 3305 // Replace them with a fused divmod if supported 3306 if (Matcher::has_match_rule(Op_DivModI)) { 3307 DivModINode* divmod = DivModINode::make(n); 3308 d->subsume_by(divmod->div_proj(), this); 3309 n->subsume_by(divmod->mod_proj(), this); 3310 } else { 3311 // replace a%b with a-((a/b)*b) 3312 Node* mult = new MulINode(d, d->in(2)); 3313 Node* sub = new SubINode(d->in(1), mult); 3314 n->subsume_by(sub, this); 3315 } 3316 } 3317 } 3318 break; 3319 3320 case Op_ModL: 3321 if (UseDivMod) { 3322 // Check if a%b and a/b both exist 3323 Node* d = n->find_similar(Op_DivL); 3324 if (d) { 3325 // Replace them with a fused divmod if supported 3326 if (Matcher::has_match_rule(Op_DivModL)) { 3327 DivModLNode* divmod = DivModLNode::make(n); 3328 d->subsume_by(divmod->div_proj(), this); 3329 n->subsume_by(divmod->mod_proj(), this); 3330 } else { 3331 // replace a%b with a-((a/b)*b) 3332 Node* mult = new MulLNode(d, d->in(2)); 3333 Node* sub = new SubLNode(d->in(1), mult); 3334 n->subsume_by(sub, this); 3335 } 3336 } 3337 } 3338 break; 3339 3340 case Op_LoadVector: 3341 case Op_StoreVector: 3342 break; 3343 3344 case Op_AddReductionVI: 3345 case Op_AddReductionVL: 3346 case Op_AddReductionVF: 3347 case Op_AddReductionVD: 3348 case Op_MulReductionVI: 3349 case Op_MulReductionVL: 3350 case Op_MulReductionVF: 3351 case Op_MulReductionVD: 3352 case Op_MinReductionV: 3353 case Op_MaxReductionV: 3354 case Op_AndReductionV: 3355 case Op_OrReductionV: 3356 case Op_XorReductionV: 3357 break; 3358 3359 case Op_PackB: 3360 case Op_PackS: 3361 case Op_PackI: 3362 case Op_PackF: 3363 case Op_PackL: 3364 case Op_PackD: 3365 if (n->req()-1 > 2) { 3366 // Replace many operand PackNodes with a binary tree for matching 3367 PackNode* p = (PackNode*) n; 3368 Node* btp = p->binary_tree_pack(1, n->req()); 3369 n->subsume_by(btp, this); 3370 } 3371 break; 3372 case Op_Loop: 3373 case Op_CountedLoop: 3374 case Op_OuterStripMinedLoop: 3375 if (n->as_Loop()->is_inner_loop()) { 3376 frc.inc_inner_loop_count(); 3377 } 3378 n->as_Loop()->verify_strip_mined(0); 3379 break; 3380 case Op_LShiftI: 3381 case Op_RShiftI: 3382 case Op_URShiftI: 3383 case Op_LShiftL: 3384 case Op_RShiftL: 3385 case Op_URShiftL: 3386 if (Matcher::need_masked_shift_count) { 3387 // The cpu's shift instructions don't restrict the count to the 3388 // lower 5/6 bits. We need to do the masking ourselves. 3389 Node* in2 = n->in(2); 3390 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3391 const TypeInt* t = in2->find_int_type(); 3392 if (t != NULL && t->is_con()) { 3393 juint shift = t->get_con(); 3394 if (shift > mask) { // Unsigned cmp 3395 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3396 } 3397 } else { 3398 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { 3399 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3400 n->set_req(2, shift); 3401 } 3402 } 3403 if (in2->outcnt() == 0) { // Remove dead node 3404 in2->disconnect_inputs(NULL, this); 3405 } 3406 } 3407 break; 3408 case Op_MemBarStoreStore: 3409 case Op_MemBarRelease: 3410 // Break the link with AllocateNode: it is no longer useful and 3411 // confuses register allocation. 3412 if (n->req() > MemBarNode::Precedent) { 3413 n->set_req(MemBarNode::Precedent, top()); 3414 } 3415 break; 3416 case Op_MemBarAcquire: { 3417 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3418 // At parse time, the trailing MemBarAcquire for a volatile load 3419 // is created with an edge to the load. After optimizations, 3420 // that input may be a chain of Phis. If those phis have no 3421 // other use, then the MemBarAcquire keeps them alive and 3422 // register allocation can be confused. 3423 ResourceMark rm; 3424 Unique_Node_List wq; 3425 wq.push(n->in(MemBarNode::Precedent)); 3426 n->set_req(MemBarNode::Precedent, top()); 3427 while (wq.size() > 0) { 3428 Node* m = wq.pop(); 3429 if (m->outcnt() == 0) { 3430 for (uint j = 0; j < m->req(); j++) { 3431 Node* in = m->in(j); 3432 if (in != NULL) { 3433 wq.push(in); 3434 } 3435 } 3436 m->disconnect_inputs(NULL, this); 3437 } 3438 } 3439 } 3440 break; 3441 } 3442 case Op_RangeCheck: { 3443 RangeCheckNode* rc = n->as_RangeCheck(); 3444 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3445 n->subsume_by(iff, this); 3446 frc._tests.push(iff); 3447 break; 3448 } 3449 case Op_ConvI2L: { 3450 if (!Matcher::convi2l_type_required) { 3451 // Code generation on some platforms doesn't need accurate 3452 // ConvI2L types. Widening the type can help remove redundant 3453 // address computations. 3454 n->as_Type()->set_type(TypeLong::INT); 3455 ResourceMark rm; 3456 Unique_Node_List wq; 3457 wq.push(n); 3458 for (uint next = 0; next < wq.size(); next++) { 3459 Node *m = wq.at(next); 3460 3461 for(;;) { 3462 // Loop over all nodes with identical inputs edges as m 3463 Node* k = m->find_similar(m->Opcode()); 3464 if (k == NULL) { 3465 break; 3466 } 3467 // Push their uses so we get a chance to remove node made 3468 // redundant 3469 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3470 Node* u = k->fast_out(i); 3471 if (u->Opcode() == Op_LShiftL || 3472 u->Opcode() == Op_AddL || 3473 u->Opcode() == Op_SubL || 3474 u->Opcode() == Op_AddP) { 3475 wq.push(u); 3476 } 3477 } 3478 // Replace all nodes with identical edges as m with m 3479 k->subsume_by(m, this); 3480 } 3481 } 3482 } 3483 break; 3484 } 3485 case Op_CmpUL: { 3486 if (!Matcher::has_match_rule(Op_CmpUL)) { 3487 // No support for unsigned long comparisons 3488 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3489 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3490 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3491 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3492 Node* andl = new AndLNode(orl, remove_sign_mask); 3493 Node* cmp = new CmpLNode(andl, n->in(2)); 3494 n->subsume_by(cmp, this); 3495 } 3496 break; 3497 } 3498 default: 3499 assert(!n->is_Call(), ""); 3500 assert(!n->is_Mem(), ""); 3501 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3502 break; 3503 } 