1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "jfr/jfrEvents.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "opto/addnode.hpp"
  41 #include "opto/block.hpp"
  42 #include "opto/c2compiler.hpp"
  43 #include "opto/callGenerator.hpp"
  44 #include "opto/callnode.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/cfgnode.hpp"
  47 #include "opto/chaitin.hpp"
  48 #include "opto/compile.hpp"
  49 #include "opto/connode.hpp"
  50 #include "opto/convertnode.hpp"
  51 #include "opto/divnode.hpp"
  52 #include "opto/escape.hpp"
  53 #include "opto/idealGraphPrinter.hpp"
  54 #include "opto/loopnode.hpp"
  55 #include "opto/machnode.hpp"
  56 #include "opto/macro.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/mathexactnode.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/narrowptrnode.hpp"
  62 #include "opto/node.hpp"
  63 #include "opto/opcodes.hpp"
  64 #include "opto/output.hpp"
  65 #include "opto/parse.hpp"
  66 #include "opto/phaseX.hpp"
  67 #include "opto/rootnode.hpp"
  68 #include "opto/runtime.hpp"
  69 #include "opto/stringopts.hpp"
  70 #include "opto/type.hpp"
  71 #include "opto/vectornode.hpp"
  72 #include "runtime/arguments.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/signature.hpp"
  75 #include "runtime/stubRoutines.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "utilities/align.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/macros.hpp"
  80 #include "utilities/resourceHash.hpp"
  81 
  82 
  83 // -------------------- Compile::mach_constant_base_node -----------------------
  84 // Constant table base node singleton.
  85 MachConstantBaseNode* Compile::mach_constant_base_node() {
  86   if (_mach_constant_base_node == NULL) {
  87     _mach_constant_base_node = new MachConstantBaseNode();
  88     _mach_constant_base_node->add_req(C->root());
  89   }
  90   return _mach_constant_base_node;
  91 }
  92 
  93 
  94 /// Support for intrinsics.
  95 
  96 // Return the index at which m must be inserted (or already exists).
  97 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  98 class IntrinsicDescPair {
  99  private:
 100   ciMethod* _m;
 101   bool _is_virtual;
 102  public:
 103   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 104   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 105     ciMethod* m= elt->method();
 106     ciMethod* key_m = key->_m;
 107     if (key_m < m)      return -1;
 108     else if (key_m > m) return 1;
 109     else {
 110       bool is_virtual = elt->is_virtual();
 111       bool key_virtual = key->_is_virtual;
 112       if (key_virtual < is_virtual)      return -1;
 113       else if (key_virtual > is_virtual) return 1;
 114       else                               return 0;
 115     }
 116   }
 117 };
 118 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 119 #ifdef ASSERT
 120   for (int i = 1; i < _intrinsics->length(); i++) {
 121     CallGenerator* cg1 = _intrinsics->at(i-1);
 122     CallGenerator* cg2 = _intrinsics->at(i);
 123     assert(cg1->method() != cg2->method()
 124            ? cg1->method()     < cg2->method()
 125            : cg1->is_virtual() < cg2->is_virtual(),
 126            "compiler intrinsics list must stay sorted");
 127   }
 128 #endif
 129   IntrinsicDescPair pair(m, is_virtual);
 130   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 131 }
 132 
 133 void Compile::register_intrinsic(CallGenerator* cg) {
 134   if (_intrinsics == NULL) {
 135     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 136   }
 137   int len = _intrinsics->length();
 138   bool found = false;
 139   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 140   assert(!found, "registering twice");
 141   _intrinsics->insert_before(index, cg);
 142   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 143 }
 144 
 145 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 146   assert(m->is_loaded(), "don't try this on unloaded methods");
 147   if (_intrinsics != NULL) {
 148     bool found = false;
 149     int index = intrinsic_insertion_index(m, is_virtual, found);
 150      if (found) {
 151       return _intrinsics->at(index);
 152     }
 153   }
 154   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 155   if (m->intrinsic_id() != vmIntrinsics::_none &&
 156       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 157     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 158     if (cg != NULL) {
 159       // Save it for next time:
 160       register_intrinsic(cg);
 161       return cg;
 162     } else {
 163       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 164     }
 165   }
 166   return NULL;
 167 }
 168 
 169 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 170 // in library_call.cpp.
 171 
 172 
 173 #ifndef PRODUCT
 174 // statistics gathering...
 175 
 176 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 177 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 178 
 179 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 180   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 181   int oflags = _intrinsic_hist_flags[id];
 182   assert(flags != 0, "what happened?");
 183   if (is_virtual) {
 184     flags |= _intrinsic_virtual;
 185   }
 186   bool changed = (flags != oflags);
 187   if ((flags & _intrinsic_worked) != 0) {
 188     juint count = (_intrinsic_hist_count[id] += 1);
 189     if (count == 1) {
 190       changed = true;           // first time
 191     }
 192     // increment the overall count also:
 193     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 194   }
 195   if (changed) {
 196     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 197       // Something changed about the intrinsic's virtuality.
 198       if ((flags & _intrinsic_virtual) != 0) {
 199         // This is the first use of this intrinsic as a virtual call.
 200         if (oflags != 0) {
 201           // We already saw it as a non-virtual, so note both cases.
 202           flags |= _intrinsic_both;
 203         }
 204       } else if ((oflags & _intrinsic_both) == 0) {
 205         // This is the first use of this intrinsic as a non-virtual
 206         flags |= _intrinsic_both;
 207       }
 208     }
 209     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 210   }
 211   // update the overall flags also:
 212   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 213   return changed;
 214 }
 215 
 216 static char* format_flags(int flags, char* buf) {
 217   buf[0] = 0;
 218   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 219   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 220   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 221   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 222   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 223   if (buf[0] == 0)  strcat(buf, ",");
 224   assert(buf[0] == ',', "must be");
 225   return &buf[1];
 226 }
 227 
 228 void Compile::print_intrinsic_statistics() {
 229   char flagsbuf[100];
 230   ttyLocker ttyl;
 231   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 232   tty->print_cr("Compiler intrinsic usage:");
 233   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 234   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 235   #define PRINT_STAT_LINE(name, c, f) \
 236     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 237   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 238     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 239     int   flags = _intrinsic_hist_flags[id];
 240     juint count = _intrinsic_hist_count[id];
 241     if ((flags | count) != 0) {
 242       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 243     }
 244   }
 245   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 246   if (xtty != NULL)  xtty->tail("statistics");
 247 }
 248 
 249 void Compile::print_statistics() {
 250   { ttyLocker ttyl;
 251     if (xtty != NULL)  xtty->head("statistics type='opto'");
 252     Parse::print_statistics();
 253     PhaseCCP::print_statistics();
 254     PhaseRegAlloc::print_statistics();
 255     PhaseOutput::print_statistics();
 256     PhasePeephole::print_statistics();
 257     PhaseIdealLoop::print_statistics();
 258     if (xtty != NULL)  xtty->tail("statistics");
 259   }
 260   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 261     // put this under its own <statistics> element.
 262     print_intrinsic_statistics();
 263   }
 264 }
 265 #endif //PRODUCT
 266 
 267 void Compile::gvn_replace_by(Node* n, Node* nn) {
 268   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 269     Node* use = n->last_out(i);
 270     bool is_in_table = initial_gvn()->hash_delete(use);
 271     uint uses_found = 0;
 272     for (uint j = 0; j < use->len(); j++) {
 273       if (use->in(j) == n) {
 274         if (j < use->req())
 275           use->set_req(j, nn);
 276         else
 277           use->set_prec(j, nn);
 278         uses_found++;
 279       }
 280     }
 281     if (is_in_table) {
 282       // reinsert into table
 283       initial_gvn()->hash_find_insert(use);
 284     }
 285     record_for_igvn(use);
 286     i -= uses_found;    // we deleted 1 or more copies of this edge
 287   }
 288 }
 289 
 290 
 291 static inline bool not_a_node(const Node* n) {
 292   if (n == NULL)                   return true;
 293   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 294   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 295   return false;
 296 }
 297 
 298 // Identify all nodes that are reachable from below, useful.
 299 // Use breadth-first pass that records state in a Unique_Node_List,
 300 // recursive traversal is slower.
 301 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 302   int estimated_worklist_size = live_nodes();
 303   useful.map( estimated_worklist_size, NULL );  // preallocate space
 304 
 305   // Initialize worklist
 306   if (root() != NULL)     { useful.push(root()); }
 307   // If 'top' is cached, declare it useful to preserve cached node
 308   if( cached_top_node() ) { useful.push(cached_top_node()); }
 309 
 310   // Push all useful nodes onto the list, breadthfirst
 311   for( uint next = 0; next < useful.size(); ++next ) {
 312     assert( next < unique(), "Unique useful nodes < total nodes");
 313     Node *n  = useful.at(next);
 314     uint max = n->len();
 315     for( uint i = 0; i < max; ++i ) {
 316       Node *m = n->in(i);
 317       if (not_a_node(m))  continue;
 318       useful.push(m);
 319     }
 320   }
 321 }
 322 
 323 // Update dead_node_list with any missing dead nodes using useful
 324 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 325 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 326   uint max_idx = unique();
 327   VectorSet& useful_node_set = useful.member_set();
 328 
 329   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 330     // If node with index node_idx is not in useful set,
 331     // mark it as dead in dead node list.
 332     if (!useful_node_set.test(node_idx)) {
 333       record_dead_node(node_idx);
 334     }
 335   }
 336 }
 337 
 338 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 339   int shift = 0;
 340   for (int i = 0; i < inlines->length(); i++) {
 341     CallGenerator* cg = inlines->at(i);
 342     CallNode* call = cg->call_node();
 343     if (shift > 0) {
 344       inlines->at_put(i-shift, cg);
 345     }
 346     if (!useful.member(call)) {
 347       shift++;
 348     }
 349   }
 350   inlines->trunc_to(inlines->length()-shift);
 351 }
 352 
 353 // Disconnect all useless nodes by disconnecting those at the boundary.
 354 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 355   uint next = 0;
 356   while (next < useful.size()) {
 357     Node *n = useful.at(next++);
 358     if (n->is_SafePoint()) {
 359       // We're done with a parsing phase. Replaced nodes are not valid
 360       // beyond that point.
 361       n->as_SafePoint()->delete_replaced_nodes();
 362     }
 363     // Use raw traversal of out edges since this code removes out edges
 364     int max = n->outcnt();
 365     for (int j = 0; j < max; ++j) {
 366       Node* child = n->raw_out(j);
 367       if (! useful.member(child)) {
 368         assert(!child->is_top() || child != top(),
 369                "If top is cached in Compile object it is in useful list");
 370         // Only need to remove this out-edge to the useless node
 371         n->raw_del_out(j);
 372         --j;
 373         --max;
 374       }
 375     }
 376     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 377       record_for_igvn(n->unique_out());
 378     }
 379   }
 380   // Remove useless macro and predicate opaq nodes
 381   for (int i = C->macro_count()-1; i >= 0; i--) {
 382     Node* n = C->macro_node(i);
 383     if (!useful.member(n)) {
 384       remove_macro_node(n);
 385     }
 386   }
 387   // Remove useless CastII nodes with range check dependency
 388   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 389     Node* cast = range_check_cast_node(i);
 390     if (!useful.member(cast)) {
 391       remove_range_check_cast(cast);
 392     }
 393   }
 394   // Remove useless expensive nodes
 395   for (int i = C->expensive_count()-1; i >= 0; i--) {
 396     Node* n = C->expensive_node(i);
 397     if (!useful.member(n)) {
 398       remove_expensive_node(n);
 399     }
 400   }
 401   // Remove useless Opaque4 nodes
 402   for (int i = opaque4_count() - 1; i >= 0; i--) {
 403     Node* opaq = opaque4_node(i);
 404     if (!useful.member(opaq)) {
 405       remove_opaque4_node(opaq);
 406     }
 407   }
 408   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 409   bs->eliminate_useless_gc_barriers(useful, this);
 410   // clean up the late inline lists
 411   remove_useless_late_inlines(&_string_late_inlines, useful);
 412   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 413   remove_useless_late_inlines(&_late_inlines, useful);
 414   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 415 }
 416 
 417 // ============================================================================
 418 //------------------------------CompileWrapper---------------------------------
 419 class CompileWrapper : public StackObj {
 420   Compile *const _compile;
 421  public:
 422   CompileWrapper(Compile* compile);
 423 
 424   ~CompileWrapper();
 425 };
 426 
 427 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 428   // the Compile* pointer is stored in the current ciEnv:
 429   ciEnv* env = compile->env();
 430   assert(env == ciEnv::current(), "must already be a ciEnv active");
 431   assert(env->compiler_data() == NULL, "compile already active?");
 432   env->set_compiler_data(compile);
 433   assert(compile == Compile::current(), "sanity");
 434 
 435   compile->set_type_dict(NULL);
 436   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 437   compile->clone_map().set_clone_idx(0);
 438   compile->set_type_last_size(0);
 439   compile->set_last_tf(NULL, NULL);
 440   compile->set_indexSet_arena(NULL);
 441   compile->set_indexSet_free_block_list(NULL);
 442   compile->init_type_arena();
 443   Type::Initialize(compile);
 444   _compile->begin_method();
 445   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 446 }
 447 CompileWrapper::~CompileWrapper() {
 448   _compile->end_method();
 449   _compile->env()->set_compiler_data(NULL);
 450 }
 451 
 452 
 453 //----------------------------print_compile_messages---------------------------
 454 void Compile::print_compile_messages() {
 455 #ifndef PRODUCT
 456   // Check if recompiling
 457   if (_subsume_loads == false && PrintOpto) {
 458     // Recompiling without allowing machine instructions to subsume loads
 459     tty->print_cr("*********************************************************");
 460     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 461     tty->print_cr("*********************************************************");
 462   }
 463   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 464     // Recompiling without escape analysis
 465     tty->print_cr("*********************************************************");
 466     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 467     tty->print_cr("*********************************************************");
 468   }
 469   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 470     // Recompiling without boxing elimination
 471     tty->print_cr("*********************************************************");
 472     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 473     tty->print_cr("*********************************************************");
 474   }
 475   if (C->directive()->BreakAtCompileOption) {
 476     // Open the debugger when compiling this method.
 477     tty->print("### Breaking when compiling: ");
 478     method()->print_short_name();
 479     tty->cr();
 480     BREAKPOINT;
 481   }
 482 
 483   if( PrintOpto ) {
 484     if (is_osr_compilation()) {
 485       tty->print("[OSR]%3d", _compile_id);
 486     } else {
 487       tty->print("%3d", _compile_id);
 488     }
 489   }
 490 #endif
 491 }
 492 
 493 // ============================================================================
 494 //------------------------------Compile standard-------------------------------
 495 debug_only( int Compile::_debug_idx = 100000; )
 496 
 497 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 498 // the continuation bci for on stack replacement.
 499 
 500 
 501 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
 502                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 503                 : Phase(Compiler),
 504                   _compile_id(ci_env->compile_id()),
 505                   _save_argument_registers(false),
 506                   _subsume_loads(subsume_loads),
 507                   _do_escape_analysis(do_escape_analysis),
 508                   _eliminate_boxing(eliminate_boxing),
 509                   _method(target),
 510                   _entry_bci(osr_bci),
 511                   _stub_function(NULL),
 512                   _stub_name(NULL),
 513                   _stub_entry_point(NULL),
 514                   _max_node_limit(MaxNodeLimit),
 515                   _inlining_progress(false),
 516                   _inlining_incrementally(false),
 517                   _do_cleanup(false),
 518                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 519 #ifndef PRODUCT
 520                   _trace_opto_output(directive->TraceOptoOutputOption),
 521                   _print_ideal(directive->PrintIdealOption),
 522 #endif
 523                   _has_method_handle_invokes(false),
 524                   _clinit_barrier_on_entry(false),
 525                   _comp_arena(mtCompiler),
 526                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 527                   _env(ci_env),
 528                   _directive(directive),
 529                   _log(ci_env->log()),
 530                   _failure_reason(NULL),
 531                   _congraph(NULL),
 532                   NOT_PRODUCT(_printer(NULL) COMMA)
 533                   _dead_node_list(comp_arena()),
 534                   _dead_node_count(0),
 535                   _node_arena(mtCompiler),
 536                   _old_arena(mtCompiler),
 537                   _mach_constant_base_node(NULL),
 538                   _Compile_types(mtCompiler),
 539                   _initial_gvn(NULL),
 540                   _for_igvn(NULL),
 541                   _warm_calls(NULL),
 542                   _late_inlines(comp_arena(), 2, 0, NULL),
 543                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 544                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 545                   _late_inlines_pos(0),
 546                   _number_of_mh_late_inlines(0),
 547                   _print_inlining_stream(NULL),
 548                   _print_inlining_list(NULL),
 549                   _print_inlining_idx(0),
 550                   _print_inlining_output(NULL),
 551                   _replay_inline_data(NULL),
 552                   _java_calls(0),
 553                   _inner_loops(0),
 554                   _interpreter_frame_size(0)
 555 #ifndef PRODUCT
 556                   , _in_dump_cnt(0)
 557 #endif
 558 {
 559   C = this;
 560   CompileWrapper cw(this);
 561 
 562   if (CITimeVerbose) {
 563     tty->print(" ");
 564     target->holder()->name()->print();
 565     tty->print(".");
 566     target->print_short_name();
 567     tty->print("  ");
 568   }
 569   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 570   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 571 
 572 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 573   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 574   // We can always print a disassembly, either abstract (hex dump) or
 575   // with the help of a suitable hsdis library. Thus, we should not
 576   // couple print_assembly and print_opto_assembly controls.
 577   // But: always print opto and regular assembly on compile command 'print'.
 578   bool print_assembly = directive->PrintAssemblyOption;
 579   set_print_assembly(print_opto_assembly || print_assembly);
 580 #else
 581   set_print_assembly(false); // must initialize.
 582 #endif
 583 
 584 #ifndef PRODUCT
 585   set_parsed_irreducible_loop(false);
 586 
 587   if (directive->ReplayInlineOption) {
 588     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 589   }
 590 #endif
 591   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 592   set_print_intrinsics(directive->PrintIntrinsicsOption);
 593   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 594 
 595   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 596     // Make sure the method being compiled gets its own MDO,
 597     // so we can at least track the decompile_count().
 598     // Need MDO to record RTM code generation state.
 599     method()->ensure_method_data();
 600   }
 601 
 602   Init(::AliasLevel);
 603 
 604 
 605   print_compile_messages();
 606 
 607   _ilt = InlineTree::build_inline_tree_root();
 608 
 609   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 610   assert(num_alias_types() >= AliasIdxRaw, "");
 611 
 612 #define MINIMUM_NODE_HASH  1023
 613   // Node list that Iterative GVN will start with
 614   Unique_Node_List for_igvn(comp_arena());
 615   set_for_igvn(&for_igvn);
 616 
 617   // GVN that will be run immediately on new nodes
 618   uint estimated_size = method()->code_size()*4+64;
 619   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 620   PhaseGVN gvn(node_arena(), estimated_size);
 621   set_initial_gvn(&gvn);
 622 
 623   print_inlining_init();
 624   { // Scope for timing the parser
 625     TracePhase tp("parse", &timers[_t_parser]);
 626 
 627     // Put top into the hash table ASAP.
