1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/connode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/divnode.hpp"
  39 #include "opto/idealGraphPrinter.hpp"
  40 #include "opto/loopnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/superword.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 
  47 //=============================================================================
  48 //--------------------------is_cloop_ind_var-----------------------------------
  49 // Determine if a node is a counted loop induction variable.
  50 // NOTE: The method is declared in "node.hpp".
  51 bool Node::is_cloop_ind_var() const {
  52   return (is_Phi() && !as_Phi()->is_copy() &&
  53           as_Phi()->region()->is_CountedLoop() &&
  54           as_Phi()->region()->as_CountedLoop()->phi() == this);
  55 }
  56 
  57 //=============================================================================
  58 //------------------------------dump_spec--------------------------------------
  59 // Dump special per-node info
  60 #ifndef PRODUCT
  61 void LoopNode::dump_spec(outputStream *st) const {
  62   if (is_inner_loop()) st->print( "inner " );
  63   if (is_partial_peel_loop()) st->print( "partial_peel " );
  64   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  65 }
  66 #endif
  67 
  68 //------------------------------is_valid_counted_loop-------------------------
  69 bool LoopNode::is_valid_counted_loop() const {
  70   if (is_CountedLoop()) {
  71     CountedLoopNode*    l  = as_CountedLoop();
  72     CountedLoopEndNode* le = l->loopexit_or_null();
  73     if (le != NULL &&
  74         le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  75       Node* phi  = l->phi();
  76       Node* exit = le->proj_out_or_null(0 /* false */);
  77       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  78           phi != NULL && phi->is_Phi() &&
  79           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  80           le->loopnode() == l && le->stride_is_con()) {
  81         return true;
  82       }
  83     }
  84   }
  85   return false;
  86 }
  87 
  88 //------------------------------get_early_ctrl---------------------------------
  89 // Compute earliest legal control
  90 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  91   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  92   uint i;
  93   Node *early;
  94   if (n->in(0) && !n->is_expensive()) {
  95     early = n->in(0);
  96     if (!early->is_CFG()) // Might be a non-CFG multi-def
  97       early = get_ctrl(early);        // So treat input as a straight data input
  98     i = 1;
  99   } else {
 100     early = get_ctrl(n->in(1));
 101     i = 2;
 102   }
 103   uint e_d = dom_depth(early);
 104   assert( early, "" );
 105   for (; i < n->req(); i++) {
 106     Node *cin = get_ctrl(n->in(i));
 107     assert( cin, "" );
 108     // Keep deepest dominator depth
 109     uint c_d = dom_depth(cin);
 110     if (c_d > e_d) {           // Deeper guy?
 111       early = cin;              // Keep deepest found so far
 112       e_d = c_d;
 113     } else if (c_d == e_d &&    // Same depth?
 114                early != cin) { // If not equal, must use slower algorithm
 115       // If same depth but not equal, one _must_ dominate the other
 116       // and we want the deeper (i.e., dominated) guy.
 117       Node *n1 = early;
 118       Node *n2 = cin;
 119       while (1) {
 120         n1 = idom(n1);          // Walk up until break cycle
 121         n2 = idom(n2);
 122         if (n1 == cin ||        // Walked early up to cin
 123             dom_depth(n2) < c_d)
 124           break;                // early is deeper; keep him
 125         if (n2 == early ||      // Walked cin up to early
 126             dom_depth(n1) < c_d) {
 127           early = cin;          // cin is deeper; keep him
 128           break;
 129         }
 130       }
 131       e_d = dom_depth(early);   // Reset depth register cache
 132     }
 133   }
 134 
 135   // Return earliest legal location
 136   assert(early == find_non_split_ctrl(early), "unexpected early control");
 137 
 138   if (n->is_expensive() && !_verify_only && !_verify_me) {
 139     assert(n->in(0), "should have control input");
 140     early = get_early_ctrl_for_expensive(n, early);
 141   }
 142 
 143   return early;
 144 }
 145 
 146 //------------------------------get_early_ctrl_for_expensive---------------------------------
 147 // Move node up the dominator tree as high as legal while still beneficial
 148 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 149   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 150   assert(OptimizeExpensiveOps, "optimization off?");
 151 
 152   Node* ctl = n->in(0);
 153   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 154   uint min_dom_depth = dom_depth(earliest);
 155 #ifdef ASSERT
 156   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 157     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 158     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 159   }
 160 #endif
 161   if (dom_depth(ctl) < min_dom_depth) {
 162     return earliest;
 163   }
 164 
 165   while (1) {
 166     Node *next = ctl;
 167     // Moving the node out of a loop on the projection of a If
 168     // confuses loop predication. So once we hit a Loop in a If branch
 169     // that doesn't branch to an UNC, we stop. The code that process
 170     // expensive nodes will notice the loop and skip over it to try to
 171     // move the node further up.
 172     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
 173       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 174         break;
 175       }
 176       next = idom(ctl->in(1)->in(0));
 177     } else if (ctl->is_Proj()) {
 178       // We only move it up along a projection if the projection is
 179       // the single control projection for its parent: same code path,
 180       // if it's a If with UNC or fallthrough of a call.
 181       Node* parent_ctl = ctl->in(0);
 182       if (parent_ctl == NULL) {
 183         break;
 184       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
 185         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 186       } else if (parent_ctl->is_If()) {
 187         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 188           break;
 189         }
 190         assert(idom(ctl) == parent_ctl, "strange");
 191         next = idom(parent_ctl);
 192       } else if (ctl->is_CatchProj()) {
 193         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 194           break;
 195         }
 196         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 197         next = parent_ctl->in(0)->in(0)->in(0);
 198       } else {
 199         // Check if parent control has a single projection (this
 200         // control is the only possible successor of the parent
 201         // control). If so, we can try to move the node above the
 202         // parent control.
 203         int nb_ctl_proj = 0;
 204         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 205           Node *p = parent_ctl->fast_out(i);
 206           if (p->is_Proj() && p->is_CFG()) {
 207             nb_ctl_proj++;
 208             if (nb_ctl_proj > 1) {
 209               break;
 210             }
 211           }
 212         }
 213 
 214         if (nb_ctl_proj > 1) {
 215           break;
 216         }
 217         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() ||
 218                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node");
 219         assert(idom(ctl) == parent_ctl, "strange");
 220         next = idom(parent_ctl);
 221       }
 222     } else {
 223       next = idom(ctl);
 224     }
 225     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 226       break;
 227     }
 228     ctl = next;
 229   }
 230 
 231   if (ctl != n->in(0)) {
 232     _igvn.replace_input_of(n, 0, ctl);
 233     _igvn.hash_insert(n);
 234   }
 235 
 236   return ctl;
 237 }
 238 
 239 
 240 //------------------------------set_early_ctrl---------------------------------
 241 // Set earliest legal control
 242 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 243   Node *early = get_early_ctrl(n);
 244 
 245   // Record earliest legal location
 246   set_ctrl(n, early);
 247 }
 248 
 249 //------------------------------set_subtree_ctrl-------------------------------
 250 // set missing _ctrl entries on new nodes
 251 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 252   // Already set?  Get out.
 253   if( _nodes[n->_idx] ) return;
 254   // Recursively set _nodes array to indicate where the Node goes
 255   uint i;
 256   for( i = 0; i < n->req(); ++i ) {
 257     Node *m = n->in(i);
 258     if( m && m != C->root() )
 259       set_subtree_ctrl( m );
 260   }
 261 
 262   // Fixup self
 263   set_early_ctrl( n );
 264 }
 265 
 266 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) {
 267   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 268   IdealLoopTree* parent = loop->_parent;
 269   IdealLoopTree* sibling = parent->_child;
 270   if (sibling == loop) {
 271     parent->_child = outer_ilt;
 272   } else {
 273     while (sibling->_next != loop) {
 274       sibling = sibling->_next;
 275     }
 276     sibling->_next = outer_ilt;
 277   }
 278   outer_ilt->_next = loop->_next;
 279   outer_ilt->_parent = parent;
 280   outer_ilt->_child = loop;
 281   outer_ilt->_nest = loop->_nest;
 282   loop->_parent = outer_ilt;
 283   loop->_next = NULL;
 284   loop->_nest++;
 285   return outer_ilt;
 286 }
 287 
 288 // Create a skeleton strip mined outer loop: a Loop head before the
 289 // inner strip mined loop, a safepoint and an exit condition guarded
 290 // by an opaque node after the inner strip mined loop with a backedge
 291 // to the loop head. The inner strip mined loop is left as it is. Only
 292 // once loop optimizations are over, do we adjust the inner loop exit
 293 // condition to limit its number of iterations, set the outer loop
 294 // exit condition and add Phis to the outer loop head. Some loop
 295 // optimizations that operate on the inner strip mined loop need to be
 296 // aware of the outer strip mined loop: loop unswitching needs to
 297 // clone the outer loop as well as the inner, unrolling needs to only
 298 // clone the inner loop etc. No optimizations need to change the outer
 299 // strip mined loop as it is only a skeleton.
 300 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 301                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 302                                                              Node*& entry_control, Node*& iffalse) {
 303   Node* outer_test = _igvn.intcon(0);
 304   set_ctrl(outer_test, C->root());
 305   Node *orig = iffalse;
 306   iffalse = iffalse->clone();
 307   _igvn.register_new_node_with_optimizer(iffalse);
 308   set_idom(iffalse, idom(orig), dom_depth(orig));
 309 
 310   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 311   Node *outer_ift = new IfTrueNode (outer_le);
 312   Node* outer_iff = orig;
 313   _igvn.replace_input_of(outer_iff, 0, outer_le);
 314 
 315   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 316   entry_control = outer_l;
 317 
 318   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift);
 319 
 320   set_loop(iffalse, outer_ilt);
 321   // When this code runs, loop bodies have not yet been populated.
 322   const bool body_populated = false;
 323   register_control(outer_le, outer_ilt, iffalse, body_populated);
 324   register_control(outer_ift, outer_ilt, outer_le, body_populated);
 325   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 326   _igvn.register_new_node_with_optimizer(outer_l);
 327   set_loop(outer_l, outer_ilt);
 328   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 329 
 330   return outer_ilt;
 331 }
 332 
 333 void PhaseIdealLoop::insert_loop_limit_check(ProjNode* limit_check_proj, Node* cmp_limit, Node* bol) {
 334   Node* new_predicate_proj = create_new_if_for_predicate(limit_check_proj, NULL,
 335                                                          Deoptimization::Reason_loop_limit_check,
 336                                                          Op_If);
 337   Node* iff = new_predicate_proj->in(0);
 338   assert(iff->Opcode() == Op_If, "bad graph shape");
 339   Node* conv = iff->in(1);
 340   assert(conv->Opcode() == Op_Conv2B, "bad graph shape");
 341   Node* opaq = conv->in(1);
 342   assert(opaq->Opcode() == Op_Opaque1, "bad graph shape");
 343   cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 344   bol = _igvn.register_new_node_with_optimizer(bol);
 345   set_subtree_ctrl(bol);
 346   _igvn.replace_input_of(iff, 1, bol);
 347 
 348 #ifndef PRODUCT
 349   // report that the loop predication has been actually performed
 350   // for this loop
 351   if (TraceLoopLimitCheck) {
 352     tty->print_cr("Counted Loop Limit Check generated:");
 353     debug_only( bol->dump(2); )
 354   }
 355 #endif
 356 }
 357 
 358 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) {
 359   // Counted loop head must be a good RegionNode with only 3 not NULL
 360   // control input edges: Self, Entry, LoopBack.
 361   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
 362     return NULL;
 363   }
 364   Node *init_control = x->in(LoopNode::EntryControl);
 365   Node *back_control = x->in(LoopNode::LoopBackControl);
 366   if (init_control == NULL || back_control == NULL) {   // Partially dead
 367     return NULL;
 368   }
 369   // Must also check for TOP when looking for a dead loop
 370   if (init_control->is_top() || back_control->is_top()) {
 371     return NULL;
 372   }
 373 
 374   // Allow funny placement of Safepoint
 375   if (back_control->Opcode() == Op_SafePoint) {
 376     back_control = back_control->in(TypeFunc::Control);
 377   }
 378 
 379   // Controlling test for loop
 380   Node *iftrue = back_control;
 381   uint iftrue_op = iftrue->Opcode();
 382   if (iftrue_op != Op_IfTrue &&
 383       iftrue_op != Op_IfFalse) {
 384     // I have a weird back-control.  Probably the loop-exit test is in
 385     // the middle of the loop and I am looking at some trailing control-flow
 386     // merge point.  To fix this I would have to partially peel the loop.
 387     return NULL; // Obscure back-control
 388   }
 389 
 390   // Get boolean guarding loop-back test
 391   Node *iff = iftrue->in(0);
 392   if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) {
 393     return NULL;
 394   }
 395   return iftrue;
 396 }
 397 
 398 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) {
 399   Node* iftrue = back_control;
 400   uint iftrue_op = iftrue->Opcode();
 401   Node* iff = iftrue->in(0);
 402   BoolNode* test = iff->in(1)->as_Bool();
 403   bt = test->_test._test;
 404   cl_prob = iff->as_If()->_prob;
 405   if (iftrue_op == Op_IfFalse) {
 406     bt = BoolTest(bt).negate();
 407     cl_prob = 1.0 - cl_prob;
 408   }
 409   // Get backedge compare
 410   Node* cmp = test->in(1);
 411   if (!cmp->is_Cmp()) {
 412     return NULL;
 413   }
 414 
 415   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 416   incr  = cmp->in(1);
 417   limit = cmp->in(2);
 418 
 419   // ---------
 420   // need 'loop()' test to tell if limit is loop invariant
 421   // ---------
 422 
 423   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 424     Node* tmp = incr;            // Then reverse order into the CmpI
 425     incr = limit;
 426     limit = tmp;
 427     bt = BoolTest(bt).commute(); // And commute the exit test
 428   }
 429   if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant
 430     return NULL;
 431   }
 432   if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
 433     return NULL;
 434   }
 435   return cmp;
 436 }
 437 
 438 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) {
 439   if (incr->is_Phi()) {
 440     if (incr->as_Phi()->region() != x || incr->req() != 3) {
 441       return NULL; // Not simple trip counter expression
 442     }
 443     phi_incr = incr;
 444     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 445     if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant
 446       return NULL;
 447     }
 448   }
 449   return incr;
 450 }
 451 
 452 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) {
 453   assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp.");
 454   // Get merge point
 455   xphi = incr->in(1);
 456   Node *stride = incr->in(2);
 457   if (!stride->is_Con()) {     // Oops, swap these
 458     if (!xphi->is_Con()) {     // Is the other guy a constant?
 459       return NULL;             // Nope, unknown stride, bail out
 460     }
 461     Node *tmp = xphi;          // 'incr' is commutative, so ok to swap
 462     xphi = stride;
 463     stride = tmp;
 464   }
 465   return stride;
 466 }
 467 
 468 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) {
 469   if (!xphi->is_Phi()) {
 470     return NULL; // Too much math on the trip counter
 471   }
 472   if (phi_incr != NULL && phi_incr != xphi) {
 473     return NULL;
 474   }
 475   PhiNode *phi = xphi->as_Phi();
 476 
 477   // Phi must be of loop header; backedge must wrap to increment
 478   if (phi->region() != x) {
 479     return NULL;
 480   }
 481   return phi;
 482 }
 483 
 484 // Return 0 if it won't overflow, -1 if it must overflow, and 1 otherwise.