3504 } 3505 3506 //------------------------------final_graph_reshaping_walk--------------------- 3507 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3508 // requires that the walk visits a node's inputs before visiting the node. 3509 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) { 3510 ResourceArea *area = Thread::current()->resource_area(); 3511 Unique_Node_List sfpt(area); 3512 3513 frc._visited.set(root->_idx); // first, mark node as visited 3514 uint cnt = root->req(); 3515 Node *n = root; 3516 uint i = 0; 3517 while (true) { 3518 if (i < cnt) { 3519 // Place all non-visited non-null inputs onto stack 3520 Node* m = n->in(i); 3521 ++i; 3522 if (m != NULL && !frc._visited.test_set(m->_idx)) { 3523 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) { 3524 // compute worst case interpreter size in case of a deoptimization 3525 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3526 3527 sfpt.push(m); 3528 } 3529 cnt = m->req(); 3530 nstack.push(n, i); // put on stack parent and next input's index 3531 n = m; 3532 i = 0; 3533 } 3534 } else { 3535 // Now do post-visit work 3536 final_graph_reshaping_impl( n, frc ); 3537 if (nstack.is_empty()) 3538 break; // finished 3539 n = nstack.node(); // Get node from stack 3540 cnt = n->req(); 3541 i = nstack.index(); 3542 nstack.pop(); // Shift to the next node on stack 3543 } 3544 } 3545 3546 // Skip next transformation if compressed oops are not used. 3547 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3548 (!UseCompressedOops && !UseCompressedClassPointers)) 3549 return; 3550 3551 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3552 // It could be done for an uncommon traps or any safepoints/calls 3553 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3554 while (sfpt.size() > 0) { 3555 n = sfpt.pop(); 3556 JVMState *jvms = n->as_SafePoint()->jvms(); 3557 assert(jvms != NULL, "sanity"); 3558 int start = jvms->debug_start(); 3559 int end = n->req(); 3560 bool is_uncommon = (n->is_CallStaticJava() && 3561 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3562 for (int j = start; j < end; j++) { 3563 Node* in = n->in(j); 3564 if (in->is_DecodeNarrowPtr()) { 3565 bool safe_to_skip = true; 3566 if (!is_uncommon ) { 3567 // Is it safe to skip? 3568 for (uint i = 0; i < in->outcnt(); i++) { 3569 Node* u = in->raw_out(i); 3570 if (!u->is_SafePoint() || 3571 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3572 safe_to_skip = false; 3573 } 3574 } 3575 } 3576 if (safe_to_skip) { 3577 n->set_req(j, in->in(1)); 3578 } 3579 if (in->outcnt() == 0) { 3580 in->disconnect_inputs(NULL, this); 3581 } 3582 } 3583 } 3584 } 3585 } 3586 3587 //------------------------------final_graph_reshaping-------------------------- 3588 // Final Graph Reshaping. 3589 // 3590 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3591 // and not commoned up and forced early. Must come after regular 3592 // optimizations to avoid GVN undoing the cloning. Clone constant 3593 // inputs to Loop Phis; these will be split by the allocator anyways. 3594 // Remove Opaque nodes. 3595 // (2) Move last-uses by commutative operations to the left input to encourage 3596 // Intel update-in-place two-address operations and better register usage 3597 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3598 // calls canonicalizing them back. 3599 // (3) Count the number of double-precision FP ops, single-precision FP ops 3600 // and call sites. On Intel, we can get correct rounding either by 3601 // forcing singles to memory (requires extra stores and loads after each 3602 // FP bytecode) or we can set a rounding mode bit (requires setting and 3603 // clearing the mode bit around call sites). The mode bit is only used 3604 // if the relative frequency of single FP ops to calls is low enough. 3605 // This is a key transform for SPEC mpeg_audio. 3606 // (4) Detect infinite loops; blobs of code reachable from above but not 3607 // below. Several of the Code_Gen algorithms fail on such code shapes, 3608 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3609 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3610 // Detection is by looking for IfNodes where only 1 projection is 3611 // reachable from below or CatchNodes missing some targets. 3612 // (5) Assert for insane oop offsets in debug mode. 3613 3614 bool Compile::final_graph_reshaping() { 3615 // an infinite loop may have been eliminated by the optimizer, 3616 // in which case the graph will be empty. 3617 if (root()->req() == 1) { 3618 record_method_not_compilable("trivial infinite loop"); 3619 return true; 3620 } 3621 3622 // Expensive nodes have their control input set to prevent the GVN 3623 // from freely commoning them. There's no GVN beyond this point so 3624 // no need to keep the control input. We want the expensive nodes to 3625 // be freely moved to the least frequent code path by gcm. 3626 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3627 for (int i = 0; i < expensive_count(); i++) { 3628 _expensive_nodes->at(i)->set_req(0, NULL); 3629 } 3630 3631 Final_Reshape_Counts frc; 3632 3633 // Visit everybody reachable! 3634 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3635 Node_Stack nstack(live_nodes() >> 1); 3636 final_graph_reshaping_walk(nstack, root(), frc); 3637 3638 // Check for unreachable (from below) code (i.e., infinite loops). 3639 for( uint i = 0; i < frc._tests.size(); i++ ) { 3640 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3641 // Get number of CFG targets. 3642 // Note that PCTables include exception targets after calls. 3643 uint required_outcnt = n->required_outcnt(); 3644 if (n->outcnt() != required_outcnt) { 3645 // Check for a few special cases. Rethrow Nodes never take the 3646 // 'fall-thru' path, so expected kids is 1 less. 3647 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3648 if (n->in(0)->in(0)->is_Call()) { 3649 CallNode *call = n->in(0)->in(0)->as_Call(); 3650 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3651 required_outcnt--; // Rethrow always has 1 less kid 3652 } else if (call->req() > TypeFunc::Parms && 3653 call->is_CallDynamicJava()) { 3654 // Check for null receiver. In such case, the optimizer has 3655 // detected that the virtual call will always result in a null 3656 // pointer exception. The fall-through projection of this CatchNode 3657 // will not be populated. 