 628     initial_gvn()->transform_no_reclaim(top());
 629 
 630     // Set up tf(), start(), and find a CallGenerator.
 631     CallGenerator* cg = NULL;
 632     if (is_osr_compilation()) {
 633       const TypeTuple *domain = StartOSRNode::osr_domain();
 634       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 635       init_tf(TypeFunc::make(domain, range));
 636       StartNode* s = new StartOSRNode(root(), domain);
 637       initial_gvn()->set_type_bottom(s);
 638       init_start(s);
 639       cg = CallGenerator::for_osr(method(), entry_bci());
 640     } else {
 641       // Normal case.
 642       init_tf(TypeFunc::make(method()));
 643       StartNode* s = new StartNode(root(), tf()->domain());
 644       initial_gvn()->set_type_bottom(s);
 645       init_start(s);
 646       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 647         // With java.lang.ref.reference.get() we must go through the
 648         // intrinsic - even when get() is the root
 649         // method of the compile - so that, if necessary, the value in
 650         // the referent field of the reference object gets recorded by
 651         // the pre-barrier code.
 652         cg = find_intrinsic(method(), false);
 653       }
 654       if (cg == NULL) {
 655         float past_uses = method()->interpreter_invocation_count();
 656         float expected_uses = past_uses;
 657         cg = CallGenerator::for_inline(method(), expected_uses);
 658       }
 659     }
 660     if (failing())  return;
 661     if (cg == NULL) {
 662       record_method_not_compilable("cannot parse method");
 663       return;
 664     }
 665     JVMState* jvms = build_start_state(start(), tf());
 666     if ((jvms = cg->generate(jvms)) == NULL) {
 667       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 668         record_method_not_compilable("method parse failed");
 669       }
 670       return;
 671     }
 672     GraphKit kit(jvms);
 673 
 674     if (!kit.stopped()) {
 675       // Accept return values, and transfer control we know not where.
 676       // This is done by a special, unique ReturnNode bound to root.
 677       return_values(kit.jvms());
 678     }
 679 
 680     if (kit.has_exceptions()) {
 681       // Any exceptions that escape from this call must be rethrown
 682       // to whatever caller is dynamically above us on the stack.
 683       // This is done by a special, unique RethrowNode bound to root.
 684       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 685     }
 686 
 687     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 688 
 689     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 690       inline_string_calls(true);
 691     }
 692 
 693     if (failing())  return;
 694 
 695     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 696 
 697     // Remove clutter produced by parsing.
 698     if (!failing()) {
 699       ResourceMark rm;
 700       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 701     }
 702   }
 703 
 704   // Note:  Large methods are capped off in do_one_bytecode().
 705   if (failing())  return;
 706 
 707   // After parsing, node notes are no longer automagic.
 708   // They must be propagated by register_new_node_with_optimizer(),
 709   // clone(), or the like.
 710   set_default_node_notes(NULL);
 711 
 712   for (;;) {
 713     int successes = Inline_Warm();
 714     if (failing())  return;
 715     if (successes == 0)  break;
 716   }
 717 
 718   // Drain the list.
 719   Finish_Warm();
 720 #ifndef PRODUCT
 721   if (should_print(1)) {
 722     _printer->print_inlining();
 723   }
 724 #endif
 725 
 726   if (failing())  return;
 727   NOT_PRODUCT( verify_graph_edges(); )
 728 
 729   // Now optimize
 730   Optimize();
 731   if (failing())  return;
 732   NOT_PRODUCT( verify_graph_edges(); )
 733 
 734 #ifndef PRODUCT
 735   if (print_ideal()) {
 736     ttyLocker ttyl;  // keep the following output all in one block
 737     // This output goes directly to the tty, not the compiler log.
 738     // To enable tools to match it up with the compilation activity,
 739     // be sure to tag this tty output with the compile ID.
 740     if (xtty != NULL) {
 741       xtty->head("ideal compile_id='%d'%s", compile_id(),
 742                  is_osr_compilation()    ? " compile_kind='osr'" :
 743                  "");
 744     }
 745     root()->dump(9999);
 746     if (xtty != NULL) {
 747       xtty->tail("ideal");
 748     }
 749   }
 750 #endif
 751 
 752 #ifdef ASSERT
 753   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 754   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 755 #endif
 756 
 757   // Dump compilation data to replay it.
 758   if (directive->DumpReplayOption) {
 759     env()->dump_replay_data(_compile_id);
 760   }
 761   if (directive->DumpInlineOption && (ilt() != NULL)) {
 762     env()->dump_inline_data(_compile_id);
 763   }
 764 
 765   // Now that we know the size of all the monitors we can add a fixed slot
 766   // for the original deopt pc.
 767   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 768   set_fixed_slots(next_slot);
 769 
 770   // Compute when to use implicit null checks. Used by matching trap based
 771   // nodes and NullCheck optimization.
 772   set_allowed_deopt_reasons();
 773 
 774   // Now generate code
 775   Code_Gen();
 776 }
 777 
 778 //------------------------------Compile----------------------------------------
 779 // Compile a runtime stub
 780 Compile::Compile( ciEnv* ci_env,
 781                   TypeFunc_generator generator,
 782                   address stub_function,
 783                   const char *stub_name,
 784                   int is_fancy_jump,
 785                   bool pass_tls,
 786                   bool save_arg_registers,
 787                   bool return_pc,
 788                   DirectiveSet* directive)
 789   : Phase(Compiler),
 790     _compile_id(0),
 791     _save_argument_registers(save_arg_registers),
 792     _subsume_loads(true),
 793     _do_escape_analysis(false),
 794     _eliminate_boxing(false),
 795     _method(NULL),
 796     _entry_bci(InvocationEntryBci),
 797     _stub_function(stub_function),
 798     _stub_name(stub_name),
 799     _stub_entry_point(NULL),
 800     _max_node_limit(MaxNodeLimit),
 801     _inlining_progress(false),
 802     _inlining_incrementally(false),
 803     _has_reserved_stack_access(false),
 804 #ifndef PRODUCT
 805     _trace_opto_output(directive->TraceOptoOutputOption),
 806     _print_ideal(directive->PrintIdealOption),
 807 #endif
 808     _has_method_handle_invokes(false),
 809     _clinit_barrier_on_entry(false),
 810     _comp_arena(mtCompiler),
 811     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 812     _env(ci_env),
 813     _directive(directive),
 814     _log(ci_env->log()),
 815     _failure_reason(NULL),
 816     _congraph(NULL),
 817     NOT_PRODUCT(_printer(NULL) COMMA)
 818     _dead_node_list(comp_arena()),
 819     _dead_node_count(0),
 820     _node_arena(mtCompiler),
 821     _old_arena(mtCompiler),
 822     _mach_constant_base_node(NULL),
 823     _Compile_types(mtCompiler),
 824     _initial_gvn(NULL),
 825     _for_igvn(NULL),
 826     _warm_calls(NULL),
 827     _number_of_mh_late_inlines(0),
 828     _print_inlining_stream(NULL),
 829     _print_inlining_list(NULL),
 830     _print_inlining_idx(0),
 831     _print_inlining_output(NULL),
 832     _replay_inline_data(NULL),
 833     _java_calls(0),
 834     _inner_loops(0),
 835     _interpreter_frame_size(0),
 836 #ifndef PRODUCT
 837     _in_dump_cnt(0),
 838 #endif
 839     _allowed_reasons(0) {
 840   C = this;
 841 
 842   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 843   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 844 
 845 #ifndef PRODUCT
 846   set_print_assembly(PrintFrameConverterAssembly);
 847   set_parsed_irreducible_loop(false);
 848 #else
 849   set_print_assembly(false); // Must initialize.
 850 #endif
 851   set_has_irreducible_loop(false); // no loops
 852 
 853   CompileWrapper cw(this);
 854   Init(/*AliasLevel=*/ 0);
 855   init_tf((*generator)());
 856 
 857   {
 858     // The following is a dummy for the sake of GraphKit::gen_stub
 859     Unique_Node_List for_igvn(comp_arena());
 860     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 861     PhaseGVN gvn(Thread::current()->resource_area(),255);
 862     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 863     gvn.transform_no_reclaim(top());
 864 
 865     GraphKit kit;
 866     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 867   }
 868 
 869   NOT_PRODUCT( verify_graph_edges(); )
 870 
 871   Code_Gen();
 872 }
 873 
 874 //------------------------------Init-------------------------------------------
 875 // Prepare for a single compilation
 876 void Compile::Init(int aliaslevel) {
 877   _unique  = 0;
 878   _regalloc = NULL;
 879 
 880   _tf      = NULL;  // filled in later
 881   _top     = NULL;  // cached later
 882   _matcher = NULL;  // filled in later
 883   _cfg     = NULL;  // filled in later
 884 
 885   IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
 886 
 887   _node_note_array = NULL;
 888   _default_node_notes = NULL;
 889   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
 890 
 891   _immutable_memory = NULL; // filled in at first inquiry
 892 
 893   // Globally visible Nodes
 894   // First set TOP to NULL to give safe behavior during creation of RootNode
 895   set_cached_top_node(NULL);
 896   set_root(new RootNode());
 897   // Now that you have a Root to point to, create the real TOP
 898   set_cached_top_node( new ConNode(Type::TOP) );
 899   set_recent_alloc(NULL, NULL);
 900 
 901   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 902   env()->set_oop_recorder(new OopRecorder(env()->arena()));
 903   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 904   env()->set_dependencies(new Dependencies(env()));
 905 
 906   _fixed_slots = 0;
 907   _stack_allocated_slots = 0;
 908   set_fail_stack_allocation_with_references(false);
 909   set_has_split_ifs(false);
 910   set_has_loops(has_method() && method()->has_loops()); // first approximation
 911   set_has_stringbuilder(false);
 912   set_has_boxed_value(false);
 913   _trap_can_recompile = false;  // no traps emitted yet
 914   _major_progress = true; // start out assuming good things will happen
 915   set_has_unsafe_access(false);
 916   set_max_vector_size(0);
 917   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
 918   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 919   set_decompile_count(0);
 920 
 921   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
 922   _loop_opts_cnt = LoopOptsCount;
 923   set_do_inlining(Inline);
 924   set_max_inline_size(MaxInlineSize);
 925   set_freq_inline_size(FreqInlineSize);
 926   set_do_scheduling(OptoScheduling);
 927   set_do_count_invocations(false);
 928   set_do_method_data_update(false);
 929 
 930   set_do_vector_loop(false);
 931 
 932   if (AllowVectorizeOnDemand) {
 933     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
 934       set_do_vector_loop(true);
 935       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
 936     } else if (has_method() && method()->name() != 0 &&
 937                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
 938       set_do_vector_loop(true);
 939     }
 940   }
 941   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
 942   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
 943 
 944   set_age_code(has_method() && method()->profile_aging());
 945   set_rtm_state(NoRTM); // No RTM lock eliding by default
 946   _max_node_limit = _directive->MaxNodeLimitOption;
 947 
 948 #if INCLUDE_RTM_OPT
 949   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
 950     int rtm_state = method()->method_data()->rtm_state();
 951     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
 952       // Don't generate RTM lock eliding code.
 953       set_rtm_state(NoRTM);
 954     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
 955       // Generate RTM lock eliding code without abort ratio calculation code.
 956       set_rtm_state(UseRTM);
 957     } else if (UseRTMDeopt) {
 958       // Generate RTM lock eliding code and include abort ratio calculation
 959       // code if UseRTMDeopt is on.
 960       set_rtm_state(ProfileRTM);
 961     }
 962   }
 963 #endif
 964   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
 965     set_clinit_barrier_on_entry(true);
 966   }
 967   if (debug_info()->recording_non_safepoints()) {
 968     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 969                         (comp_arena(), 8, 0, NULL));
 970     set_default_node_notes(Node_Notes::make(this));
 971   }
 972 
 973   // // -- Initialize types before each compile --
 974   // // Update cached type information
 975   // if( _method && _method->constants() )
 976   //   Type::update_loaded_types(_method, _method->constants());
 977 
 978   // Init alias_type map.
 979   if (!_do_escape_analysis && aliaslevel == 3)
 980     aliaslevel = 2;  // No unique types without escape analysis
 981   _AliasLevel = aliaslevel;
 982   const int grow_ats = 16;
 983   _max_alias_types = grow_ats;
 984   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 985   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 986   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 987   {
 988     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 989   }
 990   // Initialize the first few types.
 991   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
 992   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
 993   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
 994   _num_alias_types = AliasIdxRaw+1;
 995   // Zero out the alias type cache.
 996   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
 997   // A NULL adr_type hits in the cache right away.  Preload the right answer.
 998   probe_alias_cache(NULL)->_index = AliasIdxTop;
 999 
1000   _intrinsics = NULL;
1001   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1002   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1003   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1004   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1005   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1006   register_library_intrinsics();
1007 #ifdef ASSERT
1008   _type_verify_symmetry = true;
1009 #endif
1010 }
1011 
1012 //---------------------------init_start----------------------------------------
1013 // Install the StartNode on this compile object.
1014 void Compile::init_start(StartNode* s) {
1015   if (failing())
1016     return; // already failing
1017   assert(s == start(), "");
1018 }
1019 
1020 /**
1021  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1022  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1023  * the ideal graph.
1024  */
1025 StartNode* Compile::start() const {
1026   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1027   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1028     Node* start = root()->fast_out(i);
1029     if (start->is_Start()) {
1030       return start->as_Start();
1031     }
1032   }
1033   fatal("Did not find Start node!");
1034   return NULL;
1035 }
1036 
1037 //-------------------------------immutable_memory-------------------------------------
1038 // Access immutable memory
1039 Node* Compile::immutable_memory() {
1040   if (_immutable_memory != NULL) {
1041     return _immutable_memory;
1042   }
1043   StartNode* s = start();
1044   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1045     Node *p = s->fast_out(i);
1046     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1047       _immutable_memory = p;
1048       return _immutable_memory;
1049     }
1050   }
1051   ShouldNotReachHere();
1052   return NULL;
1053 }
1054 
1055 //----------------------set_cached_top_node------------------------------------
1056 // Install the cached top node, and make sure Node::is_top works correctly.
1057 void Compile::set_cached_top_node(Node* tn) {
1058   if (tn != NULL)  verify_top(tn);
1059   Node* old_top = _top;
1060   _top = tn;
1061   // Calling Node::setup_is_top allows the nodes the chance to adjust
1062   // their _out arrays.
1063   if (_top != NULL)     _top->setup_is_top();
1064   if (old_top != NULL)  old_top->setup_is_top();
1065   assert(_top == NULL || top()->is_top(), "");
1066 }
1067 
1068 #ifdef ASSERT
1069 uint Compile::count_live_nodes_by_graph_walk() {
1070   Unique_Node_List useful(comp_arena());
1071   // Get useful node list by walking the graph.
1072   identify_useful_nodes(useful);
1073   return useful.size();
1074 }
1075 
1076 void Compile::print_missing_nodes() {
1077 
1078   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1079   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1080     return;
1081   }
1082 
1083   // This is an expensive function. It is executed only when the user
1084   // specifies VerifyIdealNodeCount option or otherwise knows the
1085   // additional work that needs to be done to identify reachable nodes
1086   // by walking the flow graph and find the missing ones using
1087   // _dead_node_list.
1088 
1089   Unique_Node_List useful(comp_arena());
1090   // Get useful node list by walking the graph.
1091   identify_useful_nodes(useful);
1092 
1093   uint l_nodes = C->live_nodes();
1094   uint l_nodes_by_walk = useful.size();
1095 
1096   if (l_nodes != l_nodes_by_walk) {
1097     if (_log != NULL) {
1098       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1099       _log->stamp();
1100       _log->end_head();
1101     }
1102     VectorSet& useful_member_set = useful.member_set();
1103     int last_idx = l_nodes_by_walk;
1104     for (int i = 0; i < last_idx; i++) {
1105       if (useful_member_set.test(i)) {
1106         if (_dead_node_list.test(i)) {
1107           if (_log != NULL) {
1108             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1109           }
1110           if (PrintIdealNodeCount) {
1111             // Print the log message to tty
1112               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1113               useful.at(i)->dump();
1114           }
1115         }
1116       }
1117       else if (! _dead_node_list.test(i)) {
1118         if (_log != NULL) {
1119           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1120         }
1121         if (PrintIdealNodeCount) {
1122           // Print the log message to tty
1123           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1124         }
1125       }
1126     }
1127     if (_log != NULL) {
1128       _log->tail("mismatched_nodes");
1129     }
1130   }
1131 }
1132 void Compile::record_modified_node(Node* n) {
1133   if (_modified_nodes != NULL && !_inlining_incrementally &&
1134       n->outcnt() != 0 && !n->is_Con()) {
1135     _modified_nodes->push(n);
1136   }
1137 }
1138 
1139 void Compile::remove_modified_node(Node* n) {
1140   if (_modified_nodes != NULL) {
1141     _modified_nodes->remove(n);
1142   }
1143 }
1144 #endif
1145 
1146 #ifndef PRODUCT
1147 void Compile::verify_top(Node* tn) const {
1148   if (tn != NULL) {
1149     assert(tn->is_Con(), "top node must be a constant");
1150     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1151     assert(tn->in(0) != NULL, "must have live top node");
1152   }
1153 }
1154 #endif
1155 
1156 
1157 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1158 
1159 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1160   guarantee(arr != NULL, "");
1161   int num_blocks = arr->length();
1162   if (grow_by < num_blocks)  grow_by = num_blocks;
1163   int num_notes = grow_by * _node_notes_block_size;
1164   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1165   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1166   while (num_notes > 0) {
1167     arr->append(notes);
1168     notes     += _node_notes_block_size;
1169     num_notes -= _node_notes_block_size;
1170   }
1171   assert(num_notes == 0, "exact multiple, please");
1172 }
1173 
1174 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1175   if (source == NULL || dest == NULL)  return false;
1176 
1177   if (dest->is_Con())
1178     return false;               // Do not push debug info onto constants.
1179 
1180 #ifdef ASSERT
1181   // Leave a bread crumb trail pointing to the original node:
1182   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1183     dest->set_debug_orig(source);
1184   }
1185 #endif
1186 
1187   if (node_note_array() == NULL)
1188     return false;               // Not collecting any notes now.
1189 
1190   // This is a copy onto a pre-existing node, which may already have notes.
1191   // If both nodes have notes, do not overwrite any pre-existing notes.
1192   Node_Notes* source_notes = node_notes_at(source->_idx);
1193   if (source_notes == NULL || source_notes->is_clear())  return false;
1194   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1195   if (dest_notes == NULL || dest_notes->is_clear()) {
1196     return set_node_notes_at(dest->_idx, source_notes);
1197   }
1198 
1199   Node_Notes merged_notes = (*source_notes);
1200   // The order of operations here ensures that dest notes will win...