 485 static int check_stride_overflow(jint stride_con, const TypeInt* limit_t) {
 486   if (stride_con > 0) {
 487     if (limit_t->_lo > (max_jint - stride_con)) {
 488       return -1;
 489     }
 490     if (limit_t->_hi > (max_jint - stride_con)) {
 491       return 1;
 492     }
 493   } else {
 494     if (limit_t->_hi < (min_jint - stride_con)) {
 495       return -1;
 496     }
 497     if (limit_t->_lo < (min_jint - stride_con)) {
 498       return 1;
 499     }
 500   }
 501   return 0;
 502 }
 503 
 504 //------------------------------is_counted_loop--------------------------------
 505 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*& loop) {
 506   PhaseGVN *gvn = &_igvn;
 507 
 508   Node* back_control = loop_exit_control(x, loop);
 509   if (back_control == NULL) {
 510     return false;
 511   }
 512 
 513   BoolTest::mask bt = BoolTest::illegal;
 514   float cl_prob = 0;
 515   Node* incr = NULL;
 516   Node* limit = NULL;
 517 
 518   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
 519   if (cmp == NULL || cmp->Opcode() != Op_CmpI) {
 520     return false; // Avoid pointer & float & 64-bit compares
 521   }
 522 
 523   // Trip-counter increment must be commutative & associative.
 524   if (incr->Opcode() == Op_CastII) {
 525     incr = incr->in(1);
 526   }
 527 
 528   Node* phi_incr = NULL;
 529   incr = loop_iv_incr(incr, x, loop, phi_incr);
 530   if (incr == NULL) {
 531     return false;
 532   }
 533 
 534   Node* trunc1 = NULL;
 535   Node* trunc2 = NULL;
 536   const TypeInt* iv_trunc_t = NULL;
 537   Node* orig_incr = incr;
 538   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 539     return false; // Funny increment opcode
 540   }
 541   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 542 
 543   Node* xphi = NULL;
 544   Node* stride = loop_iv_stride(incr, loop, xphi);
 545 
 546   if (stride == NULL) {
 547     return false;
 548   }
 549 
 550   if (xphi->Opcode() == Op_CastII) {
 551     xphi = xphi->in(1);
 552   }
 553 
 554   // Stride must be constant
 555   int stride_con = stride->get_int();
 556   assert(stride_con != 0, "missed some peephole opt");
 557 
 558   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop);
 559 
 560   if (phi == NULL ||
 561       (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr) ||
 562       (trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1)) {
 563     return false;
 564   }
 565 
 566   if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint &&
 567       LoopStripMiningIter != 0) {
 568     // Leaving the safepoint on the backedge and creating a
 569     // CountedLoop will confuse optimizations. We can't move the
 570     // safepoint around because its jvm state wouldn't match a new
 571     // location. Give up on that loop.
 572     return false;
 573   }
 574 
 575   Node* iftrue = back_control;
 576   uint iftrue_op = iftrue->Opcode();
 577   Node* iff = iftrue->in(0);
 578   BoolNode* test = iff->in(1)->as_Bool();
 579 
 580   const TypeInt* limit_t = gvn->type(limit)->is_int();
 581   if (trunc1 != NULL) {
 582     // When there is a truncation, we must be sure that after the truncation
 583     // the trip counter will end up higher than the limit, otherwise we are looking
 584     // at an endless loop. Can happen with range checks.
 585 
 586     // Example:
 587     // int i = 0;
 588     // while (true)
 589     //    sum + = array[i];
 590     //    i++;
 591     //    i = i && 0x7fff;
 592     //  }
 593     //
 594     // If the array is shorter than 0x8000 this exits through a AIOOB
 595     //  - Counted loop transformation is ok
 596     // If the array is longer then this is an endless loop
 597     //  - No transformation can be done.
 598 
 599     const TypeInt* incr_t = gvn->type(orig_incr)->is_int();
 600     if (limit_t->_hi > incr_t->_hi) {
 601       // if the limit can have a higher value than the increment (before the phi)
 602       return false;
 603     }
 604   }
 605 
 606   Node *init_trip = phi->in(LoopNode::EntryControl);
 607 
 608   // If iv trunc type is smaller than int, check for possible wrap.
 609   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 610     assert(trunc1 != NULL, "must have found some truncation");
 611 
 612     // Get a better type for the phi (filtered thru if's)
 613     const TypeInt* phi_ft = filtered_type(phi);
 614 
 615     // Can iv take on a value that will wrap?
 616     //
 617     // Ensure iv's limit is not within "stride" of the wrap value.
 618     //
 619     // Example for "short" type
 620     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 621     //    If the stride is +10, then the last value of the induction
 622     //    variable before the increment (phi_ft->_hi) must be
 623     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 624     //    ensure no truncation occurs after the increment.
 625 
 626     if (stride_con > 0) {
 627       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 628           iv_trunc_t->_lo > phi_ft->_lo) {
 629         return false;  // truncation may occur
 630       }
 631     } else if (stride_con < 0) {
 632       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 633           iv_trunc_t->_hi < phi_ft->_hi) {
 634         return false;  // truncation may occur
 635       }
 636     }
 637     // No possibility of wrap so truncation can be discarded
 638     // Promote iv type to Int
 639   } else {
 640     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 641   }
 642 
 643   // If the condition is inverted and we will be rolling
 644   // through MININT to MAXINT, then bail out.
 645   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 646       // Odd stride
 647       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 648       // Count down loop rolls through MAXINT
 649       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 650       // Count up loop rolls through MININT
 651       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 652     return false; // Bail out
 653   }
 654 
 655   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 656 
 657   if (stride_con > 0) {
 658     jlong init_p = (jlong)init_t->_lo + stride_con;
 659     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
 660       return false; // cyclic loop or this loop trips only once
 661   } else {
 662     jlong init_p = (jlong)init_t->_hi + stride_con;
 663     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
 664       return false; // cyclic loop or this loop trips only once
 665   }
 666 
 667   if (phi_incr != NULL && bt != BoolTest::ne) {
 668     // check if there is a possiblity of IV overflowing after the first increment
 669     if (stride_con > 0) {
 670       if (init_t->_hi > max_jint - stride_con) {
 671         return false;
 672       }
 673     } else {
 674       if (init_t->_lo < min_jint - stride_con) {
 675         return false;
 676       }
 677     }
 678   }
 679 
 680   // =================================================
 681   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 682   //
 683   assert(x->Opcode() == Op_Loop, "regular loops only");
 684   C->print_method(PHASE_BEFORE_CLOOPS, 3);
 685 
 686   Node *hook = new Node(6);
 687 
 688   // ===================================================
 689   // Generate loop limit check to avoid integer overflow
 690   // in cases like next (cyclic loops):
 691   //
 692   // for (i=0; i <= max_jint; i++) {}
 693   // for (i=0; i <  max_jint; i+=2) {}
 694   //
 695   //
 696   // Limit check predicate depends on the loop test:
 697   //
 698   // for(;i != limit; i++)       --> limit <= (max_jint)
 699   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 700   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 701   //
 702 
 703   // Check if limit is excluded to do more precise int overflow check.
 704   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 705   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 706 
 707   // If compare points directly to the phi we need to adjust
 708   // the compare so that it points to the incr. Limit have
 709   // to be adjusted to keep trip count the same and the
 710   // adjusted limit should be checked for int overflow.
 711   Node* adjusted_limit = limit;
 712   if (phi_incr != NULL) {
 713     stride_m  += stride_con;
 714   }
 715 
 716   Node *init_control = x->in(LoopNode::EntryControl);
 717 
 718   int sov = check_stride_overflow(stride_m, limit_t);
 719   // If sov==0, limit's type always satisfies the condition, for
 720   // example, when it is an array length.
 721   if (sov != 0) {
 722     if (sov < 0) {
 723       return false;  // Bailout: integer overflow is certain.
 724     }
 725     // Generate loop's limit check.
 726     // Loop limit check predicate should be near the loop.
 727     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 728     if (!limit_check_proj) {
 729       // The limit check predicate is not generated if this method trapped here before.
 730 #ifdef ASSERT
 731       if (TraceLoopLimitCheck) {
 732         tty->print("missing loop limit check:");
 733         loop->dump_head();
 734         x->dump(1);
 735       }
 736 #endif
 737       return false;
 738     }
 739 
 740     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 741 
 742     if (!is_dominator(get_ctrl(limit), check_iff->in(0))) {
 743       return false;
 744     }
 745 
 746     Node* cmp_limit;
 747     Node* bol;
 748 
 749     if (stride_con > 0) {
 750       cmp_limit = new CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 751       bol = new BoolNode(cmp_limit, BoolTest::le);
 752     } else {
 753       cmp_limit = new CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 754       bol = new BoolNode(cmp_limit, BoolTest::ge);
 755     }
 756 
 757     insert_loop_limit_check(limit_check_proj, cmp_limit, bol);
 758   }
 759 
 760   // Now we need to canonicalize loop condition.
 761   if (bt == BoolTest::ne) {
 762     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 763     if (stride_con > 0 && init_t->_hi < limit_t->_lo) {
 764       // 'ne' can be replaced with 'lt' only when init < limit.
 765       bt = BoolTest::lt;
 766     } else if (stride_con < 0 && init_t->_lo > limit_t->_hi) {
 767       // 'ne' can be replaced with 'gt' only when init > limit.
 768       bt = BoolTest::gt;
 769     } else {
 770       ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 771       if (!limit_check_proj) {
 772         // The limit check predicate is not generated if this method trapped here before.
 773 #ifdef ASSERT
 774         if (TraceLoopLimitCheck) {
 775           tty->print("missing loop limit check:");
 776           loop->dump_head();
 777           x->dump(1);
 778         }
 779 #endif
 780         return false;
 781       }
 782       IfNode* check_iff = limit_check_proj->in(0)->as_If();
 783 
 784       if (!is_dominator(get_ctrl(limit), check_iff->in(0)) ||
 785           !is_dominator(get_ctrl(init_trip), check_iff->in(0))) {
 786         return false;
 787       }
 788 
 789       Node* cmp_limit;
 790       Node* bol;
 791 
 792       if (stride_con > 0) {
 793         cmp_limit = new CmpINode(init_trip, limit);
 794         bol = new BoolNode(cmp_limit, BoolTest::lt);
 795       } else {
 796         cmp_limit = new CmpINode(init_trip, limit);
 797         bol = new BoolNode(cmp_limit, BoolTest::gt);
 798       }
 799 
 800       insert_loop_limit_check(limit_check_proj, cmp_limit, bol);
 801 
 802       if (stride_con > 0) {
 803         // 'ne' can be replaced with 'lt' only when init < limit.
 804         bt = BoolTest::lt;
 805       } else if (stride_con < 0) {
 806         // 'ne' can be replaced with 'gt' only when init > limit.
 807         bt = BoolTest::gt;
 808       }
 809     }
 810   }
 811 
 812   if (phi_incr != NULL) {
 813     // If compare points directly to the phi we need to adjust
 814     // the compare so that it points to the incr. Limit have
 815     // to be adjusted to keep trip count the same and we
 816     // should avoid int overflow.
 817     //
 818     //   i = init; do {} while(i++ < limit);
 819     // is converted to
 820     //   i = init; do {} while(++i < limit+1);
 821     //
 822     adjusted_limit = gvn->transform(new AddINode(limit, stride));
 823   }
 824 
 825   if (incl_limit) {
 826     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 827     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 828     //
 829     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 830     adjusted_limit = gvn->transform(new AddINode(adjusted_limit, one));
 831     if (bt == BoolTest::le)
 832       bt = BoolTest::lt;
 833     else if (bt == BoolTest::ge)
 834       bt = BoolTest::gt;
 835     else
 836       ShouldNotReachHere();
 837   }
 838   set_subtree_ctrl(adjusted_limit);
 839 
 840   if (LoopStripMiningIter == 0) {
 841     // Check for SafePoint on backedge and remove
 842     Node *sfpt = x->in(LoopNode::LoopBackControl);
 843     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 844       lazy_replace( sfpt, iftrue );
 845       if (loop->_safepts != NULL) {
 846         loop->_safepts->yank(sfpt);
 847       }
 848       loop->_tail = iftrue;
 849     }
 850   }
 851 
 852   // Build a canonical trip test.
 853   // Clone code, as old values may be in use.
 854   incr = incr->clone();
 855   incr->set_req(1,phi);
 856   incr->set_req(2,stride);
 857   incr = _igvn.register_new_node_with_optimizer(incr);
 858   set_early_ctrl( incr );
 859   _igvn.rehash_node_delayed(phi);
 860   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 861 
 862   // If phi type is more restrictive than Int, raise to
 863   // Int to prevent (almost) infinite recursion in igvn
 864   // which can only handle integer types for constants or minint..maxint.
 865   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 866     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 867     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 868     nphi = _igvn.register_new_node_with_optimizer(nphi);
 869     set_ctrl(nphi, get_ctrl(phi));
 870     _igvn.replace_node(phi, nphi);
 871     phi = nphi->as_Phi();
 872   }
 873   cmp = cmp->clone();
 874   cmp->set_req(1,incr);
 875   cmp->set_req(2, adjusted_limit);
 876   cmp = _igvn.register_new_node_with_optimizer(cmp);
 877   set_ctrl(cmp, iff->in(0));
 878 
 879   test = test->clone()->as_Bool();
 880   (*(BoolTest*)&test->_test)._test = bt;
 881   test->set_req(1,cmp);
 882   _igvn.register_new_node_with_optimizer(test);
 883   set_ctrl(test, iff->in(0));
 884 
 885   // Replace the old IfNode with a new LoopEndNode
 886   Node *lex = _igvn.register_new_node_with_optimizer(new CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 887   IfNode *le = lex->as_If();
 888   uint dd = dom_depth(iff);
 889   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 890   set_loop(le, loop);
 891 
 892   // Get the loop-exit control
 893   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 894 
 895   // Need to swap loop-exit and loop-back control?
 896   if (iftrue_op == Op_IfFalse) {
 897     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
 898     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
 899 
 900     loop->_tail = back_control = ift2;
 901     set_loop(ift2, loop);
 902     set_loop(iff2, get_loop(iffalse));
 903 
 904     // Lazy update of 'get_ctrl' mechanism.