3658 Node *arg0 = call->in(TypeFunc::Parms); 3659 if (arg0->is_Type() && 3660 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3661 required_outcnt--; 3662 } 3663 } else if (call->entry_point() == OptoRuntime::new_array_Java() && 3664 call->req() > TypeFunc::Parms+1 && 3665 call->is_CallStaticJava()) { 3666 // Check for negative array length. In such case, the optimizer has 3667 // detected that the allocation attempt will always result in an 3668 // exception. There is no fall-through projection of this CatchNode . 3669 Node *arg1 = call->in(TypeFunc::Parms+1); 3670 if (arg1->is_Type() && 3671 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) { 3672 required_outcnt--; 3673 } 3674 } 3675 } 3676 } 3677 // Recheck with a better notion of 'required_outcnt' 3678 if (n->outcnt() != required_outcnt) { 3679 record_method_not_compilable("malformed control flow"); 3680 return true; // Not all targets reachable! 3681 } 3682 } 3683 // Check that I actually visited all kids. Unreached kids 3684 // must be infinite loops. 3685 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 3686 if (!frc._visited.test(n->fast_out(j)->_idx)) { 3687 record_method_not_compilable("infinite loop"); 3688 return true; // Found unvisited kid; must be unreach 3689 } 3690 3691 // Here so verification code in final_graph_reshaping_walk() 3692 // always see an OuterStripMinedLoopEnd 3693 if (n->is_OuterStripMinedLoopEnd()) { 3694 IfNode* init_iff = n->as_If(); 3695 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 3696 n->subsume_by(iff, this); 3697 } 3698 } 3699 3700 #ifdef IA32 3701 // If original bytecodes contained a mixture of floats and doubles 3702 // check if the optimizer has made it homogenous, item (3). 3703 if (UseSSE == 0 && 3704 frc.get_float_count() > 32 && 3705 frc.get_double_count() == 0 && 3706 (10 * frc.get_call_count() < frc.get_float_count()) ) { 3707 set_24_bit_selection_and_mode(false, true); 3708 } 3709 #endif // IA32 3710 3711 set_java_calls(frc.get_java_call_count()); 3712 set_inner_loops(frc.get_inner_loop_count()); 3713 3714 // No infinite loops, no reason to bail out. 3715 return false; 3716 } 3717 3718 //-----------------------------too_many_traps---------------------------------- 3719 // Report if there are too many traps at the current method and bci. 3720 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 3721 bool Compile::too_many_traps(ciMethod* method, 3722 int bci, 3723 Deoptimization::DeoptReason reason) { 3724 ciMethodData* md = method->method_data(); 3725 if (md->is_empty()) { 3726 // Assume the trap has not occurred, or that it occurred only 3727 // because of a transient condition during start-up in the interpreter. 3728 return false; 3729 } 3730 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3731 if (md->has_trap_at(bci, m, reason) != 0) { 3732 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 3733 // Also, if there are multiple reasons, or if there is no per-BCI record, 3734 // assume the worst. 3735 if (log()) 3736 log()->elem("observe trap='%s' count='%d'", 3737 Deoptimization::trap_reason_name(reason), 3738 md->trap_count(reason)); 3739 return true; 3740 } else { 3741 // Ignore method/bci and see if there have been too many globally. 3742 return too_many_traps(reason, md); 3743 } 3744 } 3745 3746 // Less-accurate variant which does not require a method and bci. 3747 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 3748 ciMethodData* logmd) { 3749 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 3750 // Too many traps globally. 3751 // Note that we use cumulative trap_count, not just md->trap_count. 3752 if (log()) { 3753 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason); 3754 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 3755 Deoptimization::trap_reason_name(reason), 3756 mcount, trap_count(reason)); 3757 } 3758 return true; 3759 } else { 3760 // The coast is clear. 3761 return false; 3762 } 3763 } 3764 3765 //--------------------------too_many_recompiles-------------------------------- 3766 // Report if there are too many recompiles at the current method and bci. 3767 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 3768 // Is not eager to return true, since this will cause the compiler to use 3769 // Action_none for a trap point, to avoid too many recompilations. 3770 bool Compile::too_many_recompiles(ciMethod* method, 3771 int bci, 3772 Deoptimization::DeoptReason reason) { 3773 ciMethodData* md = method->method_data(); 3774 if (md->is_empty()) { 3775 // Assume the trap has not occurred, or that it occurred only 3776 // because of a transient condition during start-up in the interpreter. 3777 return false; 3778 } 3779 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 3780 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 3781 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 3782 Deoptimization::DeoptReason per_bc_reason 3783 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 3784 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3785 if ((per_bc_reason == Deoptimization::Reason_none 3786 || md->has_trap_at(bci, m, reason) != 0) 3787 // The trap frequency measure we care about is the recompile count: 3788 && md->trap_recompiled_at(bci, m) 3789 && md->overflow_recompile_count() >= bc_cutoff) { 3790 // Do not emit a trap here if it has already caused recompilations. 3791 // Also, if there are multiple reasons, or if there is no per-BCI record, 3792 // assume the worst. 