1201   merged_notes.update_from(dest_notes);
1202   return set_node_notes_at(dest->_idx, &merged_notes);
1203 }
1204 
1205 
1206 //--------------------------allow_range_check_smearing-------------------------
1207 // Gating condition for coalescing similar range checks.
1208 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1209 // single covering check that is at least as strong as any of them.
1210 // If the optimization succeeds, the simplified (strengthened) range check
1211 // will always succeed.  If it fails, we will deopt, and then give up
1212 // on the optimization.
1213 bool Compile::allow_range_check_smearing() const {
1214   // If this method has already thrown a range-check,
1215   // assume it was because we already tried range smearing
1216   // and it failed.
1217   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1218   return !already_trapped;
1219 }
1220 
1221 
1222 //------------------------------flatten_alias_type-----------------------------
1223 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1224   int offset = tj->offset();
1225   TypePtr::PTR ptr = tj->ptr();
1226 
1227   // Known instance (scalarizable allocation) alias only with itself.
1228   bool is_known_inst = tj->isa_oopptr() != NULL &&
1229                        tj->is_oopptr()->is_known_instance();
1230 
1231   // Process weird unsafe references.
1232   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1233     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1234     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1235     tj = TypeOopPtr::BOTTOM;
1236     ptr = tj->ptr();
1237     offset = tj->offset();
1238   }
1239 
1240   // Array pointers need some flattening
1241   const TypeAryPtr *ta = tj->isa_aryptr();
1242   if (ta && ta->is_stable()) {
1243     // Erase stability property for alias analysis.
1244     tj = ta = ta->cast_to_stable(false);
1245   }
1246   if( ta && is_known_inst ) {
1247     if ( offset != Type::OffsetBot &&
1248          offset > arrayOopDesc::length_offset_in_bytes() ) {
1249       offset = Type::OffsetBot; // Flatten constant access into array body only
1250       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1251     }
1252   } else if( ta && _AliasLevel >= 2 ) {
1253     // For arrays indexed by constant indices, we flatten the alias
1254     // space to include all of the array body.  Only the header, klass
1255     // and array length can be accessed un-aliased.
1256     if( offset != Type::OffsetBot ) {
1257       if( ta->const_oop() ) { // MethodData* or Method*
1258         offset = Type::OffsetBot;   // Flatten constant access into array body
1259         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1260       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1261         // range is OK as-is.
1262         tj = ta = TypeAryPtr::RANGE;
1263       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1264         tj = TypeInstPtr::KLASS; // all klass loads look alike
1265         ta = TypeAryPtr::RANGE; // generic ignored junk
1266         ptr = TypePtr::BotPTR;
1267       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1268         tj = TypeInstPtr::MARK;
1269         ta = TypeAryPtr::RANGE; // generic ignored junk
1270         ptr = TypePtr::BotPTR;
1271       } else {                  // Random constant offset into array body
1272         offset = Type::OffsetBot;   // Flatten constant access into array body
1273         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1274       }
1275     }
1276     // Arrays of fixed size alias with arrays of unknown size.
1277     if (ta->size() != TypeInt::POS) {
1278       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1279       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1280     }
1281     // Arrays of known objects become arrays of unknown objects.
1282     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1283       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1284       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1285     }
1286     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1287       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1288       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1289     }
1290     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1291     // cannot be distinguished by bytecode alone.
1292     if (ta->elem() == TypeInt::BOOL) {
1293       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1294       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1295       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1296     }
1297     // During the 2nd round of IterGVN, NotNull castings are removed.
1298     // Make sure the Bottom and NotNull variants alias the same.
1299     // Also, make sure exact and non-exact variants alias the same.
1300     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1301       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1302     }
1303   }
1304 
1305   // Oop pointers need some flattening
1306   const TypeInstPtr *to = tj->isa_instptr();
1307   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1308     ciInstanceKlass *k = to->klass()->as_instance_klass();
1309     if( ptr == TypePtr::Constant ) {
1310       if (to->klass() != ciEnv::current()->Class_klass() ||
1311           offset < k->size_helper() * wordSize) {
1312         // No constant oop pointers (such as Strings); they alias with
1313         // unknown strings.
1314         assert(!is_known_inst, "not scalarizable allocation");
1315         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1316       }
1317     } else if( is_known_inst ) {
1318       tj = to; // Keep NotNull and klass_is_exact for instance type
1319     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1320       // During the 2nd round of IterGVN, NotNull castings are removed.
1321       // Make sure the Bottom and NotNull variants alias the same.
1322       // Also, make sure exact and non-exact variants alias the same.
1323       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1324     }
1325     if (to->speculative() != NULL) {
1326       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1327     }
1328     // Canonicalize the holder of this field
1329     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1330       // First handle header references such as a LoadKlassNode, even if the
1331       // object's klass is unloaded at compile time (4965979).
1332       if (!is_known_inst) { // Do it only for non-instance types
1333         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1334       }
1335     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1336       // Static fields are in the space above the normal instance
1337       // fields in the java.lang.Class instance.
1338       if (to->klass() != ciEnv::current()->Class_klass()) {
1339         to = NULL;
1340         tj = TypeOopPtr::BOTTOM;
1341         offset = tj->offset();
1342       }
1343     } else {
1344       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1345       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1346         if( is_known_inst ) {
1347           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1348         } else {
1349           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1350         }
1351       }
1352     }
1353   }
1354 
1355   // Klass pointers to object array klasses need some flattening
1356   const TypeKlassPtr *tk = tj->isa_klassptr();
1357   if( tk ) {
1358     // If we are referencing a field within a Klass, we need
1359     // to assume the worst case of an Object.  Both exact and
1360     // inexact types must flatten to the same alias class so
1361     // use NotNull as the PTR.
1362     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1363 
1364       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1365                                    TypeKlassPtr::OBJECT->klass(),
1366                                    offset);
1367     }
1368 
1369     ciKlass* klass = tk->klass();
1370     if( klass->is_obj_array_klass() ) {
1371       ciKlass* k = TypeAryPtr::OOPS->klass();
1372       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1373         k = TypeInstPtr::BOTTOM->klass();
1374       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1375     }
1376 
1377     // Check for precise loads from the primary supertype array and force them
1378     // to the supertype cache alias index.  Check for generic array loads from
1379     // the primary supertype array and also force them to the supertype cache
1380     // alias index.  Since the same load can reach both, we need to merge
1381     // these 2 disparate memories into the same alias class.  Since the
1382     // primary supertype array is read-only, there's no chance of confusion
1383     // where we bypass an array load and an array store.
1384     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1385     if (offset == Type::OffsetBot ||
1386         (offset >= primary_supers_offset &&
1387          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1388         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1389       offset = in_bytes(Klass::secondary_super_cache_offset());
1390       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1391     }
1392   }
1393 
1394   // Flatten all Raw pointers together.
1395   if (tj->base() == Type::RawPtr)
1396     tj = TypeRawPtr::BOTTOM;
1397 
1398   if (tj->base() == Type::AnyPtr)
1399     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1400 
1401   // Flatten all to bottom for now
1402   switch( _AliasLevel ) {
1403   case 0:
1404     tj = TypePtr::BOTTOM;
1405     break;
1406   case 1:                       // Flatten to: oop, static, field or array
1407     switch (tj->base()) {
1408     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1409     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1410     case Type::AryPtr:   // do not distinguish arrays at all
1411     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1412     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1413     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1414     default: ShouldNotReachHere();
1415     }
1416     break;
1417   case 2:                       // No collapsing at level 2; keep all splits
1418   case 3:                       // No collapsing at level 3; keep all splits
1419     break;
1420   default:
1421     Unimplemented();
1422   }
1423 
1424   offset = tj->offset();
1425   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1426 
1427   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1428           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1429           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1430           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1431           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1432           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1433           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1434           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1435   assert( tj->ptr() != TypePtr::TopPTR &&
1436           tj->ptr() != TypePtr::AnyNull &&
1437           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1438 //    assert( tj->ptr() != TypePtr::Constant ||
1439 //            tj->base() == Type::RawPtr ||
1440 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1441 
1442   return tj;
1443 }
1444 
1445 void Compile::AliasType::Init(int i, const TypePtr* at) {
1446   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1447   _index = i;
1448   _adr_type = at;
1449   _field = NULL;
1450   _element = NULL;
1451   _is_rewritable = true; // default
1452   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1453   if (atoop != NULL && atoop->is_known_instance()) {
1454     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1455     _general_index = Compile::current()->get_alias_index(gt);
1456   } else {
1457     _general_index = 0;
1458   }
1459 }
1460 
1461 BasicType Compile::AliasType::basic_type() const {
1462   if (element() != NULL) {
1463     const Type* element = adr_type()->is_aryptr()->elem();
1464     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1465   } if (field() != NULL) {
1466     return field()->layout_type();
1467   } else {
1468     return T_ILLEGAL; // unknown
1469   }
1470 }
1471 
1472 //---------------------------------print_on------------------------------------
1473 #ifndef PRODUCT
1474 void Compile::AliasType::print_on(outputStream* st) {
1475   if (index() < 10)
1476         st->print("@ <%d> ", index());
1477   else  st->print("@ <%d>",  index());
1478   st->print(is_rewritable() ? "   " : " RO");
1479   int offset = adr_type()->offset();
1480   if (offset == Type::OffsetBot)
1481         st->print(" +any");
1482   else  st->print(" +%-3d", offset);
1483   st->print(" in ");
1484   adr_type()->dump_on(st);
1485   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1486   if (field() != NULL && tjp) {
1487     if (tjp->klass()  != field()->holder() ||
1488         tjp->offset() != field()->offset_in_bytes()) {
1489       st->print(" != ");
1490       field()->print();
1491       st->print(" ***");
1492     }
1493   }
1494 }
1495 
1496 void print_alias_types() {
1497   Compile* C = Compile::current();
1498   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1499   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1500     C->alias_type(idx)->print_on(tty);
1501     tty->cr();
1502   }
1503 }
1504 #endif
1505 
1506 
1507 //----------------------------probe_alias_cache--------------------------------
1508 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1509   intptr_t key = (intptr_t) adr_type;
1510   key ^= key >> logAliasCacheSize;
1511   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1512 }
1513 
1514 
1515 //-----------------------------grow_alias_types--------------------------------
1516 void Compile::grow_alias_types() {
1517   const int old_ats  = _max_alias_types; // how many before?
1518   const int new_ats  = old_ats;          // how many more?
1519   const int grow_ats = old_ats+new_ats;  // how many now?
1520   _max_alias_types = grow_ats;
1521   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1522   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1523   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1524   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1525 }
1526 
1527 
1528 //--------------------------------find_alias_type------------------------------
1529 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1530   if (_AliasLevel == 0)
1531     return alias_type(AliasIdxBot);
1532 
1533   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1534   if (ace->_adr_type == adr_type) {
1535     return alias_type(ace->_index);
1536   }
1537 
1538   // Handle special cases.
1539   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1540   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1541 
1542   // Do it the slow way.
1543   const TypePtr* flat = flatten_alias_type(adr_type);
1544 
1545 #ifdef ASSERT
1546   {
1547     ResourceMark rm;
1548     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1549            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1550     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1551            Type::str(adr_type));
1552     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1553       const TypeOopPtr* foop = flat->is_oopptr();
1554       // Scalarizable allocations have exact klass always.
1555       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1556       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1557       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1558              Type::str(foop), Type::str(xoop));
1559     }
1560   }
1561 #endif
1562 
1563   int idx = AliasIdxTop;
1564   for (int i = 0; i < num_alias_types(); i++) {
1565     if (alias_type(i)->adr_type() == flat) {
1566       idx = i;
1567       break;
1568     }
1569   }
1570 
1571   if (idx == AliasIdxTop) {
1572     if (no_create)  return NULL;
1573     // Grow the array if necessary.
1574     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1575     // Add a new alias type.
1576     idx = _num_alias_types++;
1577     _alias_types[idx]->Init(idx, flat);
1578     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1579     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1580     if (flat->isa_instptr()) {
1581       if (flat->offset() == java_lang_Class::klass_offset()
1582           && flat->is_instptr()->klass() == env()->Class_klass())
1583         alias_type(idx)->set_rewritable(false);
1584     }
1585     if (flat->isa_aryptr()) {
1586 #ifdef ASSERT
1587       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1588       // (T_BYTE has the weakest alignment and size restrictions...)
1589       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1590 #endif
1591       if (flat->offset() == TypePtr::OffsetBot) {
1592         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1593       }
1594     }
1595     if (flat->isa_klassptr()) {
1596       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1597         alias_type(idx)->set_rewritable(false);
1598       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1599         alias_type(idx)->set_rewritable(false);
1600       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1601         alias_type(idx)->set_rewritable(false);
1602       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1603         alias_type(idx)->set_rewritable(false);
1604       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1605         alias_type(idx)->set_rewritable(false);
1606     }
1607     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1608     // but the base pointer type is not distinctive enough to identify
1609     // references into JavaThread.)
1610 
1611     // Check for final fields.
1612     const TypeInstPtr* tinst = flat->isa_instptr();
1613     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1614       ciField* field;
1615       if (tinst->const_oop() != NULL &&
1616           tinst->klass() == ciEnv::current()->Class_klass() &&
1617           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1618         // static field
1619         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1620         field = k->get_field_by_offset(tinst->offset(), true);
1621       } else {
1622         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1623         field = k->get_field_by_offset(tinst->offset(), false);
1624       }
1625       assert(field == NULL ||
1626              original_field == NULL ||
1627              (field->holder() == original_field->holder() &&
1628               field->offset() == original_field->offset() &&
1629               field->is_static() == original_field->is_static()), "wrong field?");
1630       // Set field() and is_rewritable() attributes.
1631       if (field != NULL)  alias_type(idx)->set_field(field);
1632     }
1633   }
1634 
1635   // Fill the cache for next time.
1636   ace->_adr_type = adr_type;
1637   ace->_index    = idx;
1638   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1639 
1640   // Might as well try to fill the cache for the flattened version, too.
1641   AliasCacheEntry* face = probe_alias_cache(flat);
1642   if (face->_adr_type == NULL) {
1643     face->_adr_type = flat;
1644     face->_index    = idx;
1645     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1646   }
1647 
1648   return alias_type(idx);
1649 }
1650 
1651 
1652 Compile::AliasType* Compile::alias_type(ciField* field) {
1653   const TypeOopPtr* t;
1654   if (field->is_static())
1655     t = TypeInstPtr::make(field->holder()->java_mirror());
1656   else
1657     t = TypeOopPtr::make_from_klass_raw(field->holder());
1658   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1659   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1660   return atp;
1661 }
1662 
1663 
1664 //------------------------------have_alias_type--------------------------------
1665 bool Compile::have_alias_type(const TypePtr* adr_type) {
1666   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1667   if (ace->_adr_type == adr_type) {
1668     return true;
1669   }
1670 
1671   // Handle special cases.
1672   if (adr_type == NULL)             return true;
1673   if (adr_type == TypePtr::BOTTOM)  return true;
1674 
1675   return find_alias_type(adr_type, true, NULL) != NULL;
1676 }
1677 
1678 //-----------------------------must_alias--------------------------------------
1679 // True if all values of the given address type are in the given alias category.
1680 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1681   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1682   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1683   if (alias_idx == AliasIdxTop)         return false; // the empty category
1684   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1685 
1686   // the only remaining possible overlap is identity
1687   int adr_idx = get_alias_index(adr_type);
1688   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1689   assert(adr_idx == alias_idx ||
1690          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1691           && adr_type                       != TypeOopPtr::BOTTOM),
1692          "should not be testing for overlap with an unsafe pointer");
1693   return adr_idx == alias_idx;
1694 }
1695 
1696 //------------------------------can_alias--------------------------------------
1697 // True if any values of the given address type are in the given alias category.
1698 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1699   if (alias_idx == AliasIdxTop)         return false; // the empty category
1700   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1701   // Known instance doesn't alias with bottom memory
1702   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1703   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1704 
1705   // the only remaining possible overlap is identity
1706   int adr_idx = get_alias_index(adr_type);
1707   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1708   return adr_idx == alias_idx;
1709 }
1710 
1711 
1712 
1713 //---------------------------pop_warm_call-------------------------------------
1714 WarmCallInfo* Compile::pop_warm_call() {
1715   WarmCallInfo* wci = _warm_calls;
1716   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1717   return wci;
1718 }
1719 
1720 //----------------------------Inline_Warm--------------------------------------
1721 int Compile::Inline_Warm() {
1722   // If there is room, try to inline some more warm call sites.
1723   // %%% Do a graph index compaction pass when we think we're out of space?
1724   if (!InlineWarmCalls)  return 0;
1725 
1726   int calls_made_hot = 0;
1727   int room_to_grow   = NodeCountInliningCutoff - unique();
1728   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1729   int amount_grown   = 0;
1730   WarmCallInfo* call;
1731   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1732     int est_size = (int)call->size();
1733     if (est_size > (room_to_grow - amount_grown)) {
1734       // This one won't fit anyway.  Get rid of it.
1735       call->make_cold();
1736       continue;
1737     }
1738     call->make_hot();
1739     calls_made_hot++;
1740     amount_grown   += est_size;
1741     amount_to_grow -= est_size;
1742   }
1743 
1744   if (calls_made_hot > 0)  set_major_progress();
1745   return calls_made_hot;
1746 }
1747 
1748 
1749 //----------------------------Finish_Warm--------------------------------------
1750 void Compile::Finish_Warm() {
1751   if (!InlineWarmCalls)  return;
1752   if (failing())  return;
1753   if (warm_calls() == NULL)  return;
1754 
1755   // Clean up loose ends, if we are out of space for inlining.
1756   WarmCallInfo* call;
1757   while ((call = pop_warm_call()) != NULL) {
1758     call->make_cold();
1759   }
1760 }
1761 
1762 //---------------------cleanup_loop_predicates-----------------------
1763 // Remove the opaque nodes that protect the predicates so that all unused
1764 // checks and uncommon_traps will be eliminated from the ideal graph
1765 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1766   if (predicate_count()==0) return;
1767   for (int i = predicate_count(); i > 0; i--) {
1768     Node * n = predicate_opaque1_node(i-1);
1769     assert(n->Opcode() == Op_Opaque1, "must be");
1770     igvn.replace_node(n, n->in(1));
1771   }
1772   assert(predicate_count()==0, "should be clean!");
1773 }
1774 
1775 void Compile::add_range_check_cast(Node* n) {
1776   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1777   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1778   _range_check_casts->append(n);
1779 }
1780 
1781 // Remove all range check dependent CastIINodes.
1782 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1783   for (int i = range_check_cast_count(); i > 0; i--) {
1784     Node* cast = range_check_cast_node(i-1);
1785     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1786     igvn.replace_node(cast, cast->in(1));
1787   }
1788   assert(range_check_cast_count() == 0, "should be empty");
1789 }
1790 
1791 void Compile::add_opaque4_node(Node* n) {
1792   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1793   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1794   _opaque4_nodes->append(n);
1795 }
1796 
1797 // Remove all Opaque4 nodes.