 905     lazy_replace(iffalse, iff2);
 906     lazy_replace(iftrue,  ift2);
 907 
 908     // Swap names
 909     iffalse = iff2;
 910     iftrue  = ift2;
 911   } else {
 912     _igvn.rehash_node_delayed(iffalse);
 913     _igvn.rehash_node_delayed(iftrue);
 914     iffalse->set_req_X( 0, le, &_igvn );
 915     iftrue ->set_req_X( 0, le, &_igvn );
 916   }
 917 
 918   set_idom(iftrue,  le, dd+1);
 919   set_idom(iffalse, le, dd+1);
 920   assert(iff->outcnt() == 0, "should be dead now");
 921   lazy_replace( iff, le ); // fix 'get_ctrl'
 922 
 923   Node *sfpt2 = le->in(0);
 924 
 925   Node* entry_control = init_control;
 926   bool strip_mine_loop = LoopStripMiningIter > 1 && loop->_child == NULL &&
 927     sfpt2->Opcode() == Op_SafePoint && !loop->_has_call;
 928   IdealLoopTree* outer_ilt = NULL;
 929   if (strip_mine_loop) {
 930     outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop,
 931                                               cl_prob, le->_fcnt, entry_control,
 932                                               iffalse);
 933   }
 934 
 935   // Now setup a new CountedLoopNode to replace the existing LoopNode
 936   CountedLoopNode *l = new CountedLoopNode(entry_control, back_control);
 937   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 938   // The following assert is approximately true, and defines the intention
 939   // of can_be_counted_loop.  It fails, however, because phase->type
 940   // is not yet initialized for this loop and its parts.
 941   //assert(l->can_be_counted_loop(this), "sanity");
 942   _igvn.register_new_node_with_optimizer(l);
 943   set_loop(l, loop);
 944   loop->_head = l;
 945   // Fix all data nodes placed at the old loop head.
 946   // Uses the lazy-update mechanism of 'get_ctrl'.
 947   lazy_replace( x, l );
 948   set_idom(l, entry_control, dom_depth(entry_control) + 1);
 949 
 950   if (LoopStripMiningIter == 0 || strip_mine_loop) {
 951     // Check for immediately preceding SafePoint and remove
 952     if (sfpt2->Opcode() == Op_SafePoint && (LoopStripMiningIter != 0 || is_deleteable_safept(sfpt2))) {
 953       if (strip_mine_loop) {
 954         Node* outer_le = outer_ilt->_tail->in(0);
 955         Node* sfpt = sfpt2->clone();
 956         sfpt->set_req(0, iffalse);
 957         outer_le->set_req(0, sfpt);
 958         // When this code runs, loop bodies have not yet been populated.
 959         const bool body_populated = false;
 960         register_control(sfpt, outer_ilt, iffalse, body_populated);
 961         set_idom(outer_le, sfpt, dom_depth(sfpt));
 962       }
 963       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 964       if (loop->_safepts != NULL) {
 965         loop->_safepts->yank(sfpt2);
 966       }
 967     }
 968   }
 969 
 970   // Free up intermediate goo
 971   _igvn.remove_dead_node(hook);
 972 
 973 #ifdef ASSERT
 974   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 975   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
 976 #endif
 977 #ifndef PRODUCT
 978   if (TraceLoopOpts) {
 979     tty->print("Counted      ");
 980     loop->dump_head();
 981   }
 982 #endif
 983 
 984   C->print_method(PHASE_AFTER_CLOOPS, 3);
 985 
 986   // Capture bounds of the loop in the induction variable Phi before
 987   // subsequent transformation (iteration splitting) obscures the
 988   // bounds
 989   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
 990 
 991   if (strip_mine_loop) {
 992     l->mark_strip_mined();
 993     l->verify_strip_mined(1);
 994     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
 995     loop = outer_ilt;
 996   }
 997 
 998   return true;
 999 }
1000 
1001 //----------------------exact_limit-------------------------------------------
1002 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
1003   assert(loop->_head->is_CountedLoop(), "");
1004   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1005   assert(cl->is_valid_counted_loop(), "");
1006 
1007   if (ABS(cl->stride_con()) == 1 ||
1008       cl->limit()->Opcode() == Op_LoopLimit) {
1009     // Old code has exact limit (it could be incorrect in case of int overflow).
1010     // Loop limit is exact with stride == 1. And loop may already have exact limit.
1011     return cl->limit();
1012   }
1013   Node *limit = NULL;
1014 #ifdef ASSERT
1015   BoolTest::mask bt = cl->loopexit()->test_trip();
1016   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1017 #endif
1018   if (cl->has_exact_trip_count()) {
1019     // Simple case: loop has constant boundaries.
1020     // Use jlongs to avoid integer overflow.
1021     int stride_con = cl->stride_con();
1022     jlong  init_con = cl->init_trip()->get_int();
1023     jlong limit_con = cl->limit()->get_int();
1024     julong trip_cnt = cl->trip_count();
1025     jlong final_con = init_con + trip_cnt*stride_con;
1026     int final_int = (int)final_con;
1027     // The final value should be in integer range since the loop
1028     // is counted and the limit was checked for overflow.
1029     assert(final_con == (jlong)final_int, "final value should be integer");
1030     limit = _igvn.intcon(final_int);
1031   } else {
1032     // Create new LoopLimit node to get exact limit (final iv value).
1033     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
1034     register_new_node(limit, cl->in(LoopNode::EntryControl));
1035   }
1036   assert(limit != NULL, "sanity");
1037   return limit;
1038 }
1039 
1040 //------------------------------Ideal------------------------------------------
1041 // Return a node which is more "ideal" than the current node.
1042 // Attempt to convert into a counted-loop.
1043 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1044   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
1045     phase->C->set_major_progress();
1046   }
1047   return RegionNode::Ideal(phase, can_reshape);
1048 }
1049 
1050 #ifdef ASSERT
1051 void LoopNode::verify_strip_mined(int expect_skeleton) const {
1052   const OuterStripMinedLoopNode* outer = NULL;
1053   const CountedLoopNode* inner = NULL;
1054   if (is_strip_mined()) {
1055     if (!is_valid_counted_loop()) {
1056       return; // Skip malformed counted loop
1057     }
1058     assert(is_CountedLoop(), "no Loop should be marked strip mined");
1059     inner = as_CountedLoop();
1060     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
1061   } else if (is_OuterStripMinedLoop()) {
1062     outer = this->as_OuterStripMinedLoop();
1063     inner = outer->unique_ctrl_out()->as_CountedLoop();
1064     assert(inner->is_valid_counted_loop() && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed");
1065     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
1066   }
1067   if (inner != NULL || outer != NULL) {
1068     assert(inner != NULL && outer != NULL, "missing loop in strip mined nest");
1069     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
1070     Node* outer_le = outer_tail->in(0);
1071     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
1072     Node* sfpt = outer_le->in(0);
1073     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
1074     Node* inner_out = sfpt->in(0);
1075     if (inner_out->outcnt() != 1) {
1076       ResourceMark rm;
1077       Unique_Node_List wq;
1078 
1079       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
1080         Node* u = inner_out->fast_out(i);
1081         if (u == sfpt) {
1082           continue;
1083         }
1084         wq.clear();
1085         wq.push(u);
1086         bool found_sfpt = false;
1087         for (uint next = 0; next < wq.size() && !found_sfpt; next++) {
1088           Node* n = wq.at(next);
1089           for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !found_sfpt; i++) {
1090             Node* u = n->fast_out(i);
1091             if (u == sfpt) {
1092               found_sfpt = true;
1093             }
1094             if (!u->is_CFG()) {
1095               wq.push(u);
1096             }
1097           }
1098         }
1099         assert(found_sfpt, "no node in loop that's not input to safepoint");
1100       }
1101     }
1102 
1103     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
1104     assert(cle == inner->loopexit_or_null(), "mismatch");
1105     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
1106     if (has_skeleton) {
1107       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
1108       assert(outer->outcnt() == 2, "only phis");
1109     } else {
1110       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
1111       uint phis = 0;
1112       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
1113         Node* u = inner->fast_out(i);
1114         if (u->is_Phi()) {
1115           phis++;
1116         }
1117       }
1118       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
1119         Node* u = outer->fast_out(i);
1120         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
1121       }
1122       uint stores = 0;
1123       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
1124         Node* u = inner_out->fast_out(i);
1125         if (u->is_Store()) {
1126           stores++;
1127         }
1128       }
1129       assert(outer->outcnt() >= phis + 2 && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
1130     }
1131     assert(sfpt->outcnt() == 1, "no data node");
1132     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
1133   }
1134 }
1135 #endif
1136 
1137 //=============================================================================
1138 //------------------------------Ideal------------------------------------------
1139 // Return a node which is more "ideal" than the current node.
1140 // Attempt to convert into a counted-loop.
1141 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1142   return RegionNode::Ideal(phase, can_reshape);
1143 }
1144 
1145 //------------------------------dump_spec--------------------------------------
1146 // Dump special per-node info
1147 #ifndef PRODUCT
1148 void CountedLoopNode::dump_spec(outputStream *st) const {
1149   LoopNode::dump_spec(st);
1150   if (stride_is_con()) {
1151     st->print("stride: %d ",stride_con());
1152   }
1153   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
1154   if (is_main_loop()) st->print("main of N%d", _idx);
1155   if (is_post_loop()) st->print("post of N%d", _main_idx);
1156   if (is_strip_mined()) st->print(" strip mined");
1157 }
1158 #endif
1159 
1160 //=============================================================================
1161 int CountedLoopEndNode::stride_con() const {
1162   return stride()->bottom_type()->is_int()->get_con();
1163 }
1164 
1165 //=============================================================================
1166 //------------------------------Value-----------------------------------------
1167 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
1168   const Type* init_t   = phase->type(in(Init));
1169   const Type* limit_t  = phase->type(in(Limit));
1170   const Type* stride_t = phase->type(in(Stride));
1171   // Either input is TOP ==> the result is TOP
1172   if (init_t   == Type::TOP) return Type::TOP;
1173   if (limit_t  == Type::TOP) return Type::TOP;
1174   if (stride_t == Type::TOP) return Type::TOP;
1175 
1176   int stride_con = stride_t->is_int()->get_con();
1177   if (stride_con == 1)
1178     return NULL;  // Identity
1179 
1180   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
1181     // Use jlongs to avoid integer overflow.
1182     jlong init_con   =  init_t->is_int()->get_con();
1183     jlong limit_con  = limit_t->is_int()->get_con();
1184     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
1185     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
1186     jlong final_con  = init_con + stride_con*trip_count;
1187     int final_int = (int)final_con;
1188     // The final value should be in integer range since the loop
1189     // is counted and the limit was checked for overflow.
1190     assert(final_con == (jlong)final_int, "final value should be integer");
1191     return TypeInt::make(final_int);
1192   }
1193 
1194   return bottom_type(); // TypeInt::INT
1195 }
1196 
1197 //------------------------------Ideal------------------------------------------
1198 // Return a node which is more "ideal" than the current node.
1199 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1200   if (phase->type(in(Init))   == Type::TOP ||
1201       phase->type(in(Limit))  == Type::TOP ||
1202       phase->type(in(Stride)) == Type::TOP)
1203     return NULL;  // Dead
1204 
1205   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1206   if (stride_con == 1)
1207     return NULL;  // Identity
1208 
1209   if (in(Init)->is_Con() && in(Limit)->is_Con())
1210     return NULL;  // Value
1211 
1212   // Delay following optimizations until all loop optimizations
1213   // done to keep Ideal graph simple.
1214   if (!can_reshape || phase->C->major_progress())
1215     return NULL;
1216 
1217   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
1218   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
1219   int stride_p;
1220   jlong lim, ini;
1221   julong max;
1222   if (stride_con > 0) {
1223     stride_p = stride_con;
1224     lim = limit_t->_hi;
1225     ini = init_t->_lo;
1226     max = (julong)max_jint;
1227   } else {
1228     stride_p = -stride_con;
1229     lim = init_t->_hi;
1230     ini = limit_t->_lo;
1231     max = (julong)min_jint;
1232   }
1233   julong range = lim - ini + stride_p;
1234   if (range <= max) {
1235     // Convert to integer expression if it is not overflow.
1236     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
1237     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
1238     Node *bias  = phase->transform(new AddINode(range, stride_m));
1239     Node *trip  = phase->transform(new DivINode(0, bias, in(Stride)));
1240     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
1241     return new AddINode(span, in(Init)); // exact limit
1242   }
1243 
1244   if (is_power_of_2(stride_p) ||                // divisor is 2^n
1245       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
1246     // Convert to long expression to avoid integer overflow
1247     // and let igvn optimizer convert this division.
1248     //
1249     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
1250     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
1251     Node* stride   = phase->longcon(stride_con);
1252     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
1253 
1254     Node *range = phase->transform(new SubLNode(limit, init));
1255     Node *bias  = phase->transform(new AddLNode(range, stride_m));
1256     Node *span;
1257     if (stride_con > 0 && is_power_of_2(stride_p)) {
1258       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
1259       // and avoid generating rounding for division. Zero trip guard should
1260       // guarantee that init < limit but sometimes the guard is missing and
1261       // we can get situation when init > limit. Note, for the empty loop
1262       // optimization zero trip guard is generated explicitly which leaves
1263       // only RCE predicate where exact limit is used and the predicate
1264       // will simply fail forcing recompilation.
1265       Node* neg_stride   = phase->longcon(-stride_con);
1266       span = phase->transform(new AndLNode(bias, neg_stride));
1267     } else {
1268       Node *trip  = phase->transform(new DivLNode(0, bias, stride));
1269       span = phase->transform(new MulLNode(trip, stride));
1270     }
1271     // Convert back to int
1272     Node *span_int = phase->transform(new ConvL2INode(span));
1273     return new AddINode(span_int, in(Init)); // exact limit
1274   }
1275 
1276   return NULL;    // No progress
1277 }
1278 
1279 //------------------------------Identity---------------------------------------
1280 // If stride == 1 return limit node.
1281 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
1282   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1283   if (stride_con == 1 || stride_con == -1)
1284     return in(Limit);
1285   return this;
1286 }
1287 
1288 //=============================================================================
1289 //----------------------match_incr_with_optional_truncation--------------------
1290 // Match increment with optional truncation:
1291 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
1292 // Return NULL for failure. Success returns the increment node.
1293 Node* CountedLoopNode::match_incr_with_optional_truncation(
1294                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
1295   // Quick cutouts:
1296   if (expr == NULL || expr->req() != 3)  return NULL;
1297 
1298   Node *t1 = NULL;
1299   Node *t2 = NULL;
1300   const TypeInt* trunc_t = TypeInt::INT;
1301   Node* n1 = expr;
1302   int   n1op = n1->Opcode();
1303 
1304   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
1305   if (n1op == Op_AndI &&
1306       n1->in(2)->is_Con() &&
1307       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
1308     // %%% This check should match any mask of 2**K-1.
1309     t1 = n1;
1310     n1 = t1->in(1);
1311     n1op = n1->Opcode();
1312     trunc_t = TypeInt::CHAR;
1313   } else if (n1op == Op_RShiftI &&
1314              n1->in(1) != NULL &&
1315              n1->in(1)->Opcode() == Op_LShiftI &&
1316              n1->in(2) == n1->in(1)->in(2) &&
1317              n1->in(2)->is_Con()) {
1318     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
1319     // %%% This check should match any shift in [1..31].