3793 if (log()) 3794 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 3795 Deoptimization::trap_reason_name(reason), 3796 md->trap_count(reason), 3797 md->overflow_recompile_count()); 3798 return true; 3799 } else if (trap_count(reason) != 0 3800 && decompile_count() >= m_cutoff) { 3801 // Too many recompiles globally, and we have seen this sort of trap. 3802 // Use cumulative decompile_count, not just md->decompile_count. 3803 if (log()) 3804 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 3805 Deoptimization::trap_reason_name(reason), 3806 md->trap_count(reason), trap_count(reason), 3807 md->decompile_count(), decompile_count()); 3808 return true; 3809 } else { 3810 // The coast is clear. 3811 return false; 3812 } 3813 } 3814 3815 // Compute when not to trap. Used by matching trap based nodes and 3816 // NullCheck optimization. 3817 void Compile::set_allowed_deopt_reasons() { 3818 _allowed_reasons = 0; 3819 if (is_method_compilation()) { 3820 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 3821 assert(rs < BitsPerInt, "recode bit map"); 3822 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 3823 _allowed_reasons |= nth_bit(rs); 3824 } 3825 } 3826 } 3827 } 3828 3829 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 3830 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 3831 } 3832 3833 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 3834 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 3835 } 3836 3837 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 3838 if (holder->is_initialized()) { 3839 return false; 3840 } 3841 if (holder->is_being_initialized()) { 3842 if (accessing_method->holder() == holder) { 3843 // Access inside a class. The barrier can be elided when access happens in <clinit>, 3844 // <init>, or a static method. In all those cases, there was an initialization 3845 // barrier on the holder klass passed. 3846 if (accessing_method->is_static_initializer() || 3847 accessing_method->is_object_initializer() || 3848 accessing_method->is_static()) { 3849 return false; 3850 } 3851 } else if (accessing_method->holder()->is_subclass_of(holder)) { 3852 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 3853 // In case of <init> or a static method, the barrier is on the subclass is not enough: 3854 // child class can become fully initialized while its parent class is still being initialized. 3855 if (accessing_method->is_static_initializer()) { 3856 return false; 3857 } 3858 } 3859 ciMethod* root = method(); // the root method of compilation 3860 if (root != accessing_method) { 3861 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 3862 } 3863 } 3864 return true; 3865 } 3866 3867 #ifndef PRODUCT 3868 //------------------------------verify_graph_edges--------------------------- 3869 // Walk the Graph and verify that there is a one-to-one correspondence 3870 // between Use-Def edges and Def-Use edges in the graph. 3871 void Compile::verify_graph_edges(bool no_dead_code) { 3872 if (VerifyGraphEdges) { 3873 ResourceArea *area = Thread::current()->resource_area(); 3874 Unique_Node_List visited(area); 3875 // Call recursive graph walk to check edges 3876 _root->verify_edges(visited); 3877 if (no_dead_code) { 3878 // Now make sure that no visited node is used by an unvisited node. 3879 bool dead_nodes = false; 3880 Unique_Node_List checked(area); 3881 while (visited.size() > 0) { 3882 Node* n = visited.pop(); 3883 checked.push(n); 3884 for (uint i = 0; i < n->outcnt(); i++) { 3885 Node* use = n->raw_out(i); 3886 if (checked.member(use)) continue; // already checked 3887 if (visited.member(use)) continue; // already in the graph 3888 if (use->is_Con()) continue; // a dead ConNode is OK 3889 // At this point, we have found a dead node which is DU-reachable. 3890 if (!dead_nodes) { 3891 tty->print_cr("*** Dead nodes reachable via DU edges:"); 3892 dead_nodes = true; 3893 } 3894 use->dump(2); 3895 tty->print_cr("---"); 3896 checked.push(use); // No repeats; pretend it is now checked. 3897 } 3898 } 3899 assert(!dead_nodes, "using nodes must be reachable from root"); 3900 } 3901 } 3902 } 3903 #endif 3904 3905 // The Compile object keeps track of failure reasons separately from the ciEnv. 3906 // This is required because there is not quite a 1-1 relation between the 3907 // ciEnv and its compilation task and the Compile object. Note that one 3908 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 3909 // to backtrack and retry without subsuming loads. Other than this backtracking 3910 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 3911 // by the logic in C2Compiler. 3912 void Compile::record_failure(const char* reason) { 3913 if (log() != NULL) { 3914 log()->elem("failure reason='%s' phase='compile'", reason); 3915 } 3916 if (_failure_reason == NULL) { 3917 // Record the first failure reason. 3918 _failure_reason = reason; 3919 } 3920 3921 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 3922 C->print_method(PHASE_FAILURE); 3923 } 3924 _root = NULL; // flush the graph, too 3925 } 3926 3927 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 3928 : TraceTime(name, accumulator, CITime, CITimeVerbose), 3929 _phase_name(name), _dolog(CITimeVerbose) 3930 { 3931 if (_dolog) { 3932 C = Compile::current(); 3933 _log = C->log(); 3934 } else { 3935 C = NULL; 3936 _log = NULL; 3937 } 3938 if (_log != NULL) { 3939 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3940 _log->stamp(); 3941 _log->end_head(); 3942 } 3943 } 3944 3945 Compile::TracePhase::~TracePhase() { 3946 3947 C = Compile::current(); 3948 if (_dolog) { 3949 _log = C->log(); 3950 } else { 3951 _log = NULL; 3952 } 3953 3954 #ifdef ASSERT 3955 if (PrintIdealNodeCount) { 3956 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 3957 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 3958 } 3959 3960 if (VerifyIdealNodeCount) { 3961 Compile::current()->print_missing_nodes(); 3962 } 3963 #endif 3964 3965 if (_log != NULL) { 3966 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3967 } 3968 } 3969 3970 //----------------------------static_subtype_check----------------------------- 3971 // Shortcut important common cases when superklass is exact: 3972 // (0) superklass is java.lang.Object (can occur in reflective code) 3973 // (1) subklass is already limited to a subtype of superklass => always ok 3974 // (2) subklass does not overlap with superklass => always fail 3975 // (3) superklass has NO subtypes and we can check with a simple compare. 