1798 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
1799   for (int i = opaque4_count(); i > 0; i--) {
1800     Node* opaq = opaque4_node(i-1);
1801     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
1802     igvn.replace_node(opaq, opaq->in(2));
1803   }
1804   assert(opaque4_count() == 0, "should be empty");
1805 }
1806 
1807 // StringOpts and late inlining of string methods
1808 void Compile::inline_string_calls(bool parse_time) {
1809   {
1810     // remove useless nodes to make the usage analysis simpler
1811     ResourceMark rm;
1812     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1813   }
1814 
1815   {
1816     ResourceMark rm;
1817     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1818     PhaseStringOpts pso(initial_gvn(), for_igvn());
1819     print_method(PHASE_AFTER_STRINGOPTS, 3);
1820   }
1821 
1822   // now inline anything that we skipped the first time around
1823   if (!parse_time) {
1824     _late_inlines_pos = _late_inlines.length();
1825   }
1826 
1827   while (_string_late_inlines.length() > 0) {
1828     CallGenerator* cg = _string_late_inlines.pop();
1829     cg->do_late_inline();
1830     if (failing())  return;
1831   }
1832   _string_late_inlines.trunc_to(0);
1833 }
1834 
1835 // Late inlining of boxing methods
1836 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1837   if (_boxing_late_inlines.length() > 0) {
1838     assert(has_boxed_value(), "inconsistent");
1839 
1840     PhaseGVN* gvn = initial_gvn();
1841     set_inlining_incrementally(true);
1842 
1843     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1844     for_igvn()->clear();
1845     gvn->replace_with(&igvn);
1846 
1847     _late_inlines_pos = _late_inlines.length();
1848 
1849     while (_boxing_late_inlines.length() > 0) {
1850       CallGenerator* cg = _boxing_late_inlines.pop();
1851       cg->do_late_inline();
1852       if (failing())  return;
1853     }
1854     _boxing_late_inlines.trunc_to(0);
1855 
1856     inline_incrementally_cleanup(igvn);
1857 
1858     set_inlining_incrementally(false);
1859   }
1860 }
1861 
1862 bool Compile::inline_incrementally_one() {
1863   assert(IncrementalInline, "incremental inlining should be on");
1864 
1865   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1866   set_inlining_progress(false);
1867   set_do_cleanup(false);
1868   int i = 0;
1869   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1870     CallGenerator* cg = _late_inlines.at(i);
1871     _late_inlines_pos = i+1;
1872     cg->do_late_inline();
1873     if (failing())  return false;
1874   }
1875   int j = 0;
1876   for (; i < _late_inlines.length(); i++, j++) {
1877     _late_inlines.at_put(j, _late_inlines.at(i));
1878   }
1879   _late_inlines.trunc_to(j);
1880   assert(inlining_progress() || _late_inlines.length() == 0, "");
1881 
1882   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
1883 
1884   set_inlining_progress(false);
1885   set_do_cleanup(false);
1886   return (_late_inlines.length() > 0) && !needs_cleanup;
1887 }
1888 
1889 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
1890   {
1891     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
1892     ResourceMark rm;
1893     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1894   }
1895   {
1896     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
1897     igvn = PhaseIterGVN(initial_gvn());
1898     igvn.optimize();
1899   }
1900 }
1901 
1902 // Perform incremental inlining until bound on number of live nodes is reached
1903 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1904   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
1905 
1906   set_inlining_incrementally(true);
1907   uint low_live_nodes = 0;
1908 
1909   while (_late_inlines.length() > 0) {
1910     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1911       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1912         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
1913         // PhaseIdealLoop is expensive so we only try it once we are
1914         // out of live nodes and we only try it again if the previous
1915         // helped got the number of nodes down significantly
1916         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
1917         if (failing())  return;
1918         low_live_nodes = live_nodes();
1919         _major_progress = true;
1920       }
1921 
1922       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1923         break; // finish
1924       }
1925     }
1926 
1927     for_igvn()->clear();
1928     initial_gvn()->replace_with(&igvn);
1929 
1930     while (inline_incrementally_one()) {
1931       assert(!failing(), "inconsistent");
1932     }
1933 
1934     if (failing())  return;
1935 
1936     inline_incrementally_cleanup(igvn);
1937 
1938     if (failing())  return;
1939   }
1940   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1941 
1942   if (_string_late_inlines.length() > 0) {
1943     assert(has_stringbuilder(), "inconsistent");
1944     for_igvn()->clear();
1945     initial_gvn()->replace_with(&igvn);
1946 
1947     inline_string_calls(false);
1948 
1949     if (failing())  return;
1950 
1951     inline_incrementally_cleanup(igvn);
1952   }
1953 
1954   set_inlining_incrementally(false);
1955 }
1956 
1957 
1958 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
1959   if(_loop_opts_cnt > 0) {
1960     debug_only( int cnt = 0; );
1961     while(major_progress() && (_loop_opts_cnt > 0)) {
1962       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
1963       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1964       PhaseIdealLoop::optimize(igvn, mode);
1965       _loop_opts_cnt--;
1966       if (failing())  return false;
1967       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
1968     }
1969   }
1970   return true;
1971 }
1972 
1973 // Remove edges from "root" to each SafePoint at a backward branch.
1974 // They were inserted during parsing (see add_safepoint()) to make
1975 // infinite loops without calls or exceptions visible to root, i.e.,
1976 // useful.
1977 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
1978   Node *r = root();
1979   if (r != NULL) {
1980     for (uint i = r->req(); i < r->len(); ++i) {
1981       Node *n = r->in(i);
1982       if (n != NULL && n->is_SafePoint()) {
1983         r->rm_prec(i);
1984         if (n->outcnt() == 0) {
1985           igvn.remove_dead_node(n);
1986         }
1987         --i;
1988       }
1989     }
1990     // Parsing may have added top inputs to the root node (Path
1991     // leading to the Halt node proven dead). Make sure we get a
1992     // chance to clean them up.
1993     igvn._worklist.push(r);
1994     igvn.optimize();
1995   }
1996 }
1997 
1998 //------------------------------Optimize---------------------------------------
1999 // Given a graph, optimize it.
2000 void Compile::Optimize() {
2001   TracePhase tp("optimizer", &timers[_t_optimizer]);
2002 
2003 #ifndef PRODUCT
2004   if (_directive->BreakAtCompileOption) {
2005     BREAKPOINT;
2006   }
2007 
2008 #endif
2009 
2010   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2011 #ifdef ASSERT
2012   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2013 #endif
2014 
2015   ResourceMark rm;
2016 
2017   print_inlining_reinit();
2018 
2019   NOT_PRODUCT( verify_graph_edges(); )
2020 
2021   print_method(PHASE_AFTER_PARSING);
2022 
2023  {
2024   // Iterative Global Value Numbering, including ideal transforms
2025   // Initialize IterGVN with types and values from parse-time GVN
2026   PhaseIterGVN igvn(initial_gvn());
2027 #ifdef ASSERT
2028   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2029 #endif
2030   {
2031     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2032     igvn.optimize();
2033   }
2034 
2035   if (failing())  return;
2036 
2037   print_method(PHASE_ITER_GVN1, 2);
2038 
2039   inline_incrementally(igvn);
2040 
2041   print_method(PHASE_INCREMENTAL_INLINE, 2);
2042 
2043   if (failing())  return;
2044 
2045   if (eliminate_boxing()) {
2046     // Inline valueOf() methods now.
2047     inline_boxing_calls(igvn);
2048 
2049     if (AlwaysIncrementalInline) {
2050       inline_incrementally(igvn);
2051     }
2052 
2053     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2054 
2055     if (failing())  return;
2056   }
2057 
2058   // Now that all inlining is over, cut edge from root to loop
2059   // safepoints
2060   remove_root_to_sfpts_edges(igvn);
2061 
2062   // Remove the speculative part of types and clean up the graph from
2063   // the extra CastPP nodes whose only purpose is to carry them. Do
2064   // that early so that optimizations are not disrupted by the extra
2065   // CastPP nodes.
2066   remove_speculative_types(igvn);
2067 
2068   // No more new expensive nodes will be added to the list from here
2069   // so keep only the actual candidates for optimizations.
2070   cleanup_expensive_nodes(igvn);
2071 
2072   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2073     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2074     initial_gvn()->replace_with(&igvn);
2075     for_igvn()->clear();
2076     Unique_Node_List new_worklist(C->comp_arena());
2077     {
2078       ResourceMark rm;
2079       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2080     }
2081     set_for_igvn(&new_worklist);
2082     igvn = PhaseIterGVN(initial_gvn());
2083     igvn.optimize();
2084   }
2085 
2086   // Perform escape analysis
2087   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2088     if (has_loops()) {
2089       // Cleanup graph (remove dead nodes).
2090       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2091       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2092       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2093       if (failing())  return;
2094     }
2095     ConnectionGraph::do_analysis(this, &igvn);
2096 
2097     if (failing())  return;
2098 
2099     // Optimize out fields loads from scalar replaceable allocations.
2100     igvn.optimize();
2101     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2102 
2103     if (failing())  return;
2104 
2105     if (congraph() != NULL && macro_count() > 0) {
2106       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2107       PhaseMacroExpand mexp(igvn);
2108       mexp.eliminate_macro_nodes();
2109       igvn.set_delay_transform(false);
2110 
2111       igvn.optimize();
2112       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2113 
2114       if (failing())  return;
2115     }
2116   }
2117 
2118   // Loop transforms on the ideal graph.  Range Check Elimination,
2119   // peeling, unrolling, etc.
2120 
2121   // Set loop opts counter
2122   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2123     {
2124       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2125       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2126       _loop_opts_cnt--;
2127       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2128       if (failing())  return;
2129     }
2130     // Loop opts pass if partial peeling occurred in previous pass
2131     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2132       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2133       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2134       _loop_opts_cnt--;
2135       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2136       if (failing())  return;
2137     }
2138     // Loop opts pass for loop-unrolling before CCP
2139     if(major_progress() && (_loop_opts_cnt > 0)) {
2140       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2141       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2142       _loop_opts_cnt--;
2143       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2144     }
2145     if (!failing()) {
2146       // Verify that last round of loop opts produced a valid graph
2147       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2148       PhaseIdealLoop::verify(igvn);
2149     }
2150   }
2151   if (failing())  return;
2152 
2153   // Conditional Constant Propagation;
2154   PhaseCCP ccp( &igvn );
2155   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2156   {
2157     TracePhase tp("ccp", &timers[_t_ccp]);
2158     ccp.do_transform();
2159   }
2160   print_method(PHASE_CPP1, 2);
2161 
2162   assert( true, "Break here to ccp.dump_old2new_map()");
2163 
2164   // Iterative Global Value Numbering, including ideal transforms
2165   {
2166     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2167     igvn = ccp;
2168     igvn.optimize();
2169   }
2170   print_method(PHASE_ITER_GVN2, 2);
2171 
2172   if (failing())  return;
2173 
2174   // Loop transforms on the ideal graph.  Range Check Elimination,
2175   // peeling, unrolling, etc.
2176   if (!optimize_loops(igvn, LoopOptsDefault)) {
2177     return;
2178   }
2179 
2180   if (failing())  return;
2181 
2182   // Ensure that major progress is now clear
2183   C->clear_major_progress();
2184 
2185   {
2186     // Verify that all previous optimizations produced a valid graph
2187     // at least to this point, even if no loop optimizations were done.
2188     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2189     PhaseIdealLoop::verify(igvn);
2190   }
2191 
2192   if (range_check_cast_count() > 0) {
2193     // No more loop optimizations. Remove all range check dependent CastIINodes.
2194     C->remove_range_check_casts(igvn);
2195     igvn.optimize();
2196   }
2197 
2198 #ifdef ASSERT
2199   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2200 #endif
2201 
2202   {
2203     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2204     PhaseMacroExpand  mex(igvn);
2205     if (mex.expand_macro_nodes()) {
2206       assert(failing(), "must bail out w/ explicit message");
2207       return;
2208     }
2209     print_method(PHASE_MACRO_EXPANSION, 2);
2210   }
2211 
2212   {
2213     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2214     if (bs->expand_barriers(this, igvn)) {
2215       assert(failing(), "must bail out w/ explicit message");
2216       return;
2217     }
2218     print_method(PHASE_BARRIER_EXPANSION, 2);
2219   }
2220 
2221   if (opaque4_count() > 0) {
2222     C->remove_opaque4_nodes(igvn);
2223     igvn.optimize();
2224   }
2225 
2226   if (C->max_vector_size() > 0) {
2227     C->optimize_logic_cones(igvn);
2228     igvn.optimize();
2229   }
2230 
2231   DEBUG_ONLY( _modified_nodes = NULL; )
2232  } // (End scope of igvn; run destructor if necessary for asserts.)
2233 
2234  process_print_inlining();
2235  // A method with only infinite loops has no edges entering loops from root
2236  {
2237    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2238    if (final_graph_reshaping()) {
2239      assert(failing(), "must bail out w/ explicit message");
2240      return;
2241    }
2242  }
2243 
2244  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2245 }
2246 
2247 //---------------------------- Bitwise operation packing optimization ---------------------------
2248 
2249 static bool is_vector_unary_bitwise_op(Node* n) {
2250   return n->Opcode() == Op_XorV &&
2251          VectorNode::is_vector_bitwise_not_pattern(n);
2252 }
2253 
2254 static bool is_vector_binary_bitwise_op(Node* n) {
2255   switch (n->Opcode()) {
2256     case Op_AndV:
2257     case Op_OrV:
2258       return true;
2259 
2260     case Op_XorV:
2261       return !is_vector_unary_bitwise_op(n);
2262 
2263     default:
2264       return false;
2265   }
2266 }
2267 
2268 static bool is_vector_ternary_bitwise_op(Node* n) {
2269   return n->Opcode() == Op_MacroLogicV;
2270 }
2271 
2272 static bool is_vector_bitwise_op(Node* n) {
2273   return is_vector_unary_bitwise_op(n)  ||
2274          is_vector_binary_bitwise_op(n) ||
2275          is_vector_ternary_bitwise_op(n);
2276 }
2277 
2278 static bool is_vector_bitwise_cone_root(Node* n) {
2279   if (!is_vector_bitwise_op(n)) {
2280     return false;
2281   }
2282   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2283     if (is_vector_bitwise_op(n->fast_out(i))) {
2284       return false;
2285     }
2286   }
2287   return true;
2288 }
2289 
2290 static uint collect_unique_inputs(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2291   uint cnt = 0;
2292   if (is_vector_bitwise_op(n)) {
2293     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2294       for (uint i = 1; i < n->req(); i++) {
2295         Node* in = n->in(i);
2296         bool skip = VectorNode::is_all_ones_vector(in);
2297         if (!skip && !inputs.member(in)) {
2298           inputs.push(in);
2299           cnt++;
2300         }
2301       }
2302       assert(cnt <= 1, "not unary");
2303     } else {
2304       uint last_req = n->req();
2305       if (is_vector_ternary_bitwise_op(n)) {
2306         last_req = n->req() - 1; // skip last input
2307       }
2308       for (uint i = 1; i < last_req; i++) {
2309         Node* def = n->in(i);
2310         if (!inputs.member(def)) {
2311           inputs.push(def);
2312           cnt++;
2313         }
2314       }
2315     }
2316     partition.push(n);
2317   } else { // not a bitwise operations
2318     if (!inputs.member(n)) {
2319       inputs.push(n);
2320       cnt++;
2321     }
2322   }
2323   return cnt;
2324 }
2325 
2326 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2327   Unique_Node_List useful_nodes;
2328   C->identify_useful_nodes(useful_nodes);
2329 
2330   for (uint i = 0; i < useful_nodes.size(); i++) {
2331     Node* n = useful_nodes.at(i);
2332     if (is_vector_bitwise_cone_root(n)) {
2333       list.push(n);
2334     }
2335   }
2336 }
2337 
2338 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2339                                     const TypeVect* vt,
2340                                     Unique_Node_List& partition,
2341                                     Unique_Node_List& inputs) {
2342   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2343   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2344   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2345 
2346   Node* in1 = inputs.at(0);
2347   Node* in2 = inputs.at(1);
2348   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2349 
2350   uint func = compute_truth_table(partition, inputs);
2351   return igvn.transform(MacroLogicVNode::make(igvn, in3, in2, in1, func, vt));
2352 }
2353 
2354 static uint extract_bit(uint func, uint pos) {
2355   return (func & (1 << pos)) >> pos;
2356 }
2357 
2358 //
2359 //  A macro logic node represents a truth table. It has 4 inputs,
2360 //  First three inputs corresponds to 3 columns of a truth table
2361 //  and fourth input captures the logic function.
2362 //
2363 //  eg.  fn = (in1 AND in2) OR in3;
2364 //
2365 //      MacroNode(in1,in2,in3,fn)
2366 //
2367 //  -----------------
2368 //  in1 in2 in3  fn
2369 //  -----------------
2370 //  0    0   0    0
2371 //  0    0   1    1
2372 //  0    1   0    0
2373 //  0    1   1    1
2374 //  1    0   0    0
2375 //  1    0   1    1
2376 //  1    1   0    1
2377 //  1    1   1    1
2378 //
2379 
2380 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2381   int res = 0;
2382   for (int i = 0; i < 8; i++) {
2383     int bit1 = extract_bit(in1, i);
2384     int bit2 = extract_bit(in2, i);
2385     int bit3 = extract_bit(in3, i);
2386 
2387     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2388     int func_bit = extract_bit(func, func_bit_pos);
2389 
2390     res |= func_bit << i;
2391   }
2392   return res;
2393 }
2394 
2395 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2396   assert(n != NULL, "");
2397   assert(eval_map.contains(n), "absent");
2398   return *(eval_map.get(n));
2399 }
2400 
2401 static void eval_operands(Node* n,
2402                           uint& func1, uint& func2, uint& func3,
2403                           ResourceHashtable<Node*,uint>& eval_map) {
2404   assert(is_vector_bitwise_op(n), "");
2405   func1 = eval_operand(n->in(1), eval_map);
2406 
2407   if (is_vector_binary_bitwise_op(n)) {
2408     func2 = eval_operand(n->in(2), eval_map);
2409   } else if (is_vector_ternary_bitwise_op(n)) {
2410     func2 = eval_operand(n->in(2), eval_map);
2411     func3 = eval_operand(n->in(3), eval_map);
2412   } else {
2413     assert(is_vector_unary_bitwise_op(n), "not unary");
2414   }
2415 }
2416 
2417 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2418   assert(inputs.size() <= 3, "sanity");
2419   ResourceMark rm;
2420   uint res = 0;
2421   ResourceHashtable<Node*,uint> eval_map;
2422 
2423   // Populate precomputed functions for inputs.
2424   // Each input corresponds to one column of 3 input truth-table.