1320     if (shift == 16 || shift == 8) {
1321       t1 = n1;
1322       t2 = t1->in(1);
1323       n1 = t2->in(1);
1324       n1op = n1->Opcode();
1325       if (shift == 16) {
1326         trunc_t = TypeInt::SHORT;
1327       } else if (shift == 8) {
1328         trunc_t = TypeInt::BYTE;
1329       }
1330     }
1331   }
1332 
1333   // If (maybe after stripping) it is an AddI, we won:
1334   if (n1op == Op_AddI) {
1335     *trunc1 = t1;
1336     *trunc2 = t2;
1337     *trunc_type = trunc_t;
1338     return n1;
1339   }
1340 
1341   // failed
1342   return NULL;
1343 }
1344 
1345 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
1346   if (is_strip_mined() && is_valid_counted_loop()) {
1347     verify_strip_mined(expect_skeleton);
1348     return in(EntryControl)->as_Loop();
1349   }
1350   return this;
1351 }
1352 
1353 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
1354   assert(is_strip_mined(), "not a strip mined loop");
1355   Node* c = in(EntryControl);
1356   if (c == NULL || c->is_top() || !c->is_OuterStripMinedLoop()) {
1357     return NULL;
1358   }
1359   return c->as_OuterStripMinedLoop();
1360 }
1361 
1362 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
1363   Node* c = in(LoopBackControl);
1364   if (c == NULL || c->is_top()) {
1365     return NULL;
1366   }
1367   return c->as_IfTrue();
1368 }
1369 
1370 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
1371   LoopNode* l = outer_loop();
1372   if (l == NULL) {
1373     return NULL;
1374   }
1375   return l->outer_loop_tail();
1376 }
1377 
1378 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
1379   IfTrueNode* proj = outer_loop_tail();
1380   if (proj == NULL) {
1381     return NULL;
1382   }
1383   Node* c = proj->in(0);
1384   if (c == NULL || c->is_top() || c->outcnt() != 2) {
1385     return NULL;
1386   }
1387   return c->as_OuterStripMinedLoopEnd();
1388 }
1389 
1390 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
1391   LoopNode* l = outer_loop();
1392   if (l == NULL) {
1393     return NULL;
1394   }
1395   return l->outer_loop_end();
1396 }
1397 
1398 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
1399   IfNode* le = outer_loop_end();
1400   if (le == NULL) {
1401     return NULL;
1402   }
1403   Node* c = le->proj_out_or_null(false);
1404   if (c == NULL) {
1405     return NULL;
1406   }
1407   return c->as_IfFalse();
1408 }
1409 
1410 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
1411   LoopNode* l = outer_loop();
1412   if (l == NULL) {
1413     return NULL;
1414   }
1415   return l->outer_loop_exit();
1416 }
1417 
1418 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
1419   IfNode* le = outer_loop_end();
1420   if (le == NULL) {
1421     return NULL;
1422   }
1423   Node* c = le->in(0);
1424   if (c == NULL || c->is_top()) {
1425     return NULL;
1426   }
1427   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
1428   return c->as_SafePoint();
1429 }
1430 
1431 SafePointNode* CountedLoopNode::outer_safepoint() const {
1432   LoopNode* l = outer_loop();
1433   if (l == NULL) {
1434     return NULL;
1435   }
1436   return l->outer_safepoint();
1437 }
1438 
1439 Node* CountedLoopNode::skip_predicates_from_entry(Node* ctrl) {
1440     while (ctrl != NULL && ctrl->is_Proj() && ctrl->in(0)->is_If() &&
1441            ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->outcnt() == 1 &&
1442            ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->unique_out()->Opcode() == Op_Halt) {
1443       ctrl = ctrl->in(0)->in(0);
1444     }
1445 
1446     return ctrl;
1447   }
1448 
1449 Node* CountedLoopNode::skip_predicates() {
1450   if (is_main_loop()) {
1451     Node* ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
1452 
1453     return skip_predicates_from_entry(ctrl);
1454   }
1455   return in(LoopNode::EntryControl);
1456 }
1457 
1458 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
1459   // Look for the outer & inner strip mined loop, reduce number of
1460   // iterations of the inner loop, set exit condition of outer loop,
1461   // construct required phi nodes for outer loop.
1462   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
1463   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
1464   Node* inner_iv_phi = inner_cl->phi();
1465   if (inner_iv_phi == NULL) {
1466     IfNode* outer_le = outer_loop_end();
1467     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1468     igvn->replace_node(outer_le, iff);
1469     inner_cl->clear_strip_mined();
1470     return;
1471   }
1472   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
1473 
1474   int stride = inner_cl->stride_con();
1475   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS(stride);
1476   int scaled_iters = (int)scaled_iters_long;
1477   int short_scaled_iters = LoopStripMiningIterShortLoop* ABS(stride);
1478   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
1479   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
1480   assert(iter_estimate > 0, "broken");
1481   if ((jlong)scaled_iters != scaled_iters_long || iter_estimate <= short_scaled_iters) {
1482     // Remove outer loop and safepoint (too few iterations)
1483     Node* outer_sfpt = outer_safepoint();
1484     Node* outer_out = outer_loop_exit();
1485     igvn->replace_node(outer_out, outer_sfpt->in(0));
1486     igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
1487     inner_cl->clear_strip_mined();
1488     return;
1489   }
1490   if (iter_estimate <= scaled_iters_long) {
1491     // We would only go through one iteration of
1492     // the outer loop: drop the outer loop but
1493     // keep the safepoint so we don't run for
1494     // too long without a safepoint
1495     IfNode* outer_le = outer_loop_end();
1496     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1497     igvn->replace_node(outer_le, iff);
1498     inner_cl->clear_strip_mined();
1499     return;
1500   }
1501 
1502   Node* cle_tail = inner_cle->proj_out(true);
1503   ResourceMark rm;
1504   Node_List old_new;
1505   if (cle_tail->outcnt() > 1) {
1506     // Look for nodes on backedge of inner loop and clone them
1507     Unique_Node_List backedge_nodes;
1508     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
1509       Node* u = cle_tail->fast_out(i);
1510       if (u != inner_cl) {
1511         assert(!u->is_CFG(), "control flow on the backedge?");
1512         backedge_nodes.push(u);
1513       }
1514     }
1515     uint last = igvn->C->unique();
1516     for (uint next = 0; next < backedge_nodes.size(); next++) {
1517       Node* n = backedge_nodes.at(next);
1518       old_new.map(n->_idx, n->clone());
1519       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1520         Node* u = n->fast_out(i);
1521         assert(!u->is_CFG(), "broken");
1522         if (u->_idx >= last) {
1523           continue;
1524         }
1525         if (!u->is_Phi()) {
1526           backedge_nodes.push(u);
1527         } else {
1528           assert(u->in(0) == inner_cl, "strange phi on the backedge");
1529         }
1530       }
1531     }
1532     // Put the clones on the outer loop backedge
1533     Node* le_tail = outer_loop_tail();
1534     for (uint next = 0; next < backedge_nodes.size(); next++) {
1535       Node *n = old_new[backedge_nodes.at(next)->_idx];
1536       for (uint i = 1; i < n->req(); i++) {
1537         if (n->in(i) != NULL && old_new[n->in(i)->_idx] != NULL) {
1538           n->set_req(i, old_new[n->in(i)->_idx]);
1539         }
1540       }
1541       if (n->in(0) != NULL && n->in(0) == cle_tail) {
1542         n->set_req(0, le_tail);
1543       }
1544       igvn->register_new_node_with_optimizer(n);
1545     }
1546   }
1547 
1548   Node* iv_phi = NULL;
1549   // Make a clone of each phi in the inner loop
1550   // for the outer loop
1551   for (uint i = 0; i < inner_cl->outcnt(); i++) {
1552     Node* u = inner_cl->raw_out(i);
1553     if (u->is_Phi()) {
1554       assert(u->in(0) == inner_cl, "inconsistent");
1555       Node* phi = u->clone();
1556       phi->set_req(0, this);
1557       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
1558       if (be != NULL) {
1559         phi->set_req(LoopNode::LoopBackControl, be);
1560       }
1561       phi = igvn->transform(phi);
1562       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
1563       if (u == inner_iv_phi) {
1564         iv_phi = phi;
1565       }
1566     }
1567   }
1568   Node* cle_out = inner_cle->proj_out(false);
1569   if (cle_out->outcnt() > 1) {
1570     // Look for chains of stores that were sunk
1571     // out of the inner loop and are in the outer loop
1572     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
1573       Node* u = cle_out->fast_out(i);
1574       if (u->is_Store()) {
1575         Node* first = u;
1576         for(;;) {
1577           Node* next = first->in(MemNode::Memory);
1578           if (!next->is_Store() || next->in(0) != cle_out) {
1579             break;
1580           }
1581           first = next;
1582         }
1583         Node* last = u;
1584         for(;;) {
1585           Node* next = NULL;
1586           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
1587             Node* uu = last->fast_out(j);
1588             if (uu->is_Store() && uu->in(0) == cle_out) {
1589               assert(next == NULL, "only one in the outer loop");
1590               next = uu;
1591             }
1592           }
1593           if (next == NULL) {
1594             break;
1595           }
1596           last = next;
1597         }
1598         Node* phi = NULL;
1599         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
1600           Node* uu = fast_out(j);
1601           if (uu->is_Phi()) {
1602             Node* be = uu->in(LoopNode::LoopBackControl);
1603             if (be->is_Store() && old_new[be->_idx] != NULL) {
1604               assert(false, "store on the backedge + sunk stores: unsupported");
1605               // drop outer loop
1606               IfNode* outer_le = outer_loop_end();
1607               Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1608               igvn->replace_node(outer_le, iff);
1609               inner_cl->clear_strip_mined();
1610               return;
1611             }
1612             if (be == last || be == first->in(MemNode::Memory)) {
1613               assert(phi == NULL, "only one phi");
1614               phi = uu;
1615             }
1616           }
1617         }
1618 #ifdef ASSERT
1619         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
1620           Node* uu = fast_out(j);
1621           if (uu->is_Phi() && uu->bottom_type() == Type::MEMORY) {
1622             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
1623               assert(phi == uu, "what's that phi?");
1624             } else if (uu->adr_type() == TypePtr::BOTTOM) {
1625               Node* n = uu->in(LoopNode::LoopBackControl);
1626               uint limit = igvn->C->live_nodes();
1627               uint i = 0;
1628               while (n != uu) {
1629                 i++;
1630                 assert(i < limit, "infinite loop");
1631                 if (n->is_Proj()) {
1632                   n = n->in(0);
1633                 } else if (n->is_SafePoint() || n->is_MemBar()) {
1634                   n = n->in(TypeFunc::Memory);
1635                 } else if (n->is_Phi()) {
1636                   n = n->in(1);
1637                 } else if (n->is_MergeMem()) {
1638                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
1639                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
1640                   n = n->in(MemNode::Memory);
1641                 } else {
1642                   n->dump();
1643                   ShouldNotReachHere();
1644                 }
1645               }
1646             }
1647           }
1648         }
1649 #endif
1650         if (phi == NULL) {
1651           // If the an entire chains was sunk, the
1652           // inner loop has no phi for that memory
1653           // slice, create one for the outer loop
1654           phi = PhiNode::make(this, first->in(MemNode::Memory), Type::MEMORY,
1655                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
1656           phi->set_req(LoopNode::LoopBackControl, last);
1657           phi = igvn->transform(phi);
1658           igvn->replace_input_of(first, MemNode::Memory, phi);
1659         } else {
1660           // Or fix the outer loop fix to include
1661           // that chain of stores.
1662           Node* be = phi->in(LoopNode::LoopBackControl);
1663           assert(!(be->is_Store() && old_new[be->_idx] != NULL), "store on the backedge + sunk stores: unsupported");
1664           if (be == first->in(MemNode::Memory)) {
1665             if (be == phi->in(LoopNode::LoopBackControl)) {
1666               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
1667             } else {
1668               igvn->replace_input_of(be, MemNode::Memory, last);
1669             }
1670           } else {
1671 #ifdef ASSERT
1672             if (be == phi->in(LoopNode::LoopBackControl)) {
1673               assert(phi->in(LoopNode::LoopBackControl) == last, "");
1674             } else {
1675               assert(be->in(MemNode::Memory) == last, "");
1676             }
1677 #endif
1678           }
1679         }
1680       }
1681     }
1682   }
1683 
1684   if (iv_phi != NULL) {
1685     // Now adjust the inner loop's exit condition
1686     Node* limit = inner_cl->limit();
1687     // If limit < init for stride > 0 (or limit > init for stride 0),
1688     // the loop body is run only once. Given limit - init (init - limit resp.)
1689     // would be negative, the unsigned comparison below would cause
1690     // the loop body to be run for LoopStripMiningIter.
1691     Node* max = NULL;
1692     if (stride > 0) {
1693       max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn);
1694     } else {
1695       max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn);
1696     }
1697     // sub is positive and can be larger than the max signed int
1698     // value. Use an unsigned min.
1699     Node* const_iters = igvn->intcon(scaled_iters);
1700     Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn);
1701     // min is the number of iterations for the next inner loop execution:
1702     // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0
1703     // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0
1704 
1705     Node* new_limit = NULL;
1706     if (stride > 0) {
1707       new_limit = igvn->transform(new AddINode(min, iv_phi));
1708     } else {
1709       new_limit = igvn->transform(new SubINode(iv_phi, min));
1710     }
1711     Node* inner_cmp = inner_cle->cmp_node();
1712     Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue);
1713     Node* outer_bol = inner_bol;
1714     // cmp node for inner loop may be shared
1715     inner_cmp = inner_cmp->clone();
1716     inner_cmp->set_req(2, new_limit);
1717     inner_bol = inner_bol->clone();
1718     inner_bol->set_req(1, igvn->transform(inner_cmp));
1719     igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol));
1720     // Set the outer loop's exit condition too
1721     igvn->replace_input_of(outer_loop_end(), 1, outer_bol);
1722   } else {
1723     assert(false, "should be able to adjust outer loop");
1724     IfNode* outer_le = outer_loop_end();
1725     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1726     igvn->replace_node(outer_le, iff);
1727     inner_cl->clear_strip_mined();
1728   }
1729 }
1730 
1731 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
1732   if (!in(0)) return Type::TOP;
1733   if (phase->type(in(0)) == Type::TOP)
1734     return Type::TOP;
1735 
1736   return TypeTuple::IFBOTH;
1737 }
1738 
1739 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1740   if (remove_dead_region(phase, can_reshape))  return this;
1741 
1742   return NULL;
1743 }
1744 
1745 //------------------------------filtered_type--------------------------------
1746 // Return a type based on condition control flow
1747 // A successful return will be a type that is restricted due
1748 // to a series of dominating if-tests, such as:
1749 //    if (i < 10) {
1750 //       if (i > 0) {
1751 //          here: "i" type is [1..10)
1752 //       }
1753 //    }
1754 // or a control flow merge
1755 //    if (i < 10) {
1756 //       do {
1757 //          phi( , ) -- at top of loop type is [min_int..10)
1758 //         i = ?