3976 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) { 3977 if (StressReflectiveCode) { 3978 return SSC_full_test; // Let caller generate the general case. 3979 } 3980 3981 if (superk == env()->Object_klass()) { 3982 return SSC_always_true; // (0) this test cannot fail 3983 } 3984 3985 ciType* superelem = superk; 3986 if (superelem->is_array_klass()) 3987 superelem = superelem->as_array_klass()->base_element_type(); 3988 3989 if (!subk->is_interface()) { // cannot trust static interface types yet 3990 if (subk->is_subtype_of(superk)) { 3991 return SSC_always_true; // (1) false path dead; no dynamic test needed 3992 } 3993 if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) && 3994 !superk->is_subtype_of(subk)) { 3995 return SSC_always_false; 3996 } 3997 } 3998 3999 // If casting to an instance klass, it must have no subtypes 4000 if (superk->is_interface()) { 4001 // Cannot trust interfaces yet. 4002 // %%% S.B. superk->nof_implementors() == 1 4003 } else if (superelem->is_instance_klass()) { 4004 ciInstanceKlass* ik = superelem->as_instance_klass(); 4005 if (!ik->has_subklass() && !ik->is_interface()) { 4006 if (!ik->is_final()) { 4007 // Add a dependency if there is a chance of a later subclass. 4008 dependencies()->assert_leaf_type(ik); 4009 } 4010 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4011 } 4012 } else { 4013 // A primitive array type has no subtypes. 4014 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4015 } 4016 4017 return SSC_full_test; 4018 } 4019 4020 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4021 #ifdef _LP64 4022 // The scaled index operand to AddP must be a clean 64-bit value. 4023 // Java allows a 32-bit int to be incremented to a negative 4024 // value, which appears in a 64-bit register as a large 4025 // positive number. Using that large positive number as an 4026 // operand in pointer arithmetic has bad consequences. 4027 // On the other hand, 32-bit overflow is rare, and the possibility 4028 // can often be excluded, if we annotate the ConvI2L node with 4029 // a type assertion that its value is known to be a small positive 4030 // number. (The prior range check has ensured this.) 4031 // This assertion is used by ConvI2LNode::Ideal. 4032 int index_max = max_jint - 1; // array size is max_jint, index is one less 4033 if (sizetype != NULL) index_max = sizetype->_hi - 1; 4034 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4035 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4036 #endif 4037 return idx; 4038 } 4039 4040 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4041 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) { 4042 if (ctrl != NULL) { 4043 // Express control dependency by a CastII node with a narrow type. 4044 value = new CastIINode(value, itype, false, true /* range check dependency */); 4045 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4046 // node from floating above the range check during loop optimizations. Otherwise, the 4047 // ConvI2L node may be eliminated independently of the range check, causing the data path 4048 // to become TOP while the control path is still there (although it's unreachable). 4049 value->set_req(0, ctrl); 4050 // Save CastII node to remove it after loop optimizations. 4051 phase->C->add_range_check_cast(value); 4052 value = phase->transform(value); 4053 } 4054 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4055 return phase->transform(new ConvI2LNode(value, ltype)); 4056 } 4057 4058 void Compile::print_inlining_stream_free() { 4059 if (_print_inlining_stream != NULL) { 4060 _print_inlining_stream->~stringStream(); 4061 _print_inlining_stream = NULL; 4062 } 4063 } 4064 4065 // The message about the current inlining is accumulated in 4066 // _print_inlining_stream and transfered into the _print_inlining_list 4067 // once we know whether inlining succeeds or not. For regular 4068 // inlining, messages are appended to the buffer pointed by 4069 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4070 // a new buffer is added after _print_inlining_idx in the list. This 4071 // way we can update the inlining message for late inlining call site 4072 // when the inlining is attempted again. 4073 void Compile::print_inlining_init() { 4074 if (print_inlining() || print_intrinsics()) { 4075 // print_inlining_init is actually called several times. 4076 print_inlining_stream_free(); 4077 _print_inlining_stream = new stringStream(); 4078 // Watch out: The memory initialized by the constructor call PrintInliningBuffer() 4079 // will be copied into the only initial element. The default destructor of 4080 // PrintInliningBuffer will be called when leaving the scope here. If it 4081 // would destuct the enclosed stringStream _print_inlining_list[0]->_ss 4082 // would be destructed, too! 4083 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer()); 4084 } 4085 } 4086 4087 void Compile::print_inlining_reinit() { 4088 if (print_inlining() || print_intrinsics()) { 4089 print_inlining_stream_free(); 4090 // Re allocate buffer when we change ResourceMark 4091 _print_inlining_stream = new stringStream(); 4092 } 4093 } 4094 4095 void Compile::print_inlining_reset() { 4096 _print_inlining_stream->reset(); 4097 } 4098 4099 void Compile::print_inlining_commit() { 4100 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4101 // Transfer the message from _print_inlining_stream to the current 4102 // _print_inlining_list buffer and clear _print_inlining_stream. 