2425   uint input_funcs[] = { 0xAA,   // (_, _, a) -> a
2426                          0xCC,   // (_, b, _) -> b
2427                          0xF0 }; // (c, _, _) -> c
2428   for (uint i = 0; i < inputs.size(); i++) {
2429     eval_map.put(inputs.at(i), input_funcs[i]);
2430   }
2431 
2432   for (uint i = 0; i < partition.size(); i++) {
2433     Node* n = partition.at(i);
2434 
2435     uint func1 = 0, func2 = 0, func3 = 0;
2436     eval_operands(n, func1, func2, func3, eval_map);
2437 
2438     switch (n->Opcode()) {
2439       case Op_OrV:
2440         assert(func3 == 0, "not binary");
2441         res = func1 | func2;
2442         break;
2443       case Op_AndV:
2444         assert(func3 == 0, "not binary");
2445         res = func1 & func2;
2446         break;
2447       case Op_XorV:
2448         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2449           assert(func2 == 0 && func3 == 0, "not unary");
2450           res = (~func1) & 0xFF;
2451         } else {
2452           assert(func3 == 0, "not binary");
2453           res = func1 ^ func2;
2454         }
2455         break;
2456       case Op_MacroLogicV:
2457         // Ordering of inputs may change during evaluation of sub-tree
2458         // containing MacroLogic node as a child node, thus a re-evaluation
2459         // makes sure that function is evaluated in context of current
2460         // inputs.
2461         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2462         break;
2463 
2464       default: assert(false, "not supported: %s", n->Name());
2465     }
2466     assert(res <= 0xFF, "invalid");
2467     eval_map.put(n, res);
2468   }
2469   return res;
2470 }
2471 
2472 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2473   assert(partition.size() == 0, "not empty");
2474   assert(inputs.size() == 0, "not empty");
2475   if (is_vector_ternary_bitwise_op(n)) {
2476     return false;
2477   }
2478 
2479   bool is_unary_op = is_vector_unary_bitwise_op(n);
2480   if (is_unary_op) {
2481     assert(collect_unique_inputs(n, partition, inputs) == 1, "not unary");
2482     return false; // too few inputs
2483   }
2484 
2485   assert(is_vector_binary_bitwise_op(n), "not binary");
2486   Node* in1 = n->in(1);
2487   Node* in2 = n->in(2);
2488 
2489   int in1_unique_inputs_cnt = collect_unique_inputs(in1, partition, inputs);
2490   int in2_unique_inputs_cnt = collect_unique_inputs(in2, partition, inputs);
2491   partition.push(n);
2492 
2493   // Too many inputs?
2494   if (inputs.size() > 3) {
2495     partition.clear();
2496     inputs.clear();
2497     { // Recompute in2 inputs
2498       Unique_Node_List not_used;
2499       in2_unique_inputs_cnt = collect_unique_inputs(in2, not_used, not_used);
2500     }
2501     // Pick the node with minimum number of inputs.
2502     if (in1_unique_inputs_cnt >= 3 && in2_unique_inputs_cnt >= 3) {
2503       return false; // still too many inputs
2504     }
2505     // Recompute partition & inputs.
2506     Node* child       = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in1 : in2);
2507     collect_unique_inputs(child, partition, inputs);
2508 
2509     Node* other_input = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in2 : in1);
2510     inputs.push(other_input);
2511 
2512     partition.push(n);
2513   }
2514 
2515   return (partition.size() == 2 || partition.size() == 3) &&
2516          (inputs.size()    == 2 || inputs.size()    == 3);
2517 }
2518 
2519 
2520 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2521   assert(is_vector_bitwise_op(n), "not a root");
2522 
2523   visited.set(n->_idx);
2524 
2525   // 1) Do a DFS walk over the logic cone.
2526   for (uint i = 1; i < n->req(); i++) {
2527     Node* in = n->in(i);
2528     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2529       process_logic_cone_root(igvn, in, visited);
2530     }
2531   }
2532 
2533   // 2) Bottom up traversal: Merge node[s] with
2534   // the parent to form macro logic node.
2535   Unique_Node_List partition;
2536   Unique_Node_List inputs;
2537   if (compute_logic_cone(n, partition, inputs)) {
2538     const TypeVect* vt = n->bottom_type()->is_vect();
2539     Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2540     igvn.replace_node(n, macro_logic);
2541   }
2542 }
2543 
2544 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2545   ResourceMark rm;
2546   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2547     Unique_Node_List list;
2548     collect_logic_cone_roots(list);
2549 
2550     while (list.size() > 0) {
2551       Node* n = list.pop();
2552       const TypeVect* vt = n->bottom_type()->is_vect();
2553       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2554       if (supported) {
2555         VectorSet visited(comp_arena());
2556         process_logic_cone_root(igvn, n, visited);
2557       }
2558     }
2559   }
2560 }
2561 
2562 //------------------------------Code_Gen---------------------------------------
2563 // Given a graph, generate code for it
2564 void Compile::Code_Gen() {
2565   if (failing()) {
2566     return;
2567   }
2568 
2569   // Perform instruction selection.  You might think we could reclaim Matcher
2570   // memory PDQ, but actually the Matcher is used in generating spill code.
2571   // Internals of the Matcher (including some VectorSets) must remain live
2572   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2573   // set a bit in reclaimed memory.
2574 
2575   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2576   // nodes.  Mapping is only valid at the root of each matched subtree.
2577   NOT_PRODUCT( verify_graph_edges(); )
2578 
2579   Matcher matcher;
2580   _matcher = &matcher;
2581   {
2582     TracePhase tp("matcher", &timers[_t_matcher]);
2583     matcher.match();
2584     if (failing()) {
2585       return;
2586     }
2587   }
2588 
2589   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2590   // nodes.  Mapping is only valid at the root of each matched subtree.
2591   NOT_PRODUCT( verify_graph_edges(); )
2592 
2593   // If you have too many nodes, or if matching has failed, bail out
2594   check_node_count(0, "out of nodes matching instructions");
2595   if (failing()) {
2596     return;
2597   }
2598 
2599   print_method(PHASE_MATCHING, 2);
2600 
2601   // Build a proper-looking CFG
2602   PhaseCFG cfg(node_arena(), root(), matcher);
2603   _cfg = &cfg;
2604   {
2605     TracePhase tp("scheduler", &timers[_t_scheduler]);
2606     bool success = cfg.do_global_code_motion();
2607     if (!success) {
2608       return;
2609     }
2610 
2611     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2612     NOT_PRODUCT( verify_graph_edges(); )
2613     debug_only( cfg.verify(); )
2614   }
2615 
2616   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2617   _regalloc = &regalloc;
2618   {
2619     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2620     // Perform register allocation.  After Chaitin, use-def chains are
2621     // no longer accurate (at spill code) and so must be ignored.
2622     // Node->LRG->reg mappings are still accurate.
2623     _regalloc->Register_Allocate();
2624 
2625     // Bail out if the allocator builds too many nodes
2626     if (failing()) {
2627       return;
2628     }
2629   }
2630 
2631   // Prior to register allocation we kept empty basic blocks in case the
2632   // the allocator needed a place to spill.  After register allocation we
2633   // are not adding any new instructions.  If any basic block is empty, we
2634   // can now safely remove it.
2635   {
2636     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2637     cfg.remove_empty_blocks();
2638     if (do_freq_based_layout()) {
2639       PhaseBlockLayout layout(cfg);
2640     } else {
2641       cfg.set_loop_alignment();
2642     }
2643     cfg.fixup_flow();
2644   }
2645 
2646   // Apply peephole optimizations
2647   if( OptoPeephole ) {
2648     TracePhase tp("peephole", &timers[_t_peephole]);
2649     PhasePeephole peep( _regalloc, cfg);
2650     peep.do_transform();
2651   }
2652 
2653   // Do late expand if CPU requires this.
2654   if (Matcher::require_postalloc_expand) {
2655     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2656     cfg.postalloc_expand(_regalloc);
2657   }
2658 
2659   // Convert Nodes to instruction bits in a buffer
2660   {
2661     TracePhase tp("output", &timers[_t_output]);
2662     PhaseOutput output;
2663     output.Output();
2664     if (failing())  return;
2665     output.install();
2666   }
2667 
2668   print_method(PHASE_FINAL_CODE);
2669 
2670   // He's dead, Jim.
2671   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2672   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2673 }
2674 
2675 //------------------------------Final_Reshape_Counts---------------------------
2676 // This class defines counters to help identify when a method
2677 // may/must be executed using hardware with only 24-bit precision.
2678 struct Final_Reshape_Counts : public StackObj {
2679   int  _call_count;             // count non-inlined 'common' calls
2680   int  _float_count;            // count float ops requiring 24-bit precision
2681   int  _double_count;           // count double ops requiring more precision
2682   int  _java_call_count;        // count non-inlined 'java' calls
2683   int  _inner_loop_count;       // count loops which need alignment
2684   VectorSet _visited;           // Visitation flags
2685   Node_List _tests;             // Set of IfNodes & PCTableNodes
2686 
2687   Final_Reshape_Counts() :
2688     _call_count(0), _float_count(0), _double_count(0),
2689     _java_call_count(0), _inner_loop_count(0),
2690     _visited( Thread::current()->resource_area() ) { }
2691 
2692   void inc_call_count  () { _call_count  ++; }
2693   void inc_float_count () { _float_count ++; }
2694   void inc_double_count() { _double_count++; }
2695   void inc_java_call_count() { _java_call_count++; }
2696   void inc_inner_loop_count() { _inner_loop_count++; }
2697 
2698   int  get_call_count  () const { return _call_count  ; }
2699   int  get_float_count () const { return _float_count ; }
2700   int  get_double_count() const { return _double_count; }
2701   int  get_java_call_count() const { return _java_call_count; }
2702   int  get_inner_loop_count() const { return _inner_loop_count; }
2703 };
2704 
2705 #ifdef ASSERT
2706 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2707   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2708   // Make sure the offset goes inside the instance layout.
2709   return k->contains_field_offset(tp->offset());
2710   // Note that OffsetBot and OffsetTop are very negative.
2711 }
2712 #endif
2713 
2714 // Eliminate trivially redundant StoreCMs and accumulate their
2715 // precedence edges.
2716 void Compile::eliminate_redundant_card_marks(Node* n) {
2717   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2718   if (n->in(MemNode::Address)->outcnt() > 1) {
2719     // There are multiple users of the same address so it might be
2720     // possible to eliminate some of the StoreCMs
2721     Node* mem = n->in(MemNode::Memory);
2722     Node* adr = n->in(MemNode::Address);
2723     Node* val = n->in(MemNode::ValueIn);
2724     Node* prev = n;
2725     bool done = false;
2726     // Walk the chain of StoreCMs eliminating ones that match.  As
2727     // long as it's a chain of single users then the optimization is
2728     // safe.  Eliminating partially redundant StoreCMs would require
2729     // cloning copies down the other paths.
2730     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2731       if (adr == mem->in(MemNode::Address) &&
2732           val == mem->in(MemNode::ValueIn)) {
2733         // redundant StoreCM
2734         if (mem->req() > MemNode::OopStore) {
2735           // Hasn't been processed by this code yet.
2736           n->add_prec(mem->in(MemNode::OopStore));
2737         } else {
2738           // Already converted to precedence edge
2739           for (uint i = mem->req(); i < mem->len(); i++) {
2740             // Accumulate any precedence edges
2741             if (mem->in(i) != NULL) {
2742               n->add_prec(mem->in(i));
2743             }
2744           }
2745           // Everything above this point has been processed.
2746           done = true;
2747         }
2748         // Eliminate the previous StoreCM
2749         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2750         assert(mem->outcnt() == 0, "should be dead");
2751         mem->disconnect_inputs(NULL, this);
2752       } else {
2753         prev = mem;
2754       }
2755       mem = prev->in(MemNode::Memory);
2756     }
2757   }
2758 }
2759 
2760 //------------------------------final_graph_reshaping_impl----------------------
2761 // Implement items 1-5 from final_graph_reshaping below.
2762 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2763 
2764   if ( n->outcnt() == 0 ) return; // dead node
2765   uint nop = n->Opcode();
2766 
2767   // Check for 2-input instruction with "last use" on right input.
2768   // Swap to left input.  Implements item (2).
2769   if( n->req() == 3 &&          // two-input instruction
2770       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2771       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2772       n->in(2)->outcnt() == 1 &&// right use IS a last use
2773       !n->in(2)->is_Con() ) {   // right use is not a constant
2774     // Check for commutative opcode
2775     switch( nop ) {
2776     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2777     case Op_MaxI:  case Op_MinI:
2778     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2779     case Op_AndL:  case Op_XorL:  case Op_OrL:
2780     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2781       // Move "last use" input to left by swapping inputs
2782       n->swap_edges(1, 2);
2783       break;
2784     }
2785     default:
2786       break;
2787     }
2788   }
2789 
2790 #ifdef ASSERT
2791   if( n->is_Mem() ) {
2792     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2793     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2794             // oop will be recorded in oop map if load crosses safepoint
2795             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2796                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2797             "raw memory operations should have control edge");
2798   }
2799   if (n->is_MemBar()) {
2800     MemBarNode* mb = n->as_MemBar();
2801     if (mb->trailing_store() || mb->trailing_load_store()) {
2802       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2803       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
2804       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2805              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2806     } else if (mb->leading()) {
2807       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2808     }
2809   }
2810 #endif
2811   // Count FPU ops and common calls, implements item (3)
2812   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
2813   if (!gc_handled) {
2814     final_graph_reshaping_main_switch(n, frc, nop);
2815   }
2816 
2817   // Collect CFG split points
2818   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
2819     frc._tests.push(n);
2820   }
2821 }
2822 
2823 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
2824   switch( nop ) {
2825   // Count all float operations that may use FPU
2826   case Op_AddF:
2827   case Op_SubF:
2828   case Op_MulF:
2829   case Op_DivF:
2830   case Op_NegF:
2831   case Op_ModF:
2832   case Op_ConvI2F:
2833   case Op_ConF:
2834   case Op_CmpF:
2835   case Op_CmpF3:
2836   // case Op_ConvL2F: // longs are split into 32-bit halves
2837     frc.inc_float_count();
2838     break;
2839 
2840   case Op_ConvF2D:
2841   case Op_ConvD2F:
2842     frc.inc_float_count();
2843     frc.inc_double_count();
2844     break;
2845 
2846   // Count all double operations that may use FPU
2847   case Op_AddD:
2848   case Op_SubD:
2849   case Op_MulD:
2850   case Op_DivD:
2851   case Op_NegD:
2852   case Op_ModD:
2853   case Op_ConvI2D:
2854   case Op_ConvD2I:
2855   // case Op_ConvL2D: // handled by leaf call
2856   // case Op_ConvD2L: // handled by leaf call
2857   case Op_ConD:
2858   case Op_CmpD:
2859   case Op_CmpD3:
2860     frc.inc_double_count();
2861     break;
2862   case Op_Opaque1:              // Remove Opaque Nodes before matching
2863   case Op_Opaque2:              // Remove Opaque Nodes before matching
2864   case Op_Opaque3:
2865     n->subsume_by(n->in(1), this);
2866     break;
2867   case Op_CallStaticJava:
2868   case Op_CallJava:
2869   case Op_CallDynamicJava:
2870     frc.inc_java_call_count(); // Count java call site;
2871   case Op_CallRuntime:
2872   case Op_CallLeaf:
2873   case Op_CallLeafNoFP: {
2874     assert (n->is_Call(), "");
2875     CallNode *call = n->as_Call();
2876     // Count call sites where the FP mode bit would have to be flipped.
2877     // Do not count uncommon runtime calls:
2878     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2879     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2880     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2881       frc.inc_call_count();   // Count the call site
2882     } else {                  // See if uncommon argument is shared
2883       Node *n = call->in(TypeFunc::Parms);
2884       int nop = n->Opcode();
2885       // Clone shared simple arguments to uncommon calls, item (1).
2886       if (n->outcnt() > 1 &&
2887           !n->is_Proj() &&
2888           nop != Op_CreateEx &&
2889           nop != Op_CheckCastPP &&
2890           nop != Op_DecodeN &&
2891           nop != Op_DecodeNKlass &&
2892           !n->is_Mem() &&
2893           !n->is_Phi()) {
2894         Node *x = n->clone();
2895         call->set_req(TypeFunc::Parms, x);
2896       }
2897     }
2898     break;
2899   }
2900 
2901   case Op_StoreD:
2902   case Op_LoadD:
2903   case Op_LoadD_unaligned:
2904     frc.inc_double_count();
2905     goto handle_mem;
2906   case Op_StoreF:
2907   case Op_LoadF:
2908     frc.inc_float_count();
2909     goto handle_mem;
2910 
2911   case Op_StoreCM:
2912     {
2913       // Convert OopStore dependence into precedence edge
2914       Node* prec = n->in(MemNode::OopStore);
2915       n->del_req(MemNode::OopStore);
2916       n->add_prec(prec);
2917       eliminate_redundant_card_marks(n);
2918     }
2919 
2920     // fall through
2921 
2922   case Op_StoreB:
2923   case Op_StoreC:
2924   case Op_StorePConditional:
2925   case Op_StoreI:
2926   case Op_StoreL:
2927   case Op_StoreIConditional:
2928   case Op_StoreLConditional:
2929   case Op_CompareAndSwapB:
2930   case Op_CompareAndSwapS:
2931   case Op_CompareAndSwapI:
2932   case Op_CompareAndSwapL:
2933   case Op_CompareAndSwapP:
2934   case Op_CompareAndSwapN:
2935   case Op_WeakCompareAndSwapB:
2936   case Op_WeakCompareAndSwapS:
2937   case Op_WeakCompareAndSwapI:
2938   case Op_WeakCompareAndSwapL:
2939   case Op_WeakCompareAndSwapP:
2940   case Op_WeakCompareAndSwapN:
2941   case Op_CompareAndExchangeB:
2942   case Op_CompareAndExchangeS:
2943   case Op_CompareAndExchangeI:
2944   case Op_CompareAndExchangeL:
2945   case Op_CompareAndExchangeP:
2946   case Op_CompareAndExchangeN:
2947   case Op_GetAndAddS:
2948   case Op_GetAndAddB:
2949   case Op_GetAndAddI:
2950   case Op_GetAndAddL:
2951   case Op_GetAndSetS:
2952   case Op_GetAndSetB:
2953   case Op_GetAndSetI:
2954   case Op_GetAndSetL:
2955   case Op_GetAndSetP:
2956   case Op_GetAndSetN:
2957   case Op_StoreP:
2958   case Op_StoreN:
2959   case Op_StoreNKlass:
2960   case Op_LoadB:
2961   case Op_LoadUB:
2962   case Op_LoadUS:
2963   case Op_LoadI:
2964   case Op_LoadKlass:
2965   case Op_LoadNKlass:
2966   case Op_LoadL:
2967   case Op_LoadL_unaligned:
2968   case Op_LoadPLocked:
2969   case Op_LoadP:
2970   case Op_LoadN:
2971   case Op_LoadRange:
2972   case Op_LoadS: {
2973   handle_mem:
2974 #ifdef ASSERT
2975     if( VerifyOptoOopOffsets ) {
2976       MemNode* mem  = n->as_Mem();
2977       // Check to see if address types have grounded out somehow.