1759 //       } while ( i < 10)
1760 //
1761 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
1762   assert(n && n->bottom_type()->is_int(), "must be int");
1763   const TypeInt* filtered_t = NULL;
1764   if (!n->is_Phi()) {
1765     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
1766     filtered_t = filtered_type_from_dominators(n, n_ctrl);
1767 
1768   } else {
1769     Node* phi    = n->as_Phi();
1770     Node* region = phi->in(0);
1771     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
1772     if (region && region != C->top()) {
1773       for (uint i = 1; i < phi->req(); i++) {
1774         Node* val   = phi->in(i);
1775         Node* use_c = region->in(i);
1776         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
1777         if (val_t != NULL) {
1778           if (filtered_t == NULL) {
1779             filtered_t = val_t;
1780           } else {
1781             filtered_t = filtered_t->meet(val_t)->is_int();
1782           }
1783         }
1784       }
1785     }
1786   }
1787   const TypeInt* n_t = _igvn.type(n)->is_int();
1788   if (filtered_t != NULL) {
1789     n_t = n_t->join(filtered_t)->is_int();
1790   }
1791   return n_t;
1792 }
1793 
1794 
1795 //------------------------------filtered_type_from_dominators--------------------------------
1796 // Return a possibly more restrictive type for val based on condition control flow of dominators
1797 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1798   if (val->is_Con()) {
1799      return val->bottom_type()->is_int();
1800   }
1801   uint if_limit = 10; // Max number of dominating if's visited
1802   const TypeInt* rtn_t = NULL;
1803 
1804   if (use_ctrl && use_ctrl != C->top()) {
1805     Node* val_ctrl = get_ctrl(val);
1806     uint val_dom_depth = dom_depth(val_ctrl);
1807     Node* pred = use_ctrl;
1808     uint if_cnt = 0;
1809     while (if_cnt < if_limit) {
1810       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1811         if_cnt++;
1812         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1813         if (if_t != NULL) {
1814           if (rtn_t == NULL) {
1815             rtn_t = if_t;
1816           } else {
1817             rtn_t = rtn_t->join(if_t)->is_int();
1818           }
1819         }
1820       }
1821       pred = idom(pred);
1822       if (pred == NULL || pred == C->top()) {
1823         break;
1824       }
1825       // Stop if going beyond definition block of val
1826       if (dom_depth(pred) < val_dom_depth) {
1827         break;
1828       }
1829     }
1830   }
1831   return rtn_t;
1832 }
1833 
1834 
1835 //------------------------------dump_spec--------------------------------------
1836 // Dump special per-node info
1837 #ifndef PRODUCT
1838 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1839   if( in(TestValue) != NULL && in(TestValue)->is_Bool() ) {
1840     BoolTest bt( test_trip()); // Added this for g++.
1841 
1842     st->print("[");
1843     bt.dump_on(st);
1844     st->print("]");
1845   }
1846   st->print(" ");
1847   IfNode::dump_spec(st);
1848 }
1849 #endif
1850 
1851 //=============================================================================
1852 //------------------------------is_member--------------------------------------
1853 // Is 'l' a member of 'this'?
1854 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
1855   while( l->_nest > _nest ) l = l->_parent;
1856   return l == this;
1857 }
1858 
1859 //------------------------------set_nest---------------------------------------
1860 // Set loop tree nesting depth.  Accumulate _has_call bits.
1861 int IdealLoopTree::set_nest( uint depth ) {
1862   _nest = depth;
1863   int bits = _has_call;
1864   if( _child ) bits |= _child->set_nest(depth+1);
1865   if( bits ) _has_call = 1;
1866   if( _next  ) bits |= _next ->set_nest(depth  );
1867   return bits;
1868 }
1869 
1870 //------------------------------split_fall_in----------------------------------
1871 // Split out multiple fall-in edges from the loop header.  Move them to a
1872 // private RegionNode before the loop.  This becomes the loop landing pad.
1873 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1874   PhaseIterGVN &igvn = phase->_igvn;
1875   uint i;
1876 
1877   // Make a new RegionNode to be the landing pad.
1878   Node *landing_pad = new RegionNode( fall_in_cnt+1 );
1879   phase->set_loop(landing_pad,_parent);
1880   // Gather all the fall-in control paths into the landing pad
1881   uint icnt = fall_in_cnt;
1882   uint oreq = _head->req();
1883   for( i = oreq-1; i>0; i-- )
1884     if( !phase->is_member( this, _head->in(i) ) )
1885       landing_pad->set_req(icnt--,_head->in(i));
1886 
1887   // Peel off PhiNode edges as well
1888   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1889     Node *oj = _head->fast_out(j);
1890     if( oj->is_Phi() ) {
1891       PhiNode* old_phi = oj->as_Phi();
1892       assert( old_phi->region() == _head, "" );
1893       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1894       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1895       uint icnt = fall_in_cnt;
1896       for( i = oreq-1; i>0; i-- ) {
1897         if( !phase->is_member( this, _head->in(i) ) ) {
1898           p->init_req(icnt--, old_phi->in(i));
1899           // Go ahead and clean out old edges from old phi
1900           old_phi->del_req(i);
1901         }
1902       }
1903       // Search for CSE's here, because ZKM.jar does a lot of
1904       // loop hackery and we need to be a little incremental
1905       // with the CSE to avoid O(N^2) node blow-up.
1906       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1907       if( p2 ) {                // Found CSE
1908         p->destruct();          // Recover useless new node
1909         p = p2;                 // Use old node
1910       } else {
1911         igvn.register_new_node_with_optimizer(p, old_phi);
1912       }
1913       // Make old Phi refer to new Phi.
1914       old_phi->add_req(p);
1915       // Check for the special case of making the old phi useless and
1916       // disappear it.  In JavaGrande I have a case where this useless
1917       // Phi is the loop limit and prevents recognizing a CountedLoop
1918       // which in turn prevents removing an empty loop.
1919       Node *id_old_phi = old_phi->Identity(&igvn);
1920       if( id_old_phi != old_phi ) { // Found a simple identity?
1921         // Note that I cannot call 'replace_node' here, because
1922         // that will yank the edge from old_phi to the Region and
1923         // I'm mid-iteration over the Region's uses.
1924         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1925           Node* use = old_phi->last_out(i);
1926           igvn.rehash_node_delayed(use);
1927           uint uses_found = 0;
1928           for (uint j = 0; j < use->len(); j++) {
1929             if (use->in(j) == old_phi) {
1930               if (j < use->req()) use->set_req (j, id_old_phi);
1931               else                use->set_prec(j, id_old_phi);
1932               uses_found++;
1933             }
1934           }
1935           i -= uses_found;    // we deleted 1 or more copies of this edge
1936         }
1937       }
1938       igvn._worklist.push(old_phi);
1939     }
1940   }
1941   // Finally clean out the fall-in edges from the RegionNode
1942   for( i = oreq-1; i>0; i-- ) {
1943     if( !phase->is_member( this, _head->in(i) ) ) {
1944       _head->del_req(i);
1945     }
1946   }
1947   igvn.rehash_node_delayed(_head);
1948   // Transform landing pad
1949   igvn.register_new_node_with_optimizer(landing_pad, _head);
1950   // Insert landing pad into the header
1951   _head->add_req(landing_pad);
1952 }
1953 
1954 //------------------------------split_outer_loop-------------------------------
1955 // Split out the outermost loop from this shared header.
1956 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1957   PhaseIterGVN &igvn = phase->_igvn;
1958 
1959   // Find index of outermost loop; it should also be my tail.
1960   uint outer_idx = 1;
1961   while( _head->in(outer_idx) != _tail ) outer_idx++;
1962 
1963   // Make a LoopNode for the outermost loop.
1964   Node *ctl = _head->in(LoopNode::EntryControl);
1965   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
1966   outer = igvn.register_new_node_with_optimizer(outer, _head);
1967   phase->set_created_loop_node();
1968 
1969   // Outermost loop falls into '_head' loop
1970   _head->set_req(LoopNode::EntryControl, outer);
1971   _head->del_req(outer_idx);
1972   // Split all the Phis up between '_head' loop and 'outer' loop.
1973   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1974     Node *out = _head->fast_out(j);
1975     if( out->is_Phi() ) {
1976       PhiNode *old_phi = out->as_Phi();
1977       assert( old_phi->region() == _head, "" );
1978       Node *phi = PhiNode::make_blank(outer, old_phi);
1979       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1980       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1981       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1982       // Make old Phi point to new Phi on the fall-in path
1983       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
1984       old_phi->del_req(outer_idx);
1985     }
1986   }
1987 
1988   // Use the new loop head instead of the old shared one
1989   _head = outer;
1990   phase->set_loop(_head, this);
1991 }
1992 
1993 //------------------------------fix_parent-------------------------------------
1994 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1995   loop->_parent = parent;
1996   if( loop->_child ) fix_parent( loop->_child, loop   );
1997   if( loop->_next  ) fix_parent( loop->_next , parent );
1998 }
1999 
2000 //------------------------------estimate_path_freq-----------------------------
2001 static float estimate_path_freq( Node *n ) {
2002   // Try to extract some path frequency info
2003   IfNode *iff;
2004   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
2005     uint nop = n->Opcode();
2006     if( nop == Op_SafePoint ) {   // Skip any safepoint
2007       n = n->in(0);
2008       continue;
2009     }
2010     if( nop == Op_CatchProj ) {   // Get count from a prior call
2011       // Assume call does not always throw exceptions: means the call-site
2012       // count is also the frequency of the fall-through path.
2013       assert( n->is_CatchProj(), "" );
2014       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
2015         return 0.0f;            // Assume call exception path is rare
2016       Node *call = n->in(0)->in(0)->in(0);
2017       assert( call->is_Call(), "expect a call here" );
2018       const JVMState *jvms = ((CallNode*)call)->jvms();
2019       ciMethodData* methodData = jvms->method()->method_data();
2020       if (!methodData->is_mature())  return 0.0f; // No call-site data
2021       ciProfileData* data = methodData->bci_to_data(jvms->bci());
2022       if ((data == NULL) || !data->is_CounterData()) {
2023         // no call profile available, try call's control input
2024         n = n->in(0);
2025         continue;
2026       }
2027       return data->as_CounterData()->count()/FreqCountInvocations;
2028     }
2029     // See if there's a gating IF test
2030     Node *n_c = n->in(0);
2031     if( !n_c->is_If() ) break;       // No estimate available
2032     iff = n_c->as_If();
2033     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
2034       // Compute how much count comes on this path
2035       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
2036     // Have no count info.  Skip dull uncommon-trap like branches.
2037     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
2038         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
2039       break;
2040     // Skip through never-taken branch; look for a real loop exit.
2041     n = iff->in(0);
2042   }
2043   return 0.0f;                  // No estimate available
2044 }
2045 
2046 //------------------------------merge_many_backedges---------------------------
2047 // Merge all the backedges from the shared header into a private Region.
2048 // Feed that region as the one backedge to this loop.
2049 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
2050   uint i;
2051 
2052   // Scan for the top 2 hottest backedges
2053   float hotcnt = 0.0f;
2054   float warmcnt = 0.0f;
2055   uint hot_idx = 0;
2056   // Loop starts at 2 because slot 1 is the fall-in path
2057   for( i = 2; i < _head->req(); i++ ) {
2058     float cnt = estimate_path_freq(_head->in(i));
2059     if( cnt > hotcnt ) {       // Grab hottest path
2060       warmcnt = hotcnt;
2061       hotcnt = cnt;
2062       hot_idx = i;
2063     } else if( cnt > warmcnt ) { // And 2nd hottest path
2064       warmcnt = cnt;
2065     }
2066   }
2067 
2068   // See if the hottest backedge is worthy of being an inner loop
2069   // by being much hotter than the next hottest backedge.
2070   if( hotcnt <= 0.0001 ||
2071       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
2072 
2073   // Peel out the backedges into a private merge point; peel
2074   // them all except optionally hot_idx.
2075   PhaseIterGVN &igvn = phase->_igvn;
2076 
2077   Node *hot_tail = NULL;
2078   // Make a Region for the merge point
2079   Node *r = new RegionNode(1);
2080   for( i = 2; i < _head->req(); i++ ) {
2081     if( i != hot_idx )
2082       r->add_req( _head->in(i) );
2083     else hot_tail = _head->in(i);
2084   }
2085   igvn.register_new_node_with_optimizer(r, _head);
2086   // Plug region into end of loop _head, followed by hot_tail
2087   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
2088   igvn.replace_input_of(_head, 2, r);
2089   if( hot_idx ) _head->add_req(hot_tail);
2090 
2091   // Split all the Phis up between '_head' loop and the Region 'r'
2092   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
2093     Node *out = _head->fast_out(j);
2094     if( out->is_Phi() ) {
2095       PhiNode* n = out->as_Phi();
2096       igvn.hash_delete(n);      // Delete from hash before hacking edges
2097       Node *hot_phi = NULL;
2098       Node *phi = new PhiNode(r, n->type(), n->adr_type());
2099       // Check all inputs for the ones to peel out
2100       uint j = 1;
2101       for( uint i = 2; i < n->req(); i++ ) {
2102         if( i != hot_idx )
2103           phi->set_req( j++, n->in(i) );
2104         else hot_phi = n->in(i);
2105       }
2106       // Register the phi but do not transform until whole place transforms
2107       igvn.register_new_node_with_optimizer(phi, n);
2108       // Add the merge phi to the old Phi
2109       while( n->req() > 3 ) n->del_req( n->req()-1 );
2110       igvn.replace_input_of(n, 2, phi);
2111       if( hot_idx ) n->add_req(hot_phi);
2112     }
2113   }
2114 
2115 
2116   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
2117   // of self loop tree.  Turn self into a loop headed by _head and with
2118   // tail being the new merge point.
2119   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
2120   phase->set_loop(_tail,ilt);   // Adjust tail
2121   _tail = r;                    // Self's tail is new merge point
2122   phase->set_loop(r,this);
2123   ilt->_child = _child;         // New guy has my children
2124   _child = ilt;                 // Self has new guy as only child
2125   ilt->_parent = this;          // new guy has self for parent
2126   ilt->_nest = _nest;           // Same nesting depth (for now)
2127 
2128   // Starting with 'ilt', look for child loop trees using the same shared
2129   // header.  Flatten these out; they will no longer be loops in the end.
2130   IdealLoopTree **pilt = &_child;
2131   while( ilt ) {
2132     if( ilt->_head == _head ) {
2133       uint i;
2134       for( i = 2; i < _head->req(); i++ )
2135         if( _head->in(i) == ilt->_tail )
2136           break;                // Still a loop
2137       if( i == _head->req() ) { // No longer a loop
2138         // Flatten ilt.  Hang ilt's "_next" list from the end of
2139         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
2140         IdealLoopTree **cp = &ilt->_child;
2141         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
2142         *cp = ilt->_next;       // Hang next list at end of child list
2143         *pilt = ilt->_child;    // Move child up to replace ilt
2144         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
2145         ilt = ilt->_child;      // Repeat using new ilt
2146         continue;               // do not advance over ilt->_child
2147       }
2148       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
2149       phase->set_loop(_head,ilt);
2150     }
2151     pilt = &ilt->_child;        // Advance to next
2152     ilt = *pilt;
2153   }
2154 
2155   if( _child ) fix_parent( _child, this );
2156 }
2157 
2158 //------------------------------beautify_loops---------------------------------
2159 // Split shared headers and insert loop landing pads.
2160 // Insert a LoopNode to replace the RegionNode.
2161 // Return TRUE if loop tree is structurally changed.
2162 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
2163   bool result = false;
2164   // Cache parts in locals for easy
2165   PhaseIterGVN &igvn = phase->_igvn;
2166 
2167   igvn.hash_delete(_head);      // Yank from hash before hacking edges
2168 
2169   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
2170   int fall_in_cnt = 0;
2171   for( uint i = 1; i < _head->req(); i++ )
2172     if( !phase->is_member( this, _head->in(i) ) )
2173       fall_in_cnt++;
2174   assert( fall_in_cnt, "at least 1 fall-in path" );
2175   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
2176     split_fall_in( phase, fall_in_cnt );
2177 
2178   // Swap inputs to the _head and all Phis to move the fall-in edge to
2179   // the left.