4103 _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4104 print_inlining_reset(); 4105 } 4106 4107 void Compile::print_inlining_push() { 4108 // Add new buffer to the _print_inlining_list at current position 4109 _print_inlining_idx++; 4110 _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer()); 4111 } 4112 4113 Compile::PrintInliningBuffer& Compile::print_inlining_current() { 4114 return _print_inlining_list->at(_print_inlining_idx); 4115 } 4116 4117 void Compile::print_inlining_update(CallGenerator* cg) { 4118 if (print_inlining() || print_intrinsics()) { 4119 if (!cg->is_late_inline()) { 4120 if (print_inlining_current().cg() != NULL) { 4121 print_inlining_push(); 4122 } 4123 print_inlining_commit(); 4124 } else { 4125 if (print_inlining_current().cg() != cg && 4126 (print_inlining_current().cg() != NULL || 4127 print_inlining_current().ss()->size() != 0)) { 4128 print_inlining_push(); 4129 } 4130 print_inlining_commit(); 4131 print_inlining_current().set_cg(cg); 4132 } 4133 } 4134 } 4135 4136 void Compile::print_inlining_move_to(CallGenerator* cg) { 4137 // We resume inlining at a late inlining call site. Locate the 4138 // corresponding inlining buffer so that we can update it. 4139 if (print_inlining()) { 4140 for (int i = 0; i < _print_inlining_list->length(); i++) { 4141 if (_print_inlining_list->adr_at(i)->cg() == cg) { 4142 _print_inlining_idx = i; 4143 return; 4144 } 4145 } 4146 ShouldNotReachHere(); 4147 } 4148 } 4149 4150 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4151 if (print_inlining()) { 4152 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4153 assert(print_inlining_current().cg() == cg, "wrong entry"); 4154 // replace message with new message 4155 _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer()); 4156 print_inlining_commit(); 4157 print_inlining_current().set_cg(cg); 4158 } 4159 } 4160 4161 void Compile::print_inlining_assert_ready() { 4162 assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data"); 4163 } 4164 4165 void Compile::process_print_inlining() { 4166 bool do_print_inlining = print_inlining() || print_intrinsics(); 4167 if (do_print_inlining || log() != NULL) { 4168 // Print inlining message for candidates that we couldn't inline 4169 // for lack of space 4170 for (int i = 0; i < _late_inlines.length(); i++) { 4171 CallGenerator* cg = _late_inlines.at(i); 4172 if (!cg->is_mh_late_inline()) { 4173 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 4174 if (do_print_inlining) { 4175 cg->print_inlining_late(msg); 4176 } 4177 log_late_inline_failure(cg, msg); 4178 } 4179 } 4180 } 4181 if (do_print_inlining) { 4182 ResourceMark rm; 4183 stringStream ss; 4184 assert(_print_inlining_list != NULL, "process_print_inlining should be called only once."); 4185 for (int i = 0; i < _print_inlining_list->length(); i++) { 4186 ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string()); 4187 _print_inlining_list->at(i).freeStream(); 4188 } 4189 // Reset _print_inlining_list, it only contains destructed objects. 4190 // It is on the arena, so it will be freed when the arena is reset. 4191 _print_inlining_list = NULL; 4192 // _print_inlining_stream won't be used anymore, either. 4193 print_inlining_stream_free(); 4194 size_t end = ss.size(); 4195 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4196 strncpy(_print_inlining_output, ss.base(), end+1); 4197 _print_inlining_output[end] = 0; 4198 } 4199 } 4200 4201 void Compile::dump_print_inlining() { 4202 if (_print_inlining_output != NULL) { 4203 tty->print_raw(_print_inlining_output); 4204 } 4205 } 4206 4207 void Compile::log_late_inline(CallGenerator* cg) { 4208 if (log() != NULL) { 4209 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4210 cg->unique_id()); 4211 JVMState* p = cg->call_node()->jvms(); 4212 while (p != NULL) { 4213 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4214 p = p->caller(); 4215 } 4216 log()->tail("late_inline"); 4217 } 4218 } 4219 4220 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4221 log_late_inline(cg); 4222 if (log() != NULL) { 4223 log()->inline_fail(msg); 4224 } 4225 } 4226 4227 void Compile::log_inline_id(CallGenerator* cg) { 4228 if (log() != NULL) { 4229 // The LogCompilation tool needs a unique way to identify late 4230 // inline call sites. This id must be unique for this call site in 4231 // this compilation. Try to have it unique across compilations as 4232 // well because it can be convenient when grepping through the log 4233 // file. 4234 // Distinguish OSR compilations from others in case CICountOSR is 4235 // on. 4236 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4237 cg->set_unique_id(id); 4238 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4239 } 4240 } 4241 4242 void Compile::log_inline_failure(const char* msg) { 4243 if (C->log() != NULL) { 4244 C->log()->inline_fail(msg); 4245 } 4246 } 4247 4248 4249 // Dump inlining replay data to the stream. 4250 // Don't change thread state and acquire any locks. 4251 void Compile::dump_inline_data(outputStream* out) { 4252 InlineTree* inl_tree = ilt(); 4253 if (inl_tree != NULL) { 4254 out->print(" inline %d", inl_tree->count()); 4255 inl_tree->dump_replay_data(out); 4256 } 4257 } 4258 4259 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4260 if (n1->Opcode() < n2->Opcode()) return -1; 4261 else if (n1->Opcode() > n2->Opcode()) return 1; 4262 4263 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4264 for (uint i = 1; i < n1->req(); i++) { 4265 if (n1->in(i) < n2->in(i)) return -1; 4266 else if (n1->in(i) > n2->in(i)) return 1; 4267 } 4268 4269 return 0; 4270 } 4271 4272 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4273 Node* n1 = *n1p; 4274 Node* n2 = *n2p; 4275 4276 return cmp_expensive_nodes(n1, n2); 4277 } 4278 4279 void Compile::sort_expensive_nodes() { 4280 if (!expensive_nodes_sorted()) { 4281 _expensive_nodes->sort(cmp_expensive_nodes); 4282 } 4283 } 4284 4285 bool Compile::expensive_nodes_sorted() const { 4286 for (int i = 1; i < _expensive_nodes->length(); i++) { 4287 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) { 4288 return false; 4289 } 4290 } 4291 return true; 4292 } 4293 4294 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4295 if (_expensive_nodes->length() == 0) { 4296 return false; 4297 } 4298 4299 assert(OptimizeExpensiveOps, "optimization off?"); 4300 4301 // Take this opportunity to remove dead nodes from the list 4302 int j = 0; 4303 for (int i = 0; i < _expensive_nodes->length(); i++) { 4304 Node* n = _expensive_nodes->at(i); 4305 if (!n->is_unreachable(igvn)) { 4306 assert(n->is_expensive(), "should be expensive"); 4307 _expensive_nodes->at_put(j, n); 4308 j++; 4309 } 4310 } 4311 _expensive_nodes->trunc_to(j); 4312 4313 // Then sort the list so that similar nodes are next to each other 4314 // and check for at least two nodes of identical kind with same data 4315 // inputs. 