2978       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2979       assert( !tp || oop_offset_is_sane(tp), "" );
2980     }
2981 #endif
2982     break;
2983   }
2984 
2985   case Op_AddP: {               // Assert sane base pointers
2986     Node *addp = n->in(AddPNode::Address);
2987     assert( !addp->is_AddP() ||
2988             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2989             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2990             "Base pointers must match (addp %u)", addp->_idx );
2991 #ifdef _LP64
2992     if ((UseCompressedOops || UseCompressedClassPointers) &&
2993         addp->Opcode() == Op_ConP &&
2994         addp == n->in(AddPNode::Base) &&
2995         n->in(AddPNode::Offset)->is_Con()) {
2996       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2997       // on the platform and on the compressed oops mode.
2998       // Use addressing with narrow klass to load with offset on x86.
2999       // Some platforms can use the constant pool to load ConP.
3000       // Do this transformation here since IGVN will convert ConN back to ConP.
3001       const Type* t = addp->bottom_type();
3002       bool is_oop   = t->isa_oopptr() != NULL;
3003       bool is_klass = t->isa_klassptr() != NULL;
3004 
3005       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3006           (is_klass && Matcher::const_klass_prefer_decode())) {
3007         Node* nn = NULL;
3008 
3009         int op = is_oop ? Op_ConN : Op_ConNKlass;
3010 
3011         // Look for existing ConN node of the same exact type.
3012         Node* r  = root();
3013         uint cnt = r->outcnt();
3014         for (uint i = 0; i < cnt; i++) {
3015           Node* m = r->raw_out(i);
3016           if (m!= NULL && m->Opcode() == op &&
3017               m->bottom_type()->make_ptr() == t) {
3018             nn = m;
3019             break;
3020           }
3021         }
3022         if (nn != NULL) {
3023           // Decode a narrow oop to match address
3024           // [R12 + narrow_oop_reg<<3 + offset]
3025           if (is_oop) {
3026             nn = new DecodeNNode(nn, t);
3027           } else {
3028             nn = new DecodeNKlassNode(nn, t);
3029           }
3030           // Check for succeeding AddP which uses the same Base.
3031           // Otherwise we will run into the assertion above when visiting that guy.
3032           for (uint i = 0; i < n->outcnt(); ++i) {
3033             Node *out_i = n->raw_out(i);
3034             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3035               out_i->set_req(AddPNode::Base, nn);
3036 #ifdef ASSERT
3037               for (uint j = 0; j < out_i->outcnt(); ++j) {
3038                 Node *out_j = out_i->raw_out(j);
3039                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3040                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3041               }
3042 #endif
3043             }
3044           }
3045           n->set_req(AddPNode::Base, nn);
3046           n->set_req(AddPNode::Address, nn);
3047           if (addp->outcnt() == 0) {
3048             addp->disconnect_inputs(NULL, this);
3049           }
3050         }
3051       }
3052     }
3053 #endif
3054     // platform dependent reshaping of the address expression
3055     reshape_address(n->as_AddP());
3056     break;
3057   }
3058 
3059   case Op_CastPP: {
3060     // Remove CastPP nodes to gain more freedom during scheduling but
3061     // keep the dependency they encode as control or precedence edges
3062     // (if control is set already) on memory operations. Some CastPP
3063     // nodes don't have a control (don't carry a dependency): skip
3064     // those.
3065     if (n->in(0) != NULL) {
3066       ResourceMark rm;
3067       Unique_Node_List wq;
3068       wq.push(n);
3069       for (uint next = 0; next < wq.size(); ++next) {
3070         Node *m = wq.at(next);
3071         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3072           Node* use = m->fast_out(i);
3073           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3074             use->ensure_control_or_add_prec(n->in(0));
3075           } else {
3076             switch(use->Opcode()) {
3077             case Op_AddP:
3078             case Op_DecodeN:
3079             case Op_DecodeNKlass:
3080             case Op_CheckCastPP:
3081             case Op_CastPP:
3082               wq.push(use);
3083               break;
3084             }
3085           }
3086         }
3087       }
3088     }
3089     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3090     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3091       Node* in1 = n->in(1);
3092       const Type* t = n->bottom_type();
3093       Node* new_in1 = in1->clone();
3094       new_in1->as_DecodeN()->set_type(t);
3095 
3096       if (!Matcher::narrow_oop_use_complex_address()) {
3097         //
3098         // x86, ARM and friends can handle 2 adds in addressing mode
3099         // and Matcher can fold a DecodeN node into address by using
3100         // a narrow oop directly and do implicit NULL check in address:
3101         //
3102         // [R12 + narrow_oop_reg<<3 + offset]
3103         // NullCheck narrow_oop_reg
3104         //
3105         // On other platforms (Sparc) we have to keep new DecodeN node and
3106         // use it to do implicit NULL check in address:
3107         //
3108         // decode_not_null narrow_oop_reg, base_reg
3109         // [base_reg + offset]
3110         // NullCheck base_reg
3111         //
3112         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3113         // to keep the information to which NULL check the new DecodeN node
3114         // corresponds to use it as value in implicit_null_check().
3115         //
3116         new_in1->set_req(0, n->in(0));
3117       }
3118 
3119       n->subsume_by(new_in1, this);
3120       if (in1->outcnt() == 0) {
3121         in1->disconnect_inputs(NULL, this);
3122       }
3123     } else {
3124       n->subsume_by(n->in(1), this);
3125       if (n->outcnt() == 0) {
3126         n->disconnect_inputs(NULL, this);
3127       }
3128     }
3129     break;
3130   }
3131 #ifdef _LP64
3132   case Op_CmpP:
3133     // Do this transformation here to preserve CmpPNode::sub() and
3134     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3135     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3136       Node* in1 = n->in(1);
3137       Node* in2 = n->in(2);
3138       if (!in1->is_DecodeNarrowPtr()) {
3139         in2 = in1;
3140         in1 = n->in(2);
3141       }
3142       assert(in1->is_DecodeNarrowPtr(), "sanity");
3143 
3144       Node* new_in2 = NULL;
3145       if (in2->is_DecodeNarrowPtr()) {
3146         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3147         new_in2 = in2->in(1);
3148       } else if (in2->Opcode() == Op_ConP) {
3149         const Type* t = in2->bottom_type();
3150         if (t == TypePtr::NULL_PTR) {
3151           assert(in1->is_DecodeN(), "compare klass to null?");
3152           // Don't convert CmpP null check into CmpN if compressed
3153           // oops implicit null check is not generated.
3154           // This will allow to generate normal oop implicit null check.
3155           if (Matcher::gen_narrow_oop_implicit_null_checks())
3156             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3157           //
3158           // This transformation together with CastPP transformation above
3159           // will generated code for implicit NULL checks for compressed oops.
3160           //
3161           // The original code after Optimize()
3162           //
3163           //    LoadN memory, narrow_oop_reg
3164           //    decode narrow_oop_reg, base_reg
3165           //    CmpP base_reg, NULL
3166           //    CastPP base_reg // NotNull
3167           //    Load [base_reg + offset], val_reg
3168           //
3169           // after these transformations will be
3170           //
3171           //    LoadN memory, narrow_oop_reg
3172           //    CmpN narrow_oop_reg, NULL
3173           //    decode_not_null narrow_oop_reg, base_reg
3174           //    Load [base_reg + offset], val_reg
3175           //
3176           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3177           // since narrow oops can be used in debug info now (see the code in
3178           // final_graph_reshaping_walk()).
3179           //
3180           // At the end the code will be matched to
3181           // on x86:
3182           //
3183           //    Load_narrow_oop memory, narrow_oop_reg
3184           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3185           //    NullCheck narrow_oop_reg
3186           //
3187           // and on sparc:
3188           //
3189           //    Load_narrow_oop memory, narrow_oop_reg
3190           //    decode_not_null narrow_oop_reg, base_reg
3191           //    Load [base_reg + offset], val_reg
3192           //    NullCheck base_reg
3193           //
3194         } else if (t->isa_oopptr()) {
3195           new_in2 = ConNode::make(t->make_narrowoop());
3196         } else if (t->isa_klassptr()) {
3197           new_in2 = ConNode::make(t->make_narrowklass());
3198         }
3199       }
3200       if (new_in2 != NULL) {
3201         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3202         n->subsume_by(cmpN, this);
3203         if (in1->outcnt() == 0) {
3204           in1->disconnect_inputs(NULL, this);
3205         }
3206         if (in2->outcnt() == 0) {
3207           in2->disconnect_inputs(NULL, this);
3208         }
3209       }
3210     }
3211     break;
3212 
3213   case Op_DecodeN:
3214   case Op_DecodeNKlass:
3215     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3216     // DecodeN could be pinned when it can't be fold into
3217     // an address expression, see the code for Op_CastPP above.
3218     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3219     break;
3220 
3221   case Op_EncodeP:
3222   case Op_EncodePKlass: {
3223     Node* in1 = n->in(1);
3224     if (in1->is_DecodeNarrowPtr()) {
3225       n->subsume_by(in1->in(1), this);
3226     } else if (in1->Opcode() == Op_ConP) {
3227       const Type* t = in1->bottom_type();
3228       if (t == TypePtr::NULL_PTR) {
3229         assert(t->isa_oopptr(), "null klass?");
3230         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3231       } else if (t->isa_oopptr()) {
3232         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3233       } else if (t->isa_klassptr()) {
3234         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3235       }
3236     }
3237     if (in1->outcnt() == 0) {
3238       in1->disconnect_inputs(NULL, this);
3239     }
3240     break;
3241   }
3242 
3243   case Op_Proj: {
3244     if (OptimizeStringConcat) {
3245       ProjNode* p = n->as_Proj();
3246       if (p->_is_io_use) {
3247         // Separate projections were used for the exception path which
3248         // are normally removed by a late inline.  If it wasn't inlined
3249         // then they will hang around and should just be replaced with
3250         // the original one.
3251         Node* proj = NULL;
3252         // Replace with just one
3253         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3254           Node *use = i.get();
3255           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3256             proj = use;
3257             break;
3258           }
3259         }
3260         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3261         if (proj != NULL) {
3262           p->subsume_by(proj, this);
3263         }
3264       }
3265     }
3266     break;
3267   }
3268 
3269   case Op_Phi:
3270     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3271       // The EncodeP optimization may create Phi with the same edges
3272       // for all paths. It is not handled well by Register Allocator.
3273       Node* unique_in = n->in(1);
3274       assert(unique_in != NULL, "");
3275       uint cnt = n->req();
3276       for (uint i = 2; i < cnt; i++) {
3277         Node* m = n->in(i);
3278         assert(m != NULL, "");
3279         if (unique_in != m)
3280           unique_in = NULL;
3281       }
3282       if (unique_in != NULL) {
3283         n->subsume_by(unique_in, this);
3284       }
3285     }
3286     break;
3287 
3288 #endif
3289 
3290 #ifdef ASSERT
3291   case Op_CastII:
3292     // Verify that all range check dependent CastII nodes were removed.
3293     if (n->isa_CastII()->has_range_check()) {
3294       n->dump(3);
3295       assert(false, "Range check dependent CastII node was not removed");
3296     }
3297     break;
3298 #endif
3299 
3300   case Op_ModI:
3301     if (UseDivMod) {
3302       // Check if a%b and a/b both exist
3303       Node* d = n->find_similar(Op_DivI);
3304       if (d) {
3305         // Replace them with a fused divmod if supported
3306         if (Matcher::has_match_rule(Op_DivModI)) {
3307           DivModINode* divmod = DivModINode::make(n);
3308           d->subsume_by(divmod->div_proj(), this);
3309           n->subsume_by(divmod->mod_proj(), this);
3310         } else {
3311           // replace a%b with a-((a/b)*b)
3312           Node* mult = new MulINode(d, d->in(2));
3313           Node* sub  = new SubINode(d->in(1), mult);
3314           n->subsume_by(sub, this);
3315         }
3316       }
3317     }
3318     break;
3319 
3320   case Op_ModL:
3321     if (UseDivMod) {
3322       // Check if a%b and a/b both exist
3323       Node* d = n->find_similar(Op_DivL);
3324       if (d) {
3325         // Replace them with a fused divmod if supported
3326         if (Matcher::has_match_rule(Op_DivModL)) {
3327           DivModLNode* divmod = DivModLNode::make(n);
3328           d->subsume_by(divmod->div_proj(), this);
3329           n->subsume_by(divmod->mod_proj(), this);
3330         } else {
3331           // replace a%b with a-((a/b)*b)
3332           Node* mult = new MulLNode(d, d->in(2));
3333           Node* sub  = new SubLNode(d->in(1), mult);
3334           n->subsume_by(sub, this);
3335         }
3336       }
3337     }
3338     break;
3339 
3340   case Op_LoadVector:
3341   case Op_StoreVector:
3342     break;
3343 
3344   case Op_AddReductionVI:
3345   case Op_AddReductionVL:
3346   case Op_AddReductionVF:
3347   case Op_AddReductionVD:
3348   case Op_MulReductionVI:
3349   case Op_MulReductionVL:
3350   case Op_MulReductionVF:
3351   case Op_MulReductionVD:
3352   case Op_MinReductionV:
3353   case Op_MaxReductionV:
3354   case Op_AndReductionV:
3355   case Op_OrReductionV:
3356   case Op_XorReductionV:
3357     break;
3358 
3359   case Op_PackB:
3360   case Op_PackS:
3361   case Op_PackI:
3362   case Op_PackF:
3363   case Op_PackL:
3364   case Op_PackD:
3365     if (n->req()-1 > 2) {
3366       // Replace many operand PackNodes with a binary tree for matching
3367       PackNode* p = (PackNode*) n;
3368       Node* btp = p->binary_tree_pack(1, n->req());
3369       n->subsume_by(btp, this);
3370     }
3371     break;
3372   case Op_Loop:
3373   case Op_CountedLoop:
3374   case Op_OuterStripMinedLoop:
3375     if (n->as_Loop()->is_inner_loop()) {
3376       frc.inc_inner_loop_count();
3377     }
3378     n->as_Loop()->verify_strip_mined(0);
3379     break;
3380   case Op_LShiftI:
3381   case Op_RShiftI:
3382   case Op_URShiftI:
3383   case Op_LShiftL:
3384   case Op_RShiftL:
3385   case Op_URShiftL:
3386     if (Matcher::need_masked_shift_count) {
3387       // The cpu's shift instructions don't restrict the count to the
3388       // lower 5/6 bits. We need to do the masking ourselves.
3389       Node* in2 = n->in(2);
3390       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3391       const TypeInt* t = in2->find_int_type();
3392       if (t != NULL && t->is_con()) {
3393         juint shift = t->get_con();
3394         if (shift > mask) { // Unsigned cmp
3395           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3396         }
3397       } else {
3398         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3399           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3400           n->set_req(2, shift);
3401         }
3402       }
3403       if (in2->outcnt() == 0) { // Remove dead node
3404         in2->disconnect_inputs(NULL, this);
3405       }
3406     }
3407     break;
3408   case Op_MemBarStoreStore:
3409   case Op_MemBarRelease:
3410     // Break the link with AllocateNode: it is no longer useful and
3411     // confuses register allocation.
3412     if (n->req() > MemBarNode::Precedent) {
3413       n->set_req(MemBarNode::Precedent, top());
3414     }
3415     break;
3416   case Op_MemBarAcquire: {
3417     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3418       // At parse time, the trailing MemBarAcquire for a volatile load
3419       // is created with an edge to the load. After optimizations,
3420       // that input may be a chain of Phis. If those phis have no
3421       // other use, then the MemBarAcquire keeps them alive and
3422       // register allocation can be confused.
3423       ResourceMark rm;
3424       Unique_Node_List wq;
3425       wq.push(n->in(MemBarNode::Precedent));
3426       n->set_req(MemBarNode::Precedent, top());
3427       while (wq.size() > 0) {
3428         Node* m = wq.pop();
3429         if (m->outcnt() == 0) {
3430           for (uint j = 0; j < m->req(); j++) {
3431             Node* in = m->in(j);
3432             if (in != NULL) {
3433               wq.push(in);
3434             }
3435           }
3436           m->disconnect_inputs(NULL, this);
3437         }
3438       }
3439     }
3440     break;
3441   }
3442   case Op_RangeCheck: {
3443     RangeCheckNode* rc = n->as_RangeCheck();
3444     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3445     n->subsume_by(iff, this);
3446     frc._tests.push(iff);
3447     break;
3448   }
3449   case Op_ConvI2L: {
3450     if (!Matcher::convi2l_type_required) {
3451       // Code generation on some platforms doesn't need accurate
3452       // ConvI2L types. Widening the type can help remove redundant
3453       // address computations.
3454       n->as_Type()->set_type(TypeLong::INT);
3455       ResourceMark rm;
3456       Unique_Node_List wq;
3457       wq.push(n);
3458       for (uint next = 0; next < wq.size(); next++) {
3459         Node *m = wq.at(next);
3460 
3461         for(;;) {
3462           // Loop over all nodes with identical inputs edges as m
3463           Node* k = m->find_similar(m->Opcode());
3464           if (k == NULL) {
3465             break;
3466           }
3467           // Push their uses so we get a chance to remove node made
3468           // redundant
3469           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3470             Node* u = k->fast_out(i);
3471             if (u->Opcode() == Op_LShiftL ||
3472                 u->Opcode() == Op_AddL ||
3473                 u->Opcode() == Op_SubL ||
3474                 u->Opcode() == Op_AddP) {
3475               wq.push(u);
3476             }
3477           }
3478           // Replace all nodes with identical edges as m with m
3479           k->subsume_by(m, this);
3480         }
3481       }
3482     }
3483     break;
3484   }
3485   case Op_CmpUL: {
3486     if (!Matcher::has_match_rule(Op_CmpUL)) {
3487       // No support for unsigned long comparisons
3488       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3489       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3490       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3491       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3492       Node* andl = new AndLNode(orl, remove_sign_mask);
3493       Node* cmp = new CmpLNode(andl, n->in(2));
3494       n->subsume_by(cmp, this);
3495     }
3496     break;
3497   }
3498   default:
3499     assert(!n->is_Call(), "");
3500     assert(!n->is_Mem(), "");
3501     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3502     break;
3503   }
3504 }
3505 
3506 //------------------------------final_graph_reshaping_walk---------------------
3507 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3508 // requires that the walk visits a node's inputs before visiting the node.
3509 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3510   ResourceArea *area = Thread::current()->resource_area();
3511   Unique_Node_List sfpt(area);
3512 
3513   frc._visited.set(root->_idx); // first, mark node as visited
3514   uint cnt = root->req();
3515   Node *n = root;
3516   uint  i = 0;
3517   while (true) {
3518     if (i < cnt) {
3519       // Place all non-visited non-null inputs onto stack
3520       Node* m = n->in(i);
3521       ++i;
3522       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3523         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3524           // compute worst case interpreter size in case of a deoptimization
3525           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3526 
3527           sfpt.push(m);
3528         }
3529         cnt = m->req();
3530         nstack.push(n, i); // put on stack parent and next input's index
3531         n = m;
3532         i = 0;
3533       }
3534     } else {
3535       // Now do post-visit work
3536       final_graph_reshaping_impl( n, frc );
3537       if (nstack.is_empty())
3538         break;             // finished
3539       n = nstack.node();   // Get node from stack
3540       cnt = n->req();
3541       i = nstack.index();
3542       nstack.pop();        // Shift to the next node on stack
3543     }
3544   }
3545 
3546   // Skip next transformation if compressed oops are not used.