2180   fall_in_cnt = 1;
2181   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
2182     fall_in_cnt++;
2183   if( fall_in_cnt > 1 ) {
2184     // Since I am just swapping inputs I do not need to update def-use info
2185     Node *tmp = _head->in(1);
2186     igvn.rehash_node_delayed(_head);
2187     _head->set_req( 1, _head->in(fall_in_cnt) );
2188     _head->set_req( fall_in_cnt, tmp );
2189     // Swap also all Phis
2190     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
2191       Node* phi = _head->fast_out(i);
2192       if( phi->is_Phi() ) {
2193         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
2194         tmp = phi->in(1);
2195         phi->set_req( 1, phi->in(fall_in_cnt) );
2196         phi->set_req( fall_in_cnt, tmp );
2197       }
2198     }
2199   }
2200   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
2201   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
2202 
2203   // If I am a shared header (multiple backedges), peel off the many
2204   // backedges into a private merge point and use the merge point as
2205   // the one true backedge.
2206   if (_head->req() > 3) {
2207     // Merge the many backedges into a single backedge but leave
2208     // the hottest backedge as separate edge for the following peel.
2209     if (!_irreducible) {
2210       merge_many_backedges( phase );
2211     }
2212 
2213     // When recursively beautify my children, split_fall_in can change
2214     // loop tree structure when I am an irreducible loop. Then the head
2215     // of my children has a req() not bigger than 3. Here we need to set
2216     // result to true to catch that case in order to tell the caller to
2217     // rebuild loop tree. See issue JDK-8244407 for details.
2218     result = true;
2219   }
2220 
2221   // If I have one hot backedge, peel off myself loop.
2222   // I better be the outermost loop.
2223   if (_head->req() > 3 && !_irreducible) {
2224     split_outer_loop( phase );
2225     result = true;
2226 
2227   } else if (!_head->is_Loop() && !_irreducible) {
2228     // Make a new LoopNode to replace the old loop head
2229     Node *l = new LoopNode( _head->in(1), _head->in(2) );
2230     l = igvn.register_new_node_with_optimizer(l, _head);
2231     phase->set_created_loop_node();
2232     // Go ahead and replace _head
2233     phase->_igvn.replace_node( _head, l );
2234     _head = l;
2235     phase->set_loop(_head, this);
2236   }
2237 
2238   // Now recursively beautify nested loops
2239   if( _child ) result |= _child->beautify_loops( phase );
2240   if( _next  ) result |= _next ->beautify_loops( phase );
2241   return result;
2242 }
2243 
2244 //------------------------------allpaths_check_safepts----------------------------
2245 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
2246 // encountered.  Helper for check_safepts.
2247 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
2248   assert(stack.size() == 0, "empty stack");
2249   stack.push(_tail);
2250   visited.clear();
2251   visited.set(_tail->_idx);
2252   while (stack.size() > 0) {
2253     Node* n = stack.pop();
2254     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
2255       // Terminate this path
2256     } else if (n->Opcode() == Op_SafePoint) {
2257       if (_phase->get_loop(n) != this) {
2258         if (_required_safept == NULL) _required_safept = new Node_List();
2259         _required_safept->push(n);  // save the one closest to the tail
2260       }
2261       // Terminate this path
2262     } else {
2263       uint start = n->is_Region() ? 1 : 0;
2264       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
2265       for (uint i = start; i < end; i++) {
2266         Node* in = n->in(i);
2267         assert(in->is_CFG(), "must be");
2268         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
2269           stack.push(in);
2270         }
2271       }
2272     }
2273   }
2274 }
2275 
2276 //------------------------------check_safepts----------------------------
2277 // Given dominators, try to find loops with calls that must always be
2278 // executed (call dominates loop tail).  These loops do not need non-call
2279 // safepoints (ncsfpt).
2280 //
2281 // A complication is that a safepoint in a inner loop may be needed
2282 // by an outer loop. In the following, the inner loop sees it has a
2283 // call (block 3) on every path from the head (block 2) to the
2284 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
2285 // in block 2, _but_ this leaves the outer loop without a safepoint.
2286 //
2287 //          entry  0
2288 //                 |
2289 //                 v
2290 // outer 1,2    +->1
2291 //              |  |
2292 //              |  v
2293 //              |  2<---+  ncsfpt in 2
2294 //              |_/|\   |
2295 //                 | v  |
2296 // inner 2,3      /  3  |  call in 3
2297 //               /   |  |
2298 //              v    +--+
2299 //        exit  4
2300 //
2301 //
2302 // This method creates a list (_required_safept) of ncsfpt nodes that must
2303 // be protected is created for each loop. When a ncsfpt maybe deleted, it
2304 // is first looked for in the lists for the outer loops of the current loop.
2305 //
2306 // The insights into the problem:
2307 //  A) counted loops are okay
2308 //  B) innermost loops are okay (only an inner loop can delete
2309 //     a ncsfpt needed by an outer loop)
2310 //  C) a loop is immune from an inner loop deleting a safepoint
2311 //     if the loop has a call on the idom-path
2312 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
2313 //     idom-path that is not in a nested loop
2314 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
2315 //     loop needs to be prevented from deletion by an inner loop
2316 //
2317 // There are two analyses:
2318 //  1) The first, and cheaper one, scans the loop body from
2319 //     tail to head following the idom (immediate dominator)
2320 //     chain, looking for the cases (C,D,E) above.
2321 //     Since inner loops are scanned before outer loops, there is summary
2322 //     information about inner loops.  Inner loops can be skipped over
2323 //     when the tail of an inner loop is encountered.
2324 //
2325 //  2) The second, invoked if the first fails to find a call or ncsfpt on
2326 //     the idom path (which is rare), scans all predecessor control paths
2327 //     from the tail to the head, terminating a path when a call or sfpt
2328 //     is encountered, to find the ncsfpt's that are closest to the tail.
2329 //
2330 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
2331   // Bottom up traversal
2332   IdealLoopTree* ch = _child;
2333   if (_child) _child->check_safepts(visited, stack);
2334   if (_next)  _next ->check_safepts(visited, stack);
2335 
2336   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
2337     bool  has_call         = false; // call on dom-path
2338     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
2339     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
2340     // Scan the dom-path nodes from tail to head
2341     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
2342       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
2343         has_call = true;
2344         _has_sfpt = 1;          // Then no need for a safept!
2345         break;
2346       } else if (n->Opcode() == Op_SafePoint) {
2347         if (_phase->get_loop(n) == this) {
2348           has_local_ncsfpt = true;
2349           break;
2350         }
2351         if (nonlocal_ncsfpt == NULL) {
2352           nonlocal_ncsfpt = n; // save the one closest to the tail
2353         }
2354       } else {
2355         IdealLoopTree* nlpt = _phase->get_loop(n);
2356         if (this != nlpt) {
2357           // If at an inner loop tail, see if the inner loop has already
2358           // recorded seeing a call on the dom-path (and stop.)  If not,
2359           // jump to the head of the inner loop.
2360           assert(is_member(nlpt), "nested loop");
2361           Node* tail = nlpt->_tail;
2362           if (tail->in(0)->is_If()) tail = tail->in(0);
2363           if (n == tail) {
2364             // If inner loop has call on dom-path, so does outer loop
2365             if (nlpt->_has_sfpt) {
2366               has_call = true;
2367               _has_sfpt = 1;
2368               break;
2369             }
2370             // Skip to head of inner loop
2371             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
2372             n = nlpt->_head;
2373           }
2374         }
2375       }
2376     }
2377     // Record safept's that this loop needs preserved when an
2378     // inner loop attempts to delete it's safepoints.
2379     if (_child != NULL && !has_call && !has_local_ncsfpt) {
2380       if (nonlocal_ncsfpt != NULL) {
2381         if (_required_safept == NULL) _required_safept = new Node_List();
2382         _required_safept->push(nonlocal_ncsfpt);
2383       } else {
2384         // Failed to find a suitable safept on the dom-path.  Now use
2385         // an all paths walk from tail to head, looking for safepoints to preserve.
2386         allpaths_check_safepts(visited, stack);
2387       }
2388     }
2389   }
2390 }
2391 
2392 //---------------------------is_deleteable_safept----------------------------
2393 // Is safept not required by an outer loop?
2394 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
2395   assert(sfpt->Opcode() == Op_SafePoint, "");
2396   IdealLoopTree* lp = get_loop(sfpt)->_parent;
2397   while (lp != NULL) {
2398     Node_List* sfpts = lp->_required_safept;
2399     if (sfpts != NULL) {
2400       for (uint i = 0; i < sfpts->size(); i++) {
2401         if (sfpt == sfpts->at(i))
2402           return false;
2403       }
2404     }
2405     lp = lp->_parent;
2406   }
2407   return true;
2408 }
2409 
2410 //---------------------------replace_parallel_iv-------------------------------
2411 // Replace parallel induction variable (parallel to trip counter)
2412 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
2413   assert(loop->_head->is_CountedLoop(), "");
2414   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2415   if (!cl->is_valid_counted_loop())
2416     return;         // skip malformed counted loop
2417   Node *incr = cl->incr();
2418   if (incr == NULL)
2419     return;         // Dead loop?
2420   Node *init = cl->init_trip();
2421   Node *phi  = cl->phi();
2422   int stride_con = cl->stride_con();
2423 
2424   // Visit all children, looking for Phis
2425   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
2426     Node *out = cl->out(i);
2427     // Look for other phis (secondary IVs). Skip dead ones
2428     if (!out->is_Phi() || out == phi || !has_node(out))
2429       continue;
2430     PhiNode* phi2 = out->as_Phi();
2431     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
2432     // Look for induction variables of the form:  X += constant
2433     if (phi2->region() != loop->_head ||
2434         incr2->req() != 3 ||
2435         incr2->in(1) != phi2 ||
2436         incr2 == incr ||
2437         incr2->Opcode() != Op_AddI ||
2438         !incr2->in(2)->is_Con())
2439       continue;
2440 
2441     // Check for parallel induction variable (parallel to trip counter)
2442     // via an affine function.  In particular, count-down loops with
2443     // count-up array indices are common. We only RCE references off
2444     // the trip-counter, so we need to convert all these to trip-counter
2445     // expressions.
2446     Node *init2 = phi2->in( LoopNode::EntryControl );
2447     int stride_con2 = incr2->in(2)->get_int();
2448 
2449     // The ratio of the two strides cannot be represented as an int
2450     // if stride_con2 is min_int and stride_con is -1.
2451     if (stride_con2 == min_jint && stride_con == -1) {
2452       continue;
2453     }
2454 
2455     // The general case here gets a little tricky.  We want to find the
2456     // GCD of all possible parallel IV's and make a new IV using this
2457     // GCD for the loop.  Then all possible IVs are simple multiples of
2458     // the GCD.  In practice, this will cover very few extra loops.
2459     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
2460     // where +/-1 is the common case, but other integer multiples are
2461     // also easy to handle.
2462     int ratio_con = stride_con2/stride_con;
2463 
2464     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
2465 #ifndef PRODUCT
2466       if (TraceLoopOpts) {
2467         tty->print("Parallel IV: %d ", phi2->_idx);
2468         loop->dump_head();
2469       }
2470 #endif
2471       // Convert to using the trip counter.  The parallel induction
2472       // variable differs from the trip counter by a loop-invariant
2473       // amount, the difference between their respective initial values.
2474       // It is scaled by the 'ratio_con'.
2475       Node* ratio = _igvn.intcon(ratio_con);
2476       set_ctrl(ratio, C->root());
2477       Node* ratio_init = new MulINode(init, ratio);
2478       _igvn.register_new_node_with_optimizer(ratio_init, init);
2479       set_early_ctrl(ratio_init);
2480       Node* diff = new SubINode(init2, ratio_init);
2481       _igvn.register_new_node_with_optimizer(diff, init2);
2482       set_early_ctrl(diff);
2483       Node* ratio_idx = new MulINode(phi, ratio);
2484       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
2485       set_ctrl(ratio_idx, cl);
2486       Node* add = new AddINode(ratio_idx, diff);
2487       _igvn.register_new_node_with_optimizer(add);
2488       set_ctrl(add, cl);
2489       _igvn.replace_node( phi2, add );
2490       // Sometimes an induction variable is unused
2491       if (add->outcnt() == 0) {
2492         _igvn.remove_dead_node(add);
2493       }
2494       --i; // deleted this phi; rescan starting with next position
2495       continue;
2496     }
2497   }
2498 }
2499 
2500 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
2501   Node* keep = NULL;
2502   if (keep_one) {
2503     // Look for a safepoint on the idom-path.
2504     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
2505       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
2506         keep = i;
2507         break; // Found one
2508       }
2509     }
2510   }
2511 
2512   // Don't remove any safepoints if it is requested to keep a single safepoint and
2513   // no safepoint was found on idom-path. It is not safe to remove any safepoint
2514   // in this case since there's no safepoint dominating all paths in the loop body.
2515   bool prune = !keep_one || keep != NULL;
2516 
2517   // Delete other safepoints in this loop.
2518   Node_List* sfpts = _safepts;
2519   if (prune && sfpts != NULL) {
2520     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
2521     for (uint i = 0; i < sfpts->size(); i++) {
2522       Node* n = sfpts->at(i);
2523       assert(phase->get_loop(n) == this, "");
2524       if (n != keep && phase->is_deleteable_safept(n)) {
2525         phase->lazy_replace(n, n->in(TypeFunc::Control));
2526       }
2527     }
2528   }
2529 }
2530 
2531 //------------------------------counted_loop-----------------------------------
2532 // Convert to counted loops where possible
2533 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
2534 
2535   // For grins, set the inner-loop flag here
2536   if (!_child) {
2537     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
2538   }
2539 
2540   IdealLoopTree* loop = this;
2541   if (_head->is_CountedLoop() ||
2542       phase->is_counted_loop(_head, loop)) {
2543 
2544     if (LoopStripMiningIter == 0 || (LoopStripMiningIter > 1 && _child == NULL)) {
2545       // Indicate we do not need a safepoint here
2546       _has_sfpt = 1;
2547     }
2548 
2549     // Remove safepoints
2550     bool keep_one_sfpt = !(_has_call || _has_sfpt);
2551     remove_safepoints(phase, keep_one_sfpt);
2552 
2553     // Look for induction variables
2554     phase->replace_parallel_iv(this);
2555 
2556   } else if (_parent != NULL && !_irreducible) {
2557     // Not a counted loop. Keep one safepoint.
2558     bool keep_one_sfpt = true;
2559     remove_safepoints(phase, keep_one_sfpt);
2560   }
2561 
2562   // Recursively
2563   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
2564   assert(loop->_child != this || (loop->_child->_child == NULL && loop->_child->_next == NULL), "would miss some loops");
2565   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
2566   if (loop->_next)  loop->_next ->counted_loop(phase);
2567 }
2568 
2569 
2570 // The Estimated Loop Clone Size:
2571 //   CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm,
2572 // where  BC and  CC are  totally ad-hoc/magic  "body" and "clone" constants,
2573 // respectively, used to ensure that the node usage estimates made are on the
2574 // safe side, for the most part. The FanOutTerm is an attempt to estimate the
2575 // possible additional/excessive nodes generated due to data and control flow
2576 // merging, for edges reaching outside the loop.