4316 sort_expensive_nodes(); 4317 4318 for (int i = 0; i < _expensive_nodes->length()-1; i++) { 4319 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) { 4320 return true; 4321 } 4322 } 4323 4324 return false; 4325 } 4326 4327 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4328 if (_expensive_nodes->length() == 0) { 4329 return; 4330 } 4331 4332 assert(OptimizeExpensiveOps, "optimization off?"); 4333 4334 // Sort to bring similar nodes next to each other and clear the 4335 // control input of nodes for which there's only a single copy. 4336 sort_expensive_nodes(); 4337 4338 int j = 0; 4339 int identical = 0; 4340 int i = 0; 4341 bool modified = false; 4342 for (; i < _expensive_nodes->length()-1; i++) { 4343 assert(j <= i, "can't write beyond current index"); 4344 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) { 4345 identical++; 4346 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4347 continue; 4348 } 4349 if (identical > 0) { 4350 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4351 identical = 0; 4352 } else { 4353 Node* n = _expensive_nodes->at(i); 4354 igvn.replace_input_of(n, 0, NULL); 4355 igvn.hash_insert(n); 4356 modified = true; 4357 } 4358 } 4359 if (identical > 0) { 4360 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4361 } else if (_expensive_nodes->length() >= 1) { 4362 Node* n = _expensive_nodes->at(i); 4363 igvn.replace_input_of(n, 0, NULL); 4364 igvn.hash_insert(n); 4365 modified = true; 4366 } 4367 _expensive_nodes->trunc_to(j); 4368 if (modified) { 4369 igvn.optimize(); 4370 } 4371 } 4372 4373 void Compile::add_expensive_node(Node * n) { 4374 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list"); 4375 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4376 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4377 if (OptimizeExpensiveOps) { 4378 _expensive_nodes->append(n); 4379 } else { 4380 // Clear control input and let IGVN optimize expensive nodes if 4381 // OptimizeExpensiveOps is off. 4382 n->set_req(0, NULL); 4383 } 4384 } 4385 4386 /** 4387 * Remove the speculative part of types and clean up the graph 4388 */ 4389 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4390 if (UseTypeSpeculation) { 4391 Unique_Node_List worklist; 4392 worklist.push(root()); 4393 int modified = 0; 4394 // Go over all type nodes that carry a speculative type, drop the 4395 // speculative part of the type and enqueue the node for an igvn 4396 // which may optimize it out. 4397 for (uint next = 0; next < worklist.size(); ++next) { 4398 Node *n = worklist.at(next); 4399 if (n->is_Type()) { 4400 TypeNode* tn = n->as_Type(); 4401 const Type* t = tn->type(); 4402 const Type* t_no_spec = t->remove_speculative(); 4403 if (t_no_spec != t) { 4404 bool in_hash = igvn.hash_delete(n); 4405 assert(in_hash, "node should be in igvn hash table"); 4406 tn->set_type(t_no_spec); 4407 igvn.hash_insert(n); 4408 igvn._worklist.push(n); // give it a chance to go away 4409 modified++; 4410 } 4411 } 4412 uint max = n->len(); 4413 for( uint i = 0; i < max; ++i ) { 4414 Node *m = n->in(i); 4415 if (not_a_node(m)) continue; 4416 worklist.push(m); 4417 } 4418 } 4419 // Drop the speculative part of all types in the igvn's type table 4420 igvn.remove_speculative_types(); 4421 if (modified > 0) { 4422 igvn.optimize(); 4423 } 4424 #ifdef ASSERT 4425 // Verify that after the IGVN is over no speculative type has resurfaced 4426 worklist.clear(); 4427 worklist.push(root()); 4428 for (uint next = 0; next < worklist.size(); ++next) { 4429 Node *n = worklist.at(next); 4430 const Type* t = igvn.type_or_null(n); 4431 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types"); 4432 if (n->is_Type()) { 4433 t = n->as_Type()->type(); 4434 assert(t == t->remove_speculative(), "no more speculative types"); 4435 } 4436 uint max = n->len(); 4437 for( uint i = 0; i < max; ++i ) { 4438 Node *m = n->in(i); 4439 if (not_a_node(m)) continue; 4440 worklist.push(m); 4441 } 4442 } 4443 igvn.check_no_speculative_types(); 4444 #endif 4445 } 4446 } 4447 4448 // Auxiliary method to support randomized stressing/fuzzing. 4449 // 4450 // This method can be called the arbitrary number of times, with current count 4451 // as the argument. The logic allows selecting a single candidate from the 4452 // running list of candidates as follows: 4453 // int count = 0; 4454 // Cand* selected = null; 4455 // while(cand = cand->next()) { 4456 // if (randomized_select(++count)) { 4457 // selected = cand; 4458 // } 4459 // } 4460 // 4461 // Including count equalizes the chances any candidate is "selected". 4462 // This is useful when we don't have the complete list of candidates to choose 4463 // from uniformly. In this case, we need to adjust the randomicity of the 4464 // selection, or else we will end up biasing the selection towards the latter 4465 // candidates. 4466 // 4467 // Quick back-envelope calculation shows that for the list of n candidates 4468 // the equal probability for the candidate to persist as "best" can be 4469 // achieved by replacing it with "next" k-th candidate with the probability 4470 // of 1/k. It can be easily shown that by the end of the run, the 4471 // probability for any candidate is converged to 1/n, thus giving the 4472 // uniform distribution among all the candidates. 