3547   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3548       (!UseCompressedOops && !UseCompressedClassPointers))
3549     return;
3550 
3551   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3552   // It could be done for an uncommon traps or any safepoints/calls
3553   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3554   while (sfpt.size() > 0) {
3555     n = sfpt.pop();
3556     JVMState *jvms = n->as_SafePoint()->jvms();
3557     assert(jvms != NULL, "sanity");
3558     int start = jvms->debug_start();
3559     int end   = n->req();
3560     bool is_uncommon = (n->is_CallStaticJava() &&
3561                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3562     for (int j = start; j < end; j++) {
3563       Node* in = n->in(j);
3564       if (in->is_DecodeNarrowPtr()) {
3565         bool safe_to_skip = true;
3566         if (!is_uncommon ) {
3567           // Is it safe to skip?
3568           for (uint i = 0; i < in->outcnt(); i++) {
3569             Node* u = in->raw_out(i);
3570             if (!u->is_SafePoint() ||
3571                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3572               safe_to_skip = false;
3573             }
3574           }
3575         }
3576         if (safe_to_skip) {
3577           n->set_req(j, in->in(1));
3578         }
3579         if (in->outcnt() == 0) {
3580           in->disconnect_inputs(NULL, this);
3581         }
3582       }
3583     }
3584   }
3585 }
3586 
3587 //------------------------------final_graph_reshaping--------------------------
3588 // Final Graph Reshaping.
3589 //
3590 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3591 //     and not commoned up and forced early.  Must come after regular
3592 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3593 //     inputs to Loop Phis; these will be split by the allocator anyways.
3594 //     Remove Opaque nodes.
3595 // (2) Move last-uses by commutative operations to the left input to encourage
3596 //     Intel update-in-place two-address operations and better register usage
3597 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3598 //     calls canonicalizing them back.
3599 // (3) Count the number of double-precision FP ops, single-precision FP ops
3600 //     and call sites.  On Intel, we can get correct rounding either by
3601 //     forcing singles to memory (requires extra stores and loads after each
3602 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3603 //     clearing the mode bit around call sites).  The mode bit is only used
3604 //     if the relative frequency of single FP ops to calls is low enough.
3605 //     This is a key transform for SPEC mpeg_audio.
3606 // (4) Detect infinite loops; blobs of code reachable from above but not
3607 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3608 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3609 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3610 //     Detection is by looking for IfNodes where only 1 projection is
3611 //     reachable from below or CatchNodes missing some targets.
3612 // (5) Assert for insane oop offsets in debug mode.
3613 
3614 bool Compile::final_graph_reshaping() {
3615   // an infinite loop may have been eliminated by the optimizer,
3616   // in which case the graph will be empty.
3617   if (root()->req() == 1) {
3618     record_method_not_compilable("trivial infinite loop");
3619     return true;
3620   }
3621 
3622   // Expensive nodes have their control input set to prevent the GVN
3623   // from freely commoning them. There's no GVN beyond this point so
3624   // no need to keep the control input. We want the expensive nodes to
3625   // be freely moved to the least frequent code path by gcm.
3626   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3627   for (int i = 0; i < expensive_count(); i++) {
3628     _expensive_nodes->at(i)->set_req(0, NULL);
3629   }
3630 
3631   Final_Reshape_Counts frc;
3632 
3633   // Visit everybody reachable!
3634   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3635   Node_Stack nstack(live_nodes() >> 1);
3636   final_graph_reshaping_walk(nstack, root(), frc);
3637 
3638   // Check for unreachable (from below) code (i.e., infinite loops).
3639   for( uint i = 0; i < frc._tests.size(); i++ ) {
3640     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3641     // Get number of CFG targets.
3642     // Note that PCTables include exception targets after calls.
3643     uint required_outcnt = n->required_outcnt();
3644     if (n->outcnt() != required_outcnt) {
3645       // Check for a few special cases.  Rethrow Nodes never take the
3646       // 'fall-thru' path, so expected kids is 1 less.
3647       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3648         if (n->in(0)->in(0)->is_Call()) {
3649           CallNode *call = n->in(0)->in(0)->as_Call();
3650           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3651             required_outcnt--;      // Rethrow always has 1 less kid
3652           } else if (call->req() > TypeFunc::Parms &&
3653                      call->is_CallDynamicJava()) {
3654             // Check for null receiver. In such case, the optimizer has
3655             // detected that the virtual call will always result in a null
3656             // pointer exception. The fall-through projection of this CatchNode
3657             // will not be populated.
3658             Node *arg0 = call->in(TypeFunc::Parms);
3659             if (arg0->is_Type() &&
3660                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3661               required_outcnt--;
3662             }
3663           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3664                      call->req() > TypeFunc::Parms+1 &&
3665                      call->is_CallStaticJava()) {
3666             // Check for negative array length. In such case, the optimizer has
3667             // detected that the allocation attempt will always result in an
3668             // exception. There is no fall-through projection of this CatchNode .
3669             Node *arg1 = call->in(TypeFunc::Parms+1);
3670             if (arg1->is_Type() &&
3671                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3672               required_outcnt--;
3673             }
3674           }
3675         }
3676       }
3677       // Recheck with a better notion of 'required_outcnt'
3678       if (n->outcnt() != required_outcnt) {
3679         record_method_not_compilable("malformed control flow");
3680         return true;            // Not all targets reachable!
3681       }
3682     }
3683     // Check that I actually visited all kids.  Unreached kids
3684     // must be infinite loops.
3685     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3686       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3687         record_method_not_compilable("infinite loop");
3688         return true;            // Found unvisited kid; must be unreach
3689       }
3690 
3691     // Here so verification code in final_graph_reshaping_walk()
3692     // always see an OuterStripMinedLoopEnd
3693     if (n->is_OuterStripMinedLoopEnd()) {
3694       IfNode* init_iff = n->as_If();
3695       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3696       n->subsume_by(iff, this);
3697     }
3698   }
3699 
3700 #ifdef IA32
3701   // If original bytecodes contained a mixture of floats and doubles
3702   // check if the optimizer has made it homogenous, item (3).
3703   if (UseSSE == 0 &&
3704       frc.get_float_count() > 32 &&
3705       frc.get_double_count() == 0 &&
3706       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3707     set_24_bit_selection_and_mode(false, true);
3708   }
3709 #endif // IA32
3710 
3711   set_java_calls(frc.get_java_call_count());
3712   set_inner_loops(frc.get_inner_loop_count());
3713 
3714   // No infinite loops, no reason to bail out.
3715   return false;
3716 }
3717 
3718 //-----------------------------too_many_traps----------------------------------
3719 // Report if there are too many traps at the current method and bci.
3720 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3721 bool Compile::too_many_traps(ciMethod* method,
3722                              int bci,
3723                              Deoptimization::DeoptReason reason) {
3724   ciMethodData* md = method->method_data();
3725   if (md->is_empty()) {
3726     // Assume the trap has not occurred, or that it occurred only
3727     // because of a transient condition during start-up in the interpreter.
3728     return false;
3729   }
3730   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3731   if (md->has_trap_at(bci, m, reason) != 0) {
3732     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3733     // Also, if there are multiple reasons, or if there is no per-BCI record,
3734     // assume the worst.
3735     if (log())
3736       log()->elem("observe trap='%s' count='%d'",
3737                   Deoptimization::trap_reason_name(reason),
3738                   md->trap_count(reason));
3739     return true;
3740   } else {
3741     // Ignore method/bci and see if there have been too many globally.
3742     return too_many_traps(reason, md);
3743   }
3744 }
3745 
3746 // Less-accurate variant which does not require a method and bci.
3747 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3748                              ciMethodData* logmd) {
3749   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3750     // Too many traps globally.
3751     // Note that we use cumulative trap_count, not just md->trap_count.
3752     if (log()) {
3753       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3754       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3755                   Deoptimization::trap_reason_name(reason),
3756                   mcount, trap_count(reason));
3757     }
3758     return true;
3759   } else {
3760     // The coast is clear.
3761     return false;
3762   }
3763 }
3764 
3765 //--------------------------too_many_recompiles--------------------------------
3766 // Report if there are too many recompiles at the current method and bci.
3767 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3768 // Is not eager to return true, since this will cause the compiler to use
3769 // Action_none for a trap point, to avoid too many recompilations.
3770 bool Compile::too_many_recompiles(ciMethod* method,
3771                                   int bci,
3772                                   Deoptimization::DeoptReason reason) {
3773   ciMethodData* md = method->method_data();
3774   if (md->is_empty()) {
3775     // Assume the trap has not occurred, or that it occurred only
3776     // because of a transient condition during start-up in the interpreter.
3777     return false;
3778   }
3779   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3780   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3781   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3782   Deoptimization::DeoptReason per_bc_reason
3783     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3784   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3785   if ((per_bc_reason == Deoptimization::Reason_none
3786        || md->has_trap_at(bci, m, reason) != 0)
3787       // The trap frequency measure we care about is the recompile count:
3788       && md->trap_recompiled_at(bci, m)
3789       && md->overflow_recompile_count() >= bc_cutoff) {
3790     // Do not emit a trap here if it has already caused recompilations.
3791     // Also, if there are multiple reasons, or if there is no per-BCI record,
3792     // assume the worst.
3793     if (log())
3794       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3795                   Deoptimization::trap_reason_name(reason),
3796                   md->trap_count(reason),
3797                   md->overflow_recompile_count());
3798     return true;
3799   } else if (trap_count(reason) != 0
3800              && decompile_count() >= m_cutoff) {
3801     // Too many recompiles globally, and we have seen this sort of trap.
3802     // Use cumulative decompile_count, not just md->decompile_count.
3803     if (log())
3804       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3805                   Deoptimization::trap_reason_name(reason),
3806                   md->trap_count(reason), trap_count(reason),
3807                   md->decompile_count(), decompile_count());
3808     return true;
3809   } else {
3810     // The coast is clear.
3811     return false;
3812   }
3813 }
3814 
3815 // Compute when not to trap. Used by matching trap based nodes and
3816 // NullCheck optimization.
3817 void Compile::set_allowed_deopt_reasons() {
3818   _allowed_reasons = 0;
3819   if (is_method_compilation()) {
3820     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3821       assert(rs < BitsPerInt, "recode bit map");
3822       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3823         _allowed_reasons |= nth_bit(rs);
3824       }
3825     }
3826   }
3827 }
3828 
3829 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
3830   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
3831 }
3832 
3833 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
3834   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
3835 }
3836 
3837 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
3838   if (holder->is_initialized()) {
3839     return false;
3840   }
3841   if (holder->is_being_initialized()) {
3842     if (accessing_method->holder() == holder) {
3843       // Access inside a class. The barrier can be elided when access happens in <clinit>,
3844       // <init>, or a static method. In all those cases, there was an initialization
3845       // barrier on the holder klass passed.
3846       if (accessing_method->is_static_initializer() ||
3847           accessing_method->is_object_initializer() ||
3848           accessing_method->is_static()) {
3849         return false;
3850       }
3851     } else if (accessing_method->holder()->is_subclass_of(holder)) {
3852       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
3853       // In case of <init> or a static method, the barrier is on the subclass is not enough:
3854       // child class can become fully initialized while its parent class is still being initialized.
3855       if (accessing_method->is_static_initializer()) {
3856         return false;
3857       }
3858     }
3859     ciMethod* root = method(); // the root method of compilation
3860     if (root != accessing_method) {
3861       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
3862     }
3863   }
3864   return true;
3865 }
3866 
3867 #ifndef PRODUCT
3868 //------------------------------verify_graph_edges---------------------------
3869 // Walk the Graph and verify that there is a one-to-one correspondence
3870 // between Use-Def edges and Def-Use edges in the graph.
3871 void Compile::verify_graph_edges(bool no_dead_code) {
3872   if (VerifyGraphEdges) {
3873     ResourceArea *area = Thread::current()->resource_area();
3874     Unique_Node_List visited(area);
3875     // Call recursive graph walk to check edges
3876     _root->verify_edges(visited);
3877     if (no_dead_code) {
3878       // Now make sure that no visited node is used by an unvisited node.
3879       bool dead_nodes = false;
3880       Unique_Node_List checked(area);
3881       while (visited.size() > 0) {
3882         Node* n = visited.pop();
3883         checked.push(n);
3884         for (uint i = 0; i < n->outcnt(); i++) {
3885           Node* use = n->raw_out(i);
3886           if (checked.member(use))  continue;  // already checked
3887           if (visited.member(use))  continue;  // already in the graph
3888           if (use->is_Con())        continue;  // a dead ConNode is OK
3889           // At this point, we have found a dead node which is DU-reachable.
3890           if (!dead_nodes) {
3891             tty->print_cr("*** Dead nodes reachable via DU edges:");
3892             dead_nodes = true;
3893           }
3894           use->dump(2);
3895           tty->print_cr("---");
3896           checked.push(use);  // No repeats; pretend it is now checked.
3897         }
3898       }
3899       assert(!dead_nodes, "using nodes must be reachable from root");
3900     }
3901   }
3902 }
3903 #endif
3904 
3905 // The Compile object keeps track of failure reasons separately from the ciEnv.
3906 // This is required because there is not quite a 1-1 relation between the
3907 // ciEnv and its compilation task and the Compile object.  Note that one
3908 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3909 // to backtrack and retry without subsuming loads.  Other than this backtracking
3910 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3911 // by the logic in C2Compiler.
3912 void Compile::record_failure(const char* reason) {
3913   if (log() != NULL) {
3914     log()->elem("failure reason='%s' phase='compile'", reason);
3915   }
3916   if (_failure_reason == NULL) {
3917     // Record the first failure reason.
3918     _failure_reason = reason;
3919   }
3920 
3921   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3922     C->print_method(PHASE_FAILURE);
3923   }
3924   _root = NULL;  // flush the graph, too
3925 }
3926 
3927 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3928   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3929     _phase_name(name), _dolog(CITimeVerbose)
3930 {
3931   if (_dolog) {
3932     C = Compile::current();
3933     _log = C->log();
3934   } else {
3935     C = NULL;
3936     _log = NULL;
3937   }
3938   if (_log != NULL) {
3939     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3940     _log->stamp();
3941     _log->end_head();
3942   }
3943 }
3944 
3945 Compile::TracePhase::~TracePhase() {
3946 
3947   C = Compile::current();
3948   if (_dolog) {
3949     _log = C->log();
3950   } else {
3951     _log = NULL;
3952   }
3953 
3954 #ifdef ASSERT
3955   if (PrintIdealNodeCount) {
3956     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3957                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3958   }
3959 
3960   if (VerifyIdealNodeCount) {
3961     Compile::current()->print_missing_nodes();
3962   }
3963 #endif
3964 
3965   if (_log != NULL) {
3966     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3967   }
3968 }
3969 
3970 //----------------------------static_subtype_check-----------------------------
3971 // Shortcut important common cases when superklass is exact:
3972 // (0) superklass is java.lang.Object (can occur in reflective code)
3973 // (1) subklass is already limited to a subtype of superklass => always ok
3974 // (2) subklass does not overlap with superklass => always fail
3975 // (3) superklass has NO subtypes and we can check with a simple compare.
3976 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3977   if (StressReflectiveCode) {
3978     return SSC_full_test;       // Let caller generate the general case.
3979   }
3980 
3981   if (superk == env()->Object_klass()) {
3982     return SSC_always_true;     // (0) this test cannot fail
3983   }
3984 
3985   ciType* superelem = superk;
3986   if (superelem->is_array_klass())
3987     superelem = superelem->as_array_klass()->base_element_type();
3988 
3989   if (!subk->is_interface()) {  // cannot trust static interface types yet
3990     if (subk->is_subtype_of(superk)) {
3991       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3992     }
3993     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3994         !superk->is_subtype_of(subk)) {
3995       return SSC_always_false;
3996     }
3997   }
3998 
3999   // If casting to an instance klass, it must have no subtypes
4000   if (superk->is_interface()) {
4001     // Cannot trust interfaces yet.
4002     // %%% S.B. superk->nof_implementors() == 1
4003   } else if (superelem->is_instance_klass()) {
4004     ciInstanceKlass* ik = superelem->as_instance_klass();
4005     if (!ik->has_subklass() && !ik->is_interface()) {
4006       if (!ik->is_final()) {
4007         // Add a dependency if there is a chance of a later subclass.
4008         dependencies()->assert_leaf_type(ik);
4009       }
4010       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4011     }
4012   } else {
4013     // A primitive array type has no subtypes.
4014     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4015   }
4016 
4017   return SSC_full_test;
4018 }
4019 
4020 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4021 #ifdef _LP64
4022   // The scaled index operand to AddP must be a clean 64-bit value.
4023   // Java allows a 32-bit int to be incremented to a negative
4024   // value, which appears in a 64-bit register as a large
4025   // positive number.  Using that large positive number as an
4026   // operand in pointer arithmetic has bad consequences.
4027   // On the other hand, 32-bit overflow is rare, and the possibility
4028   // can often be excluded, if we annotate the ConvI2L node with
4029   // a type assertion that its value is known to be a small positive
4030   // number.  (The prior range check has ensured this.)
4031   // This assertion is used by ConvI2LNode::Ideal.
4032   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4033   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4034   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4035   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4036 #endif
4037   return idx;
4038 }
4039 
4040 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4041 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4042   if (ctrl != NULL) {
4043     // Express control dependency by a CastII node with a narrow type.
4044     value = new CastIINode(value, itype, false, true /* range check dependency */);
4045     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4046     // node from floating above the range check during loop optimizations. Otherwise, the
4047     // ConvI2L node may be eliminated independently of the range check, causing the data path
4048     // to become TOP while the control path is still there (although it's unreachable).
4049     value->set_req(0, ctrl);
4050     // Save CastII node to remove it after loop optimizations.
4051     phase->C->add_range_check_cast(value);
4052     value = phase->transform(value);
4053   }
4054   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4055   return phase->transform(new ConvI2LNode(value, ltype));
4056 }
4057 
4058 void Compile::print_inlining_stream_free() {
4059   if (_print_inlining_stream != NULL) {
4060     _print_inlining_stream->~stringStream();
4061     _print_inlining_stream = NULL;
4062   }
4063 }
4064 
4065 // The message about the current inlining is accumulated in
4066 // _print_inlining_stream and transfered into the _print_inlining_list
4067 // once we know whether inlining succeeds or not. For regular
4068 // inlining, messages are appended to the buffer pointed by
4069 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4070 // a new buffer is added after _print_inlining_idx in the list. This
4071 // way we can update the inlining message for late inlining call site
4072 // when the inlining is attempted again.