2577 uint IdealLoopTree::est_loop_clone_sz(uint factor) const {
2578 
2579   precond(0 < factor && factor < 16);
2580 
2581   uint const bc = 13;
2582   uint const cc = 17;
2583   uint const sz = _body.size() + (_body.size() + 7) / 8;
2584   uint estimate = factor * (sz + bc) + cc;
2585 
2586   assert((estimate - cc) / factor == sz + bc, "overflow");
2587 
2588   return estimate + est_loop_flow_merge_sz();
2589 }
2590 
2591 // The Estimated Loop (full-) Unroll Size:
2592 //   UnrollFactor * (~106% * BodySize) + CC + FanOutTerm,
2593 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that
2594 // node usage estimates made are on the safe side, for the most part. This is
2595 // a "light" version of the loop clone size calculation (above), based on the
2596 // assumption that most of the loop-construct overhead will be unraveled when
2597 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1),
2598 // including an overflow check and returning UINT_MAX in case of an overflow.
2599 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const {
2600 
2601   precond(factor > 0);
2602 
2603   // Take into account that after unroll conjoined heads and tails will fold.
2604   uint const b0 = _body.size() - EMPTY_LOOP_SIZE;
2605   uint const cc = 7;
2606   uint const sz = b0 + (b0 + 15) / 16;
2607   uint estimate = factor * sz + cc;
2608 
2609   if ((estimate - cc) / factor != sz) {
2610     return UINT_MAX;
2611   }
2612 
2613   return estimate + est_loop_flow_merge_sz();
2614 }
2615 
2616 // Estimate the growth effect (in nodes) of merging control and data flow when
2617 // cloning a loop body, based on the amount of  control and data flow reaching
2618 // outside of the (current) loop body.
2619 uint IdealLoopTree::est_loop_flow_merge_sz() const {
2620 
2621   uint ctrl_edge_out_cnt = 0;
2622   uint data_edge_out_cnt = 0;
2623 
2624   for (uint i = 0; i < _body.size(); i++) {
2625     Node* node = _body.at(i);
2626     uint outcnt = node->outcnt();
2627 
2628     for (uint k = 0; k < outcnt; k++) {
2629       Node* out = node->raw_out(k);
2630       if (out == NULL) continue;
2631       if (out->is_CFG()) {
2632         if (!is_member(_phase->get_loop(out))) {
2633           ctrl_edge_out_cnt++;
2634         }
2635       } else if (_phase->has_ctrl(out)) {
2636         Node* ctrl = _phase->get_ctrl(out);
2637         assert(ctrl != NULL, "must be");
2638         assert(ctrl->is_CFG(), "must be");
2639         if (!is_member(_phase->get_loop(ctrl))) {
2640           data_edge_out_cnt++;
2641         }
2642       }
2643     }
2644   }
2645   // Use data and control count (x2.0) in estimate iff both are > 0. This is
2646   // a rather pessimistic estimate for the most part, in particular for some
2647   // complex loops, but still not enough to capture all loops.
2648   if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) {
2649     return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt);
2650   }
2651   return 0;
2652 }
2653 
2654 #ifndef PRODUCT
2655 //------------------------------dump_head--------------------------------------
2656 // Dump 1 liner for loop header info
2657 void IdealLoopTree::dump_head() const {
2658   tty->sp(2 * _nest);
2659   tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx);
2660   if (_irreducible) tty->print(" IRREDUCIBLE");
2661   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl) : _head->in(LoopNode::EntryControl);
2662   Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
2663   if (predicate != NULL ) {
2664     tty->print(" limit_check");
2665     entry = PhaseIdealLoop::skip_loop_predicates(entry);
2666   }
2667   if (UseProfiledLoopPredicate) {
2668     predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_profile_predicate);
2669     if (predicate != NULL) {
2670       tty->print(" profile_predicated");
2671       entry = PhaseIdealLoop::skip_loop_predicates(entry);
2672     }
2673   }
2674   if (UseLoopPredicate) {
2675     predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
2676     if (predicate != NULL) {
2677       tty->print(" predicated");
2678     }
2679   }
2680   if (_head->is_CountedLoop()) {
2681     CountedLoopNode *cl = _head->as_CountedLoop();
2682     tty->print(" counted");
2683 
2684     Node* init_n = cl->init_trip();
2685     if (init_n  != NULL &&  init_n->is_Con())
2686       tty->print(" [%d,", cl->init_trip()->get_int());
2687     else
2688       tty->print(" [int,");
2689     Node* limit_n = cl->limit();
2690     if (limit_n  != NULL &&  limit_n->is_Con())
2691       tty->print("%d),", cl->limit()->get_int());
2692     else
2693       tty->print("int),");
2694     int stride_con  = cl->stride_con();
2695     if (stride_con > 0) tty->print("+");
2696     tty->print("%d", stride_con);
2697 
2698     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
2699 
2700     if (cl->is_pre_loop ()) tty->print(" pre" );
2701     if (cl->is_main_loop()) tty->print(" main");
2702     if (cl->is_post_loop()) tty->print(" post");
2703     if (cl->is_vectorized_loop()) tty->print(" vector");
2704     if (cl->range_checks_present()) tty->print(" rc ");
2705     if (cl->is_multiversioned()) tty->print(" multi ");
2706   }
2707   if (_has_call) tty->print(" has_call");
2708   if (_has_sfpt) tty->print(" has_sfpt");
2709   if (_rce_candidate) tty->print(" rce");
2710   if (_safepts != NULL && _safepts->size() > 0) {
2711     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
2712   }
2713   if (_required_safept != NULL && _required_safept->size() > 0) {
2714     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
2715   }
2716   if (Verbose) {
2717     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
2718   }
2719   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
2720     tty->print(" strip_mined");
2721   }
2722   tty->cr();
2723 }
2724 
2725 //------------------------------dump-------------------------------------------
2726 // Dump loops by loop tree
2727 void IdealLoopTree::dump() const {
2728   dump_head();
2729   if (_child) _child->dump();
2730   if (_next)  _next ->dump();
2731 }
2732 
2733 #endif
2734 
2735 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
2736   if (loop == root) {
2737     if (loop->_child != NULL) {
2738       log->begin_head("loop_tree");
2739       log->end_head();
2740       if( loop->_child ) log_loop_tree(root, loop->_child, log);
2741       log->tail("loop_tree");
2742       assert(loop->_next == NULL, "what?");
2743     }
2744   } else {
2745     Node* head = loop->_head;
2746     log->begin_head("loop");
2747     log->print(" idx='%d' ", head->_idx);
2748     if (loop->_irreducible) log->print("irreducible='1' ");
2749     if (head->is_Loop()) {
2750       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
2751       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
2752     }
2753     if (head->is_CountedLoop()) {
2754       CountedLoopNode* cl = head->as_CountedLoop();
2755       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
2756       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
2757       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
2758     }
2759     log->end_head();
2760     if( loop->_child ) log_loop_tree(root, loop->_child, log);
2761     log->tail("loop");
2762     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
2763   }
2764 }
2765 
2766 //---------------------collect_potentially_useful_predicates-----------------------
2767 // Helper function to collect potentially useful predicates to prevent them from
2768 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
2769 void PhaseIdealLoop::collect_potentially_useful_predicates(
2770                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
2771   if (loop->_child) { // child
2772     collect_potentially_useful_predicates(loop->_child, useful_predicates);
2773   }
2774 
2775   // self (only loops that we can apply loop predication may use their predicates)
2776   if (loop->_head->is_Loop() &&
2777       !loop->_irreducible    &&
2778       !loop->tail()->is_top()) {
2779     LoopNode* lpn = loop->_head->as_Loop();
2780     Node* entry = lpn->in(LoopNode::EntryControl);
2781     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
2782     if (predicate_proj != NULL) { // right pattern that can be used by loop predication
2783       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
2784       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2785       entry = skip_loop_predicates(entry);
2786     }
2787     if (UseProfiledLoopPredicate) {
2788       predicate_proj = find_predicate(entry); // Predicate
2789       if (predicate_proj != NULL) {
2790         useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2791         entry = skip_loop_predicates(entry);
2792       }
2793     }
2794     predicate_proj = find_predicate(entry); // Predicate
2795     if (predicate_proj != NULL) {
2796       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2797     }
2798   }
2799 
2800   if (loop->_next) { // sibling
2801     collect_potentially_useful_predicates(loop->_next, useful_predicates);
2802   }
2803 }
2804 
2805 //------------------------eliminate_useless_predicates-----------------------------
2806 // Eliminate all inserted predicates if they could not be used by loop predication.
2807 // Note: it will also eliminates loop limits check predicate since it also uses
2808 // Opaque1 node (see Parse::add_predicate()).
2809 void PhaseIdealLoop::eliminate_useless_predicates() {
2810   if (C->predicate_count() == 0)
2811     return; // no predicate left
2812 
2813   Unique_Node_List useful_predicates; // to store useful predicates
2814   if (C->has_loops()) {
2815     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
2816   }
2817 
2818   for (int i = C->predicate_count(); i > 0; i--) {
2819      Node * n = C->predicate_opaque1_node(i-1);
2820      assert(n->Opcode() == Op_Opaque1, "must be");
2821      if (!useful_predicates.member(n)) { // not in the useful list
2822        _igvn.replace_node(n, n->in(1));
2823      }
2824   }
2825 }
2826 
2827 //------------------------process_expensive_nodes-----------------------------
2828 // Expensive nodes have their control input set to prevent the GVN
2829 // from commoning them and as a result forcing the resulting node to
2830 // be in a more frequent path. Use CFG information here, to change the
2831 // control inputs so that some expensive nodes can be commoned while
2832 // not executed more frequently.
2833 bool PhaseIdealLoop::process_expensive_nodes() {
2834   assert(OptimizeExpensiveOps, "optimization off?");
2835 
2836   // Sort nodes to bring similar nodes together
2837   C->sort_expensive_nodes();
2838 
2839   bool progress = false;
2840 
2841   for (int i = 0; i < C->expensive_count(); ) {
2842     Node* n = C->expensive_node(i);
2843     int start = i;
2844     // Find nodes similar to n
2845     i++;
2846     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
2847     int end = i;
2848     // And compare them two by two
2849     for (int j = start; j < end; j++) {
2850       Node* n1 = C->expensive_node(j);
2851       if (is_node_unreachable(n1)) {
2852         continue;
2853       }
2854       for (int k = j+1; k < end; k++) {
2855         Node* n2 = C->expensive_node(k);
2856         if (is_node_unreachable(n2)) {
2857           continue;
2858         }
2859 
2860         assert(n1 != n2, "should be pair of nodes");
2861 
2862         Node* c1 = n1->in(0);
2863         Node* c2 = n2->in(0);
2864 
2865         Node* parent_c1 = c1;
2866         Node* parent_c2 = c2;
2867 
2868         // The call to get_early_ctrl_for_expensive() moves the
2869         // expensive nodes up but stops at loops that are in a if
2870         // branch. See whether we can exit the loop and move above the
2871         // If.
2872         if (c1->is_Loop()) {
2873           parent_c1 = c1->in(1);
2874         }
2875         if (c2->is_Loop()) {
2876           parent_c2 = c2->in(1);
2877         }
2878 
2879         if (parent_c1 == parent_c2) {
2880           _igvn._worklist.push(n1);
2881           _igvn._worklist.push(n2);
2882           continue;
2883         }
2884 
2885         // Look for identical expensive node up the dominator chain.
2886         if (is_dominator(c1, c2)) {
2887           c2 = c1;
2888         } else if (is_dominator(c2, c1)) {
2889           c1 = c2;
2890         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
2891                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
2892           // Both branches have the same expensive node so move it up
2893           // before the if.
2894           c1 = c2 = idom(parent_c1->in(0));
2895         }
2896         // Do the actual moves
2897         if (n1->in(0) != c1) {
2898           _igvn.hash_delete(n1);
2899           n1->set_req(0, c1);
2900           _igvn.hash_insert(n1);
2901           _igvn._worklist.push(n1);
2902           progress = true;
2903         }
2904         if (n2->in(0) != c2) {
2905           _igvn.hash_delete(n2);
2906           n2->set_req(0, c2);
2907           _igvn.hash_insert(n2);
2908           _igvn._worklist.push(n2);
2909           progress = true;
2910         }
2911       }
2912     }
2913   }
2914 
2915   return progress;
2916 }
2917 
2918 
2919 //=============================================================================
2920 //----------------------------build_and_optimize-------------------------------
2921 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
2922 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
2923 void PhaseIdealLoop::build_and_optimize(LoopOptsMode mode) {
2924   bool do_split_ifs = (mode == LoopOptsDefault);
2925   bool skip_loop_opts = (mode == LoopOptsNone);
2926 
2927   int old_progress = C->major_progress();
2928   uint orig_worklist_size = _igvn._worklist.size();
2929 
2930   // Reset major-progress flag for the driver's heuristics
2931   C->clear_major_progress();
2932 
2933 #ifndef PRODUCT
2934   // Capture for later assert
2935   uint unique = C->unique();
2936   _loop_invokes++;
2937   _loop_work += unique;
2938 #endif
2939 
2940   // True if the method has at least 1 irreducible loop
2941   _has_irreducible_loops = false;
2942 
2943   _created_loop_node = false;
2944 
2945   Arena *a = Thread::current()->resource_area();
2946   VectorSet visited(a);
2947   // Pre-grow the mapping from Nodes to IdealLoopTrees.
2948   _nodes.map(C->unique(), NULL);
2949   memset(_nodes.adr(), 0, wordSize * C->unique());
2950 
2951   // Pre-build the top-level outermost loop tree entry
2952   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
2953   // Do not need a safepoint at the top level
2954   _ltree_root->_has_sfpt = 1;
2955 
2956   // Initialize Dominators.
2957   // Checked in clone_loop_predicate() during beautify_loops().
2958   _idom_size = 0;
2959   _idom      = NULL;
2960   _dom_depth = NULL;
2961   _dom_stk   = NULL;
2962 
2963   // Empty pre-order array
2964   allocate_preorders();
2965 
2966   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
2967   // IdealLoopTree entries.  Data nodes are NOT walked.
2968   build_loop_tree();
2969   // Check for bailout, and return
2970   if (C->failing()) {
2971     return;
2972   }
2973 
2974   // No loops after all
2975   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
2976 
2977   // There should always be an outer loop containing the Root and Return nodes.
2978   // If not, we have a degenerate empty program.  Bail out in this case.
2979   if (!has_node(C->root())) {
2980     if (!_verify_only) {
2981       C->clear_major_progress();
2982       C->record_method_not_compilable("empty program detected during loop optimization");
2983     }
2984     return;
2985   }
2986 
2987   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2988   // Nothing to do, so get out
2989   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only &&
2990     !bs->is_gc_specific_loop_opts_pass(mode);
2991   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
2992   bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(mode);
2993   if (stop_early && !do_expensive_nodes) {
2994     _igvn.optimize();           // Cleanup NeverBranches
2995     return;
2996   }
2997 
2998   // Set loop nesting depth
2999   _ltree_root->set_nest( 0 );
3000 
3001   // Split shared headers and insert loop landing pads.