4473 // 4474 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4475 #define RANDOMIZED_DOMAIN_POW 29 4476 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4477 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4478 bool Compile::randomized_select(int count) { 4479 assert(count > 0, "only positive"); 4480 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4481 } 4482 4483 CloneMap& Compile::clone_map() { return _clone_map; } 4484 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 4485 4486 void NodeCloneInfo::dump() const { 4487 tty->print(" {%d:%d} ", idx(), gen()); 4488 } 4489 4490 void CloneMap::clone(Node* old, Node* nnn, int gen) { 4491 uint64_t val = value(old->_idx); 4492 NodeCloneInfo cio(val); 4493 assert(val != 0, "old node should be in the map"); 4494 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 4495 insert(nnn->_idx, cin.get()); 4496 #ifndef PRODUCT 4497 if (is_debug()) { 4498 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 4499 } 4500 #endif 4501 } 4502 4503 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 4504 NodeCloneInfo cio(value(old->_idx)); 4505 if (cio.get() == 0) { 4506 cio.set(old->_idx, 0); 4507 insert(old->_idx, cio.get()); 4508 #ifndef PRODUCT 4509 if (is_debug()) { 4510 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 4511 } 4512 #endif 4513 } 4514 clone(old, nnn, gen); 4515 } 4516 4517 int CloneMap::max_gen() const { 4518 int g = 0; 4519 DictI di(_dict); 4520 for(; di.test(); ++di) { 4521 int t = gen(di._key); 4522 if (g < t) { 4523 g = t; 4524 #ifndef PRODUCT 4525 if (is_debug()) { 4526 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 4527 } 4528 #endif 4529 } 4530 } 4531 return g; 4532 } 4533 4534 void CloneMap::dump(node_idx_t key) const { 4535 uint64_t val = value(key); 4536 if (val != 0) { 4537 NodeCloneInfo ni(val); 4538 ni.dump(); 4539 } 4540 } 4541 4542 // Move Allocate nodes to the start of the list 4543 void Compile::sort_macro_nodes() { 4544 int count = macro_count(); 4545 int allocates = 0; 4546 for (int i = 0; i < count; i++) { 4547 Node* n = macro_node(i); 4548 if (n->is_Allocate()) { 4549 if (i != allocates) { 4550 Node* tmp = macro_node(allocates); 4551 _macro_nodes->at_put(allocates, n); 4552 _macro_nodes->at_put(i, tmp); 4553 } 4554 allocates++; 4555 } 4556 } 4557 } 4558 4559 void Compile::print_method(CompilerPhaseType cpt, int level, int idx) { 4560 EventCompilerPhase event; 4561 if (event.should_commit()) { 4562 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 4563 } 4564 4565 #ifndef PRODUCT 4566 if (should_print(level)) { 4567 char output[1024]; 4568 if (idx != 0) { 4569 jio_snprintf(output, sizeof(output), "%s:%d", CompilerPhaseTypeHelper::to_string(cpt), idx); 4570 } else { 4571 jio_snprintf(output, sizeof(output), "%s", CompilerPhaseTypeHelper::to_string(cpt)); 4572 } 4573 _printer->print_method(output, level); 4574 } 4575 #endif 4576 C->_latest_stage_start_counter.stamp(); 4577 } 4578 4579 void Compile::end_method(int level) { 4580 EventCompilerPhase event; 4581 if (event.should_commit()) { 4582 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, level); 4583 } 4584 4585 #ifndef PRODUCT 4586 if (_method != NULL && should_print(level)) { 4587 _printer->end_method(); 4588 } 4589 #endif 4590 } 4591 4592 4593 #ifndef PRODUCT 4594 IdealGraphPrinter* Compile::_debug_file_printer = NULL; 4595 IdealGraphPrinter* Compile::_debug_network_printer = NULL; 4596 4597 // Called from debugger. Prints method to the default file with the default phase name. 4598 // This works regardless of any Ideal Graph Visualizer flags set or not. 4599 void igv_print() { 4600 Compile::current()->igv_print_method_to_file(); 4601 } 4602 4603 // Same as igv_print() above but with a specified phase name. 4604 void igv_print(const char* phase_name) { 4605 Compile::current()->igv_print_method_to_file(phase_name); 4606 } 4607 4608 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 4609 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 4610 // This works regardless of any Ideal Graph Visualizer flags set or not. 4611 void igv_print(bool network) { 4612 if (network) { 4613 Compile::current()->igv_print_method_to_network(); 4614 } else { 4615 Compile::current()->igv_print_method_to_file(); 4616 } 4617 } 4618 4619 // Same as igv_print(bool network) above but with a specified phase name. 4620 void igv_print(bool network, const char* phase_name) { 4621 if (network) { 4622 Compile::current()->igv_print_method_to_network(phase_name); 4623 } else { 4624 Compile::current()->igv_print_method_to_file(phase_name); 4625 } 4626 } 4627 4628 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 4629 void igv_print_default() { 4630 Compile::current()->print_method(PHASE_DEBUG, 0, 0); 4631 } 4632 4633 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 4634 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 4635 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 4636 void igv_append() { 4637 Compile::current()->igv_print_method_to_file("Debug", true); 4638 } 4639 4640 // Same as igv_append() above but with a specified phase name. 4641 void igv_append(const char* phase_name) { 4642 Compile::current()->igv_print_method_to_file(phase_name, true); 4643 } 4644 4645 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 4646 const char* file_name = "custom_debug.xml"; 4647 if (_debug_file_printer == NULL) { 4648 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 4649 } else { 4650 _debug_file_printer->update_compiled_method(C->method()); 4651 } 4652 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 4653 _debug_file_printer->print_method(phase_name, 0); 4654 } 4655 4656 void Compile::igv_print_method_to_network(const char* phase_name) { 4657 if (_debug_network_printer == NULL) { 4658 _debug_network_printer = new IdealGraphPrinter(C); 4659 } else { 4660 _debug_network_printer->update_compiled_method(C->method()); 4661 } 4662 tty->print_cr("Method printed over network stream to IGV"); 4663 _debug_network_printer->print_method(phase_name, 0); 4664 } 4665 #endif 4666