4073 void Compile::print_inlining_init() {
4074   if (print_inlining() || print_intrinsics()) {
4075     // print_inlining_init is actually called several times.
4076     print_inlining_stream_free();
4077     _print_inlining_stream = new stringStream();
4078     // Watch out: The memory initialized by the constructor call PrintInliningBuffer()
4079     // will be copied into the only initial element. The default destructor of
4080     // PrintInliningBuffer will be called when leaving the scope here. If it
4081     // would destuct the  enclosed stringStream _print_inlining_list[0]->_ss
4082     // would be destructed, too!
4083     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4084   }
4085 }
4086 
4087 void Compile::print_inlining_reinit() {
4088   if (print_inlining() || print_intrinsics()) {
4089     print_inlining_stream_free();
4090     // Re allocate buffer when we change ResourceMark
4091     _print_inlining_stream = new stringStream();
4092   }
4093 }
4094 
4095 void Compile::print_inlining_reset() {
4096   _print_inlining_stream->reset();
4097 }
4098 
4099 void Compile::print_inlining_commit() {
4100   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4101   // Transfer the message from _print_inlining_stream to the current
4102   // _print_inlining_list buffer and clear _print_inlining_stream.
4103   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4104   print_inlining_reset();
4105 }
4106 
4107 void Compile::print_inlining_push() {
4108   // Add new buffer to the _print_inlining_list at current position
4109   _print_inlining_idx++;
4110   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4111 }
4112 
4113 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4114   return _print_inlining_list->at(_print_inlining_idx);
4115 }
4116 
4117 void Compile::print_inlining_update(CallGenerator* cg) {
4118   if (print_inlining() || print_intrinsics()) {
4119     if (!cg->is_late_inline()) {
4120       if (print_inlining_current().cg() != NULL) {
4121         print_inlining_push();
4122       }
4123       print_inlining_commit();
4124     } else {
4125       if (print_inlining_current().cg() != cg &&
4126           (print_inlining_current().cg() != NULL ||
4127            print_inlining_current().ss()->size() != 0)) {
4128         print_inlining_push();
4129       }
4130       print_inlining_commit();
4131       print_inlining_current().set_cg(cg);
4132     }
4133   }
4134 }
4135 
4136 void Compile::print_inlining_move_to(CallGenerator* cg) {
4137   // We resume inlining at a late inlining call site. Locate the
4138   // corresponding inlining buffer so that we can update it.
4139   if (print_inlining()) {
4140     for (int i = 0; i < _print_inlining_list->length(); i++) {
4141       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4142         _print_inlining_idx = i;
4143         return;
4144       }
4145     }
4146     ShouldNotReachHere();
4147   }
4148 }
4149 
4150 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4151   if (print_inlining()) {
4152     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4153     assert(print_inlining_current().cg() == cg, "wrong entry");
4154     // replace message with new message
4155     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4156     print_inlining_commit();
4157     print_inlining_current().set_cg(cg);
4158   }
4159 }
4160 
4161 void Compile::print_inlining_assert_ready() {
4162   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4163 }
4164 
4165 void Compile::process_print_inlining() {
4166   bool do_print_inlining = print_inlining() || print_intrinsics();
4167   if (do_print_inlining || log() != NULL) {
4168     // Print inlining message for candidates that we couldn't inline
4169     // for lack of space
4170     for (int i = 0; i < _late_inlines.length(); i++) {
4171       CallGenerator* cg = _late_inlines.at(i);
4172       if (!cg->is_mh_late_inline()) {
4173         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4174         if (do_print_inlining) {
4175           cg->print_inlining_late(msg);
4176         }
4177         log_late_inline_failure(cg, msg);
4178       }
4179     }
4180   }
4181   if (do_print_inlining) {
4182     ResourceMark rm;
4183     stringStream ss;
4184     assert(_print_inlining_list != NULL, "process_print_inlining should be called only once.");
4185     for (int i = 0; i < _print_inlining_list->length(); i++) {
4186       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4187       _print_inlining_list->at(i).freeStream();
4188     }
4189     // Reset _print_inlining_list, it only contains destructed objects.
4190     // It is on the arena, so it will be freed when the arena is reset.
4191     _print_inlining_list = NULL;
4192     // _print_inlining_stream won't be used anymore, either.
4193     print_inlining_stream_free();
4194     size_t end = ss.size();
4195     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4196     strncpy(_print_inlining_output, ss.base(), end+1);
4197     _print_inlining_output[end] = 0;
4198   }
4199 }
4200 
4201 void Compile::dump_print_inlining() {
4202   if (_print_inlining_output != NULL) {
4203     tty->print_raw(_print_inlining_output);
4204   }
4205 }
4206 
4207 void Compile::log_late_inline(CallGenerator* cg) {
4208   if (log() != NULL) {
4209     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4210                 cg->unique_id());
4211     JVMState* p = cg->call_node()->jvms();
4212     while (p != NULL) {
4213       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4214       p = p->caller();
4215     }
4216     log()->tail("late_inline");
4217   }
4218 }
4219 
4220 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4221   log_late_inline(cg);
4222   if (log() != NULL) {
4223     log()->inline_fail(msg);
4224   }
4225 }
4226 
4227 void Compile::log_inline_id(CallGenerator* cg) {
4228   if (log() != NULL) {
4229     // The LogCompilation tool needs a unique way to identify late
4230     // inline call sites. This id must be unique for this call site in
4231     // this compilation. Try to have it unique across compilations as
4232     // well because it can be convenient when grepping through the log
4233     // file.
4234     // Distinguish OSR compilations from others in case CICountOSR is
4235     // on.
4236     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4237     cg->set_unique_id(id);
4238     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4239   }
4240 }
4241 
4242 void Compile::log_inline_failure(const char* msg) {
4243   if (C->log() != NULL) {
4244     C->log()->inline_fail(msg);
4245   }
4246 }
4247 
4248 
4249 // Dump inlining replay data to the stream.
4250 // Don't change thread state and acquire any locks.
4251 void Compile::dump_inline_data(outputStream* out) {
4252   InlineTree* inl_tree = ilt();
4253   if (inl_tree != NULL) {
4254     out->print(" inline %d", inl_tree->count());
4255     inl_tree->dump_replay_data(out);
4256   }
4257 }
4258 
4259 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4260   if (n1->Opcode() < n2->Opcode())      return -1;
4261   else if (n1->Opcode() > n2->Opcode()) return 1;
4262 
4263   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4264   for (uint i = 1; i < n1->req(); i++) {
4265     if (n1->in(i) < n2->in(i))      return -1;
4266     else if (n1->in(i) > n2->in(i)) return 1;
4267   }
4268 
4269   return 0;
4270 }
4271 
4272 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4273   Node* n1 = *n1p;
4274   Node* n2 = *n2p;
4275 
4276   return cmp_expensive_nodes(n1, n2);
4277 }
4278 
4279 void Compile::sort_expensive_nodes() {
4280   if (!expensive_nodes_sorted()) {
4281     _expensive_nodes->sort(cmp_expensive_nodes);
4282   }
4283 }
4284 
4285 bool Compile::expensive_nodes_sorted() const {
4286   for (int i = 1; i < _expensive_nodes->length(); i++) {
4287     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4288       return false;
4289     }
4290   }
4291   return true;
4292 }
4293 
4294 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4295   if (_expensive_nodes->length() == 0) {
4296     return false;
4297   }
4298 
4299   assert(OptimizeExpensiveOps, "optimization off?");
4300 
4301   // Take this opportunity to remove dead nodes from the list
4302   int j = 0;
4303   for (int i = 0; i < _expensive_nodes->length(); i++) {
4304     Node* n = _expensive_nodes->at(i);
4305     if (!n->is_unreachable(igvn)) {
4306       assert(n->is_expensive(), "should be expensive");
4307       _expensive_nodes->at_put(j, n);
4308       j++;
4309     }
4310   }
4311   _expensive_nodes->trunc_to(j);
4312 
4313   // Then sort the list so that similar nodes are next to each other
4314   // and check for at least two nodes of identical kind with same data
4315   // inputs.
4316   sort_expensive_nodes();
4317 
4318   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4319     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4320       return true;
4321     }
4322   }
4323 
4324   return false;
4325 }
4326 
4327 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4328   if (_expensive_nodes->length() == 0) {
4329     return;
4330   }
4331 
4332   assert(OptimizeExpensiveOps, "optimization off?");
4333 
4334   // Sort to bring similar nodes next to each other and clear the
4335   // control input of nodes for which there's only a single copy.
4336   sort_expensive_nodes();
4337 
4338   int j = 0;
4339   int identical = 0;
4340   int i = 0;
4341   bool modified = false;
4342   for (; i < _expensive_nodes->length()-1; i++) {
4343     assert(j <= i, "can't write beyond current index");
4344     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4345       identical++;
4346       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4347       continue;
4348     }
4349     if (identical > 0) {
4350       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4351       identical = 0;
4352     } else {
4353       Node* n = _expensive_nodes->at(i);
4354       igvn.replace_input_of(n, 0, NULL);
4355       igvn.hash_insert(n);
4356       modified = true;
4357     }
4358   }
4359   if (identical > 0) {
4360     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4361   } else if (_expensive_nodes->length() >= 1) {
4362     Node* n = _expensive_nodes->at(i);
4363     igvn.replace_input_of(n, 0, NULL);
4364     igvn.hash_insert(n);
4365     modified = true;
4366   }
4367   _expensive_nodes->trunc_to(j);
4368   if (modified) {
4369     igvn.optimize();
4370   }
4371 }
4372 
4373 void Compile::add_expensive_node(Node * n) {
4374   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4375   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4376   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4377   if (OptimizeExpensiveOps) {
4378     _expensive_nodes->append(n);
4379   } else {
4380     // Clear control input and let IGVN optimize expensive nodes if
4381     // OptimizeExpensiveOps is off.
4382     n->set_req(0, NULL);
4383   }
4384 }
4385 
4386 /**
4387  * Remove the speculative part of types and clean up the graph
4388  */
4389 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4390   if (UseTypeSpeculation) {
4391     Unique_Node_List worklist;
4392     worklist.push(root());
4393     int modified = 0;
4394     // Go over all type nodes that carry a speculative type, drop the
4395     // speculative part of the type and enqueue the node for an igvn
4396     // which may optimize it out.
4397     for (uint next = 0; next < worklist.size(); ++next) {
4398       Node *n  = worklist.at(next);
4399       if (n->is_Type()) {
4400         TypeNode* tn = n->as_Type();
4401         const Type* t = tn->type();
4402         const Type* t_no_spec = t->remove_speculative();
4403         if (t_no_spec != t) {
4404           bool in_hash = igvn.hash_delete(n);
4405           assert(in_hash, "node should be in igvn hash table");
4406           tn->set_type(t_no_spec);
4407           igvn.hash_insert(n);
4408           igvn._worklist.push(n); // give it a chance to go away
4409           modified++;
4410         }
4411       }
4412       uint max = n->len();
4413       for( uint i = 0; i < max; ++i ) {
4414         Node *m = n->in(i);
4415         if (not_a_node(m))  continue;
4416         worklist.push(m);
4417       }
4418     }
4419     // Drop the speculative part of all types in the igvn's type table
4420     igvn.remove_speculative_types();
4421     if (modified > 0) {
4422       igvn.optimize();
4423     }
4424 #ifdef ASSERT
4425     // Verify that after the IGVN is over no speculative type has resurfaced
4426     worklist.clear();
4427     worklist.push(root());
4428     for (uint next = 0; next < worklist.size(); ++next) {
4429       Node *n  = worklist.at(next);
4430       const Type* t = igvn.type_or_null(n);
4431       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4432       if (n->is_Type()) {
4433         t = n->as_Type()->type();
4434         assert(t == t->remove_speculative(), "no more speculative types");
4435       }
4436       uint max = n->len();
4437       for( uint i = 0; i < max; ++i ) {
4438         Node *m = n->in(i);
4439         if (not_a_node(m))  continue;
4440         worklist.push(m);
4441       }
4442     }
4443     igvn.check_no_speculative_types();
4444 #endif
4445   }
4446 }
4447 
4448 // Auxiliary method to support randomized stressing/fuzzing.
4449 //
4450 // This method can be called the arbitrary number of times, with current count
4451 // as the argument. The logic allows selecting a single candidate from the
4452 // running list of candidates as follows:
4453 //    int count = 0;
4454 //    Cand* selected = null;
4455 //    while(cand = cand->next()) {
4456 //      if (randomized_select(++count)) {
4457 //        selected = cand;
4458 //      }
4459 //    }
4460 //
4461 // Including count equalizes the chances any candidate is "selected".
4462 // This is useful when we don't have the complete list of candidates to choose
4463 // from uniformly. In this case, we need to adjust the randomicity of the
4464 // selection, or else we will end up biasing the selection towards the latter
4465 // candidates.
4466 //
4467 // Quick back-envelope calculation shows that for the list of n candidates
4468 // the equal probability for the candidate to persist as "best" can be
4469 // achieved by replacing it with "next" k-th candidate with the probability
4470 // of 1/k. It can be easily shown that by the end of the run, the
4471 // probability for any candidate is converged to 1/n, thus giving the
4472 // uniform distribution among all the candidates.
4473 //
4474 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4475 #define RANDOMIZED_DOMAIN_POW 29
4476 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4477 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4478 bool Compile::randomized_select(int count) {
4479   assert(count > 0, "only positive");
4480   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4481 }
4482 
4483 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4484 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4485 
4486 void NodeCloneInfo::dump() const {
4487   tty->print(" {%d:%d} ", idx(), gen());
4488 }
4489 
4490 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4491   uint64_t val = value(old->_idx);
4492   NodeCloneInfo cio(val);
4493   assert(val != 0, "old node should be in the map");
4494   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4495   insert(nnn->_idx, cin.get());
4496 #ifndef PRODUCT
4497   if (is_debug()) {
4498     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4499   }
4500 #endif
4501 }
4502 
4503 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4504   NodeCloneInfo cio(value(old->_idx));
4505   if (cio.get() == 0) {
4506     cio.set(old->_idx, 0);
4507     insert(old->_idx, cio.get());
4508 #ifndef PRODUCT
4509     if (is_debug()) {
4510       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4511     }
4512 #endif
4513   }
4514   clone(old, nnn, gen);
4515 }
4516 
4517 int CloneMap::max_gen() const {
4518   int g = 0;
4519   DictI di(_dict);
4520   for(; di.test(); ++di) {
4521     int t = gen(di._key);
4522     if (g < t) {
4523       g = t;
4524 #ifndef PRODUCT
4525       if (is_debug()) {
4526         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4527       }
4528 #endif
4529     }
4530   }
4531   return g;
4532 }
4533 
4534 void CloneMap::dump(node_idx_t key) const {
4535   uint64_t val = value(key);
4536   if (val != 0) {
4537     NodeCloneInfo ni(val);
4538     ni.dump();
4539   }
4540 }
4541 
4542 // Move Allocate nodes to the start of the list
4543 void Compile::sort_macro_nodes() {
4544   int count = macro_count();
4545   int allocates = 0;
4546   for (int i = 0; i < count; i++) {
4547     Node* n = macro_node(i);
4548     if (n->is_Allocate()) {
4549       if (i != allocates) {
4550         Node* tmp = macro_node(allocates);
4551         _macro_nodes->at_put(allocates, n);
4552         _macro_nodes->at_put(i, tmp);
4553       }
4554       allocates++;
4555     }
4556   }
4557 }
4558 
4559 void Compile::print_method(CompilerPhaseType cpt, int level, int idx) {
4560   EventCompilerPhase event;
4561   if (event.should_commit()) {
4562     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
4563   }
4564 
4565 #ifndef PRODUCT
4566   if (should_print(level)) {
4567     char output[1024];
4568     if (idx != 0) {
4569       jio_snprintf(output, sizeof(output), "%s:%d", CompilerPhaseTypeHelper::to_string(cpt), idx);
4570     } else {
4571       jio_snprintf(output, sizeof(output), "%s", CompilerPhaseTypeHelper::to_string(cpt));
4572     }
4573     _printer->print_method(output, level);
4574   }
4575 #endif
4576   C->_latest_stage_start_counter.stamp();
4577 }
4578 
4579 void Compile::end_method(int level) {
4580   EventCompilerPhase event;
4581   if (event.should_commit()) {
4582     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, level);
4583   }
4584 
4585 #ifndef PRODUCT
4586   if (_method != NULL && should_print(level)) {
4587     _printer->end_method();
4588   }
4589 #endif
4590 }
4591 
4592 
4593 #ifndef PRODUCT
4594 IdealGraphPrinter* Compile::_debug_file_printer = NULL;
4595 IdealGraphPrinter* Compile::_debug_network_printer = NULL;
4596 
4597 // Called from debugger. Prints method to the default file with the default phase name.
4598 // This works regardless of any Ideal Graph Visualizer flags set or not.
4599 void igv_print() {
4600   Compile::current()->igv_print_method_to_file();
4601 }
4602 
4603 // Same as igv_print() above but with a specified phase name.
4604 void igv_print(const char* phase_name) {
4605   Compile::current()->igv_print_method_to_file(phase_name);
4606 }
4607 
4608 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
4609 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
4610 // This works regardless of any Ideal Graph Visualizer flags set or not.
4611 void igv_print(bool network) {
4612   if (network) {
4613     Compile::current()->igv_print_method_to_network();
4614   } else {
4615     Compile::current()->igv_print_method_to_file();
4616   }
4617 }
4618 
4619 // Same as igv_print(bool network) above but with a specified phase name.
4620 void igv_print(bool network, const char* phase_name) {
4621   if (network) {
4622     Compile::current()->igv_print_method_to_network(phase_name);
4623   } else {
4624     Compile::current()->igv_print_method_to_file(phase_name);
4625   }
4626 }
4627 
4628 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
4629 void igv_print_default() {
4630   Compile::current()->print_method(PHASE_DEBUG, 0, 0);
4631 }
4632 
4633 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
4634 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
4635 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
4636 void igv_append() {
4637   Compile::current()->igv_print_method_to_file("Debug", true);
4638 }
4639 
4640 // Same as igv_append() above but with a specified phase name.
4641 void igv_append(const char* phase_name) {
4642   Compile::current()->igv_print_method_to_file(phase_name, true);
4643 }
4644 
4645 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
4646   const char* file_name = "custom_debug.xml";
4647   if (_debug_file_printer == NULL) {
4648     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
4649   } else {
4650     _debug_file_printer->update_compiled_method(C->method());
4651   }
4652   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
4653   _debug_file_printer->print_method(phase_name, 0);
4654 }
4655 
4656 void Compile::igv_print_method_to_network(const char* phase_name) {
4657   if (_debug_network_printer == NULL) {
4658     _debug_network_printer = new IdealGraphPrinter(C);
4659   } else {
4660     _debug_network_printer->update_compiled_method(C->method());
4661   }
4662   tty->print_cr("Method printed over network stream to IGV");
4663   _debug_network_printer->print_method(phase_name, 0);
4664 }
4665 #endif
4666