3002   // Do not bother doing this on the Root loop of course.
3003   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
3004     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
3005     if( _ltree_root->_child->beautify_loops( this ) ) {
3006       // Re-build loop tree!
3007       _ltree_root->_child = NULL;
3008       _nodes.clear();
3009       reallocate_preorders();
3010       build_loop_tree();
3011       // Check for bailout, and return
3012       if (C->failing()) {
3013         return;
3014       }
3015       // Reset loop nesting depth
3016       _ltree_root->set_nest( 0 );
3017 
3018       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
3019     }
3020   }
3021 
3022   // Build Dominators for elision of NULL checks & loop finding.
3023   // Since nodes do not have a slot for immediate dominator, make
3024   // a persistent side array for that info indexed on node->_idx.
3025   _idom_size = C->unique();
3026   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
3027   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
3028   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
3029   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
3030 
3031   Dominators();
3032 
3033   if (!_verify_only) {
3034     // As a side effect, Dominators removed any unreachable CFG paths
3035     // into RegionNodes.  It doesn't do this test against Root, so
3036     // we do it here.
3037     for( uint i = 1; i < C->root()->req(); i++ ) {
3038       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
3039         _igvn.delete_input_of(C->root(), i);
3040         i--;                      // Rerun same iteration on compressed edges
3041       }
3042     }
3043 
3044     // Given dominators, try to find inner loops with calls that must
3045     // always be executed (call dominates loop tail).  These loops do
3046     // not need a separate safepoint.
3047     Node_List cisstack(a);
3048     _ltree_root->check_safepts(visited, cisstack);
3049   }
3050 
3051   // Walk the DATA nodes and place into loops.  Find earliest control
3052   // node.  For CFG nodes, the _nodes array starts out and remains
3053   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
3054   // _nodes array holds the earliest legal controlling CFG node.
3055 
3056   // Allocate stack with enough space to avoid frequent realloc
3057   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
3058   Node_Stack nstack( a, stack_size );
3059 
3060   visited.clear();
3061   Node_List worklist(a);
3062   // Don't need C->root() on worklist since
3063   // it will be processed among C->top() inputs
3064   worklist.push(C->top());
3065   visited.set(C->top()->_idx); // Set C->top() as visited now
3066   build_loop_early( visited, worklist, nstack );
3067 
3068   // Given early legal placement, try finding counted loops.  This placement
3069   // is good enough to discover most loop invariants.
3070   if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) {
3071     _ltree_root->counted_loop( this );
3072   }
3073 
3074   // Find latest loop placement.  Find ideal loop placement.
3075   visited.clear();
3076   init_dom_lca_tags();
3077   // Need C->root() on worklist when processing outs
3078   worklist.push(C->root());
3079   NOT_PRODUCT( C->verify_graph_edges(); )
3080   worklist.push(C->top());
3081   build_loop_late( visited, worklist, nstack );
3082 
3083   if (_verify_only) {
3084     C->restore_major_progress(old_progress);
3085     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
3086     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
3087     return;
3088   }
3089 
3090   // clear out the dead code after build_loop_late
3091   while (_deadlist.size()) {
3092     _igvn.remove_globally_dead_node(_deadlist.pop());
3093   }
3094 
3095   if (stop_early) {
3096     assert(do_expensive_nodes, "why are we here?");
3097     if (process_expensive_nodes()) {
3098       // If we made some progress when processing expensive nodes then
3099       // the IGVN may modify the graph in a way that will allow us to
3100       // make some more progress: we need to try processing expensive
3101       // nodes again.
3102       C->set_major_progress();
3103     }
3104     _igvn.optimize();
3105     return;
3106   }
3107 
3108   // Some parser-inserted loop predicates could never be used by loop
3109   // predication or they were moved away from loop during some optimizations.
3110   // For example, peeling. Eliminate them before next loop optimizations.
3111   eliminate_useless_predicates();
3112 
3113 #ifndef PRODUCT
3114   C->verify_graph_edges();
3115   if (_verify_me) {             // Nested verify pass?
3116     // Check to see if the verify mode is broken
3117     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
3118     return;
3119   }
3120   if (VerifyLoopOptimizations) verify();
3121   if (TraceLoopOpts && C->has_loops()) {
3122     _ltree_root->dump();
3123   }
3124 #endif
3125 
3126   if (skip_loop_opts) {
3127     // restore major progress flag
3128     C->restore_major_progress(old_progress);
3129 
3130     // Cleanup any modified bits
3131     _igvn.optimize();
3132 
3133     if (C->log() != NULL) {
3134       log_loop_tree(_ltree_root, _ltree_root, C->log());
3135     }
3136     return;
3137   }
3138 
3139   if (mode == LoopOptsMaxUnroll) {
3140     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
3141       IdealLoopTree* lpt = iter.current();
3142       if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) {
3143         lpt->compute_trip_count(this);
3144         if (!lpt->do_one_iteration_loop(this) &&
3145             !lpt->do_remove_empty_loop(this)) {
3146           AutoNodeBudget node_budget(this);
3147           if (lpt->_head->as_CountedLoop()->is_normal_loop() &&
3148               lpt->policy_maximally_unroll(this)) {
3149             memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
3150             do_maximally_unroll(lpt, worklist);
3151           }
3152         }
3153       }
3154     }
3155 
3156     C->restore_major_progress(old_progress);
3157 
3158     _igvn.optimize();
3159 
3160     if (C->log() != NULL) {
3161       log_loop_tree(_ltree_root, _ltree_root, C->log());
3162     }
3163     return;
3164   }
3165 
3166   if (bs->optimize_loops(this, mode, visited, nstack, worklist)) {
3167     _igvn.optimize();
3168     if (C->log() != NULL) {
3169       log_loop_tree(_ltree_root, _ltree_root, C->log());
3170     }
3171     return;
3172   }
3173 
3174   if (ReassociateInvariants) {
3175     // Reassociate invariants and prep for split_thru_phi
3176     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
3177       IdealLoopTree* lpt = iter.current();
3178       bool is_counted = lpt->is_counted();
3179       if (!is_counted || !lpt->is_innermost()) continue;
3180 
3181       // check for vectorized loops, any reassociation of invariants was already done
3182       if (is_counted && lpt->_head->as_CountedLoop()->is_unroll_only()) {
3183         continue;
3184       } else {
3185         AutoNodeBudget node_budget(this);
3186         lpt->reassociate_invariants(this);
3187       }
3188       // Because RCE opportunities can be masked by split_thru_phi,
3189       // look for RCE candidates and inhibit split_thru_phi
3190       // on just their loop-phi's for this pass of loop opts
3191       if (SplitIfBlocks && do_split_ifs) {
3192         AutoNodeBudget node_budget(this, AutoNodeBudget::NO_BUDGET_CHECK);
3193         if (lpt->policy_range_check(this)) {
3194           lpt->_rce_candidate = 1; // = true
3195         }
3196       }
3197     }
3198   }
3199 
3200   // Check for aggressive application of split-if and other transforms
3201   // that require basic-block info (like cloning through Phi's)
3202   if( SplitIfBlocks && do_split_ifs ) {
3203     visited.clear();
3204     split_if_with_blocks( visited, nstack);
3205     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
3206   }
3207 
3208   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
3209     C->set_major_progress();
3210   }
3211 
3212   // Perform loop predication before iteration splitting
3213   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
3214     _ltree_root->_child->loop_predication(this);
3215   }
3216 
3217   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
3218     if (do_intrinsify_fill()) {
3219       C->set_major_progress();
3220     }
3221   }
3222 
3223   // Perform iteration-splitting on inner loops.  Split iterations to avoid
3224   // range checks or one-shot null checks.
3225 
3226   // If split-if's didn't hack the graph too bad (no CFG changes)
3227   // then do loop opts.
3228   if (C->has_loops() && !C->major_progress()) {
3229     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
3230     _ltree_root->_child->iteration_split( this, worklist );
3231     // No verify after peeling!  GCM has hoisted code out of the loop.
3232     // After peeling, the hoisted code could sink inside the peeled area.
3233     // The peeling code does not try to recompute the best location for
3234     // all the code before the peeled area, so the verify pass will always
3235     // complain about it.
3236   }
3237   // Do verify graph edges in any case
3238   NOT_PRODUCT( C->verify_graph_edges(); );
3239 
3240   if (!do_split_ifs) {
3241     // We saw major progress in Split-If to get here.  We forced a
3242     // pass with unrolling and not split-if, however more split-if's
3243     // might make progress.  If the unrolling didn't make progress
3244     // then the major-progress flag got cleared and we won't try
3245     // another round of Split-If.  In particular the ever-common
3246     // instance-of/check-cast pattern requires at least 2 rounds of
3247     // Split-If to clear out.
3248     C->set_major_progress();
3249   }
3250 
3251   // Repeat loop optimizations if new loops were seen
3252   if (created_loop_node()) {
3253     C->set_major_progress();
3254   }
3255 
3256   // Keep loop predicates and perform optimizations with them
3257   // until no more loop optimizations could be done.
3258   // After that switch predicates off and do more loop optimizations.
3259   if (!C->major_progress() && (C->predicate_count() > 0)) {
3260      C->cleanup_loop_predicates(_igvn);
3261      if (TraceLoopOpts) {
3262        tty->print_cr("PredicatesOff");
3263      }
3264      C->set_major_progress();
3265   }
3266 
3267   // Convert scalar to superword operations at the end of all loop opts.
3268   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
3269     // SuperWord transform
3270     SuperWord sw(this);
3271     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
3272       IdealLoopTree* lpt = iter.current();
3273       if (lpt->is_counted()) {
3274         CountedLoopNode *cl = lpt->_head->as_CountedLoop();
3275 
3276         if (PostLoopMultiversioning && cl->is_rce_post_loop() && !cl->is_vectorized_loop()) {
3277           // Check that the rce'd post loop is encountered first, multiversion after all
3278           // major main loop optimization are concluded
3279           if (!C->major_progress()) {
3280             IdealLoopTree *lpt_next = lpt->_next;
3281             if (lpt_next && lpt_next->is_counted()) {
3282               CountedLoopNode *cl = lpt_next->_head->as_CountedLoop();
3283               has_range_checks(lpt_next);
3284               if (cl->is_post_loop() && cl->range_checks_present()) {
3285                 if (!cl->is_multiversioned()) {
3286                   if (multi_version_post_loops(lpt, lpt_next) == false) {
3287                     // Cause the rce loop to be optimized away if we fail
3288                     cl->mark_is_multiversioned();
3289                     cl->set_slp_max_unroll(0);
3290                     poison_rce_post_loop(lpt);
3291                   }
3292                 }
3293               }
3294             }
3295             sw.transform_loop(lpt, true);
3296           }
3297         } else if (cl->is_main_loop()) {
3298           sw.transform_loop(lpt, true);
3299         }
3300       }
3301     }
3302   }
3303 
3304   // Cleanup any modified bits
3305   _igvn.optimize();
3306 
3307   // disable assert until issue with split_flow_path is resolved (6742111)
3308   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
3309   //        "shouldn't introduce irreducible loops");
3310 
3311   if (C->log() != NULL) {
3312     log_loop_tree(_ltree_root, _ltree_root, C->log());
3313   }
3314 }
3315 
3316 #ifndef PRODUCT
3317 //------------------------------print_statistics-------------------------------
3318 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
3319 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
3320 void PhaseIdealLoop::print_statistics() {
3321   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
3322 }
3323 
3324 //------------------------------verify-----------------------------------------
3325 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
3326 static int fail;                // debug only, so its multi-thread dont care
3327 void PhaseIdealLoop::verify() const {
3328   int old_progress = C->major_progress();
3329   ResourceMark rm;
3330   PhaseIdealLoop loop_verify( _igvn, this );
3331   VectorSet visited(Thread::current()->resource_area());
3332 
3333   fail = 0;
3334   verify_compare( C->root(), &loop_verify, visited );
3335   assert( fail == 0, "verify loops failed" );
3336   // Verify loop structure is the same
3337   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
3338   // Reset major-progress.  It was cleared by creating a verify version of
3339   // PhaseIdealLoop.
3340   C->restore_major_progress(old_progress);
3341 }
3342 
3343 //------------------------------verify_compare---------------------------------
3344 // Make sure me and the given PhaseIdealLoop agree on key data structures
3345 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
3346   if( !n ) return;
3347   if( visited.test_set( n->_idx ) ) return;
3348   if( !_nodes[n->_idx] ) {      // Unreachable
3349     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
3350     return;
3351   }
3352 
3353   uint i;
3354   for( i = 0; i < n->req(); i++ )
3355     verify_compare( n->in(i), loop_verify, visited );
3356 
3357   // Check the '_nodes' block/loop structure
3358   i = n->_idx;
3359   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
3360     if( _nodes[i] != loop_verify->_nodes[i] &&
3361         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
3362       tty->print("Mismatched control setting for: ");
3363       n->dump();
3364       if( fail++ > 10 ) return;
3365       Node *c = get_ctrl_no_update(n);
3366       tty->print("We have it as: ");
3367       if( c->in(0) ) c->dump();
3368         else tty->print_cr("N%d",c->_idx);
3369       tty->print("Verify thinks: ");
3370       if( loop_verify->has_ctrl(n) )
3371         loop_verify->get_ctrl_no_update(n)->dump();
3372       else
3373         loop_verify->get_loop_idx(n)->dump();
3374       tty->cr();
3375     }
3376   } else {                    // We have a loop
3377     IdealLoopTree *us = get_loop_idx(n);
3378     if( loop_verify->has_ctrl(n) ) {
3379       tty->print("Mismatched loop setting for: ");
3380       n->dump();
3381       if( fail++ > 10 ) return;
3382       tty->print("We have it as: ");
3383       us->dump();
3384       tty->print("Verify thinks: ");
3385       loop_verify->get_ctrl_no_update(n)->dump();
3386       tty->cr();
3387     } else if (!C->major_progress()) {
3388       // Loop selection can be messed up if we did a major progress
3389       // operation, like split-if.  Do not verify in that case.
3390       IdealLoopTree *them = loop_verify->get_loop_idx(n);
3391       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
3392         tty->print("Unequals loops for: ");
3393         n->dump();
3394         if( fail++ > 10 ) return;
3395         tty->print("We have it as: ");
3396         us->dump();
3397         tty->print("Verify thinks: ");
3398         them->dump();
3399         tty->cr();
3400       }
3401     }
3402   }
3403 
3404   // Check for immediate dominators being equal
3405   if( i >= _idom_size ) {
3406     if( !n->is_CFG() ) return;
3407     tty->print("CFG Node with no idom: ");
3408     n->dump();
3409     return;
3410   }
3411   if( !n->is_CFG() ) return;
3412   if( n == C->root() ) return; // No IDOM here
3413 
3414   assert(n->_idx == i, "sanity");
3415   Node *id = idom_no_update(n);
3416   if( id != loop_verify->idom_no_update(n) ) {
3417     tty->print("Unequals idoms for: ");
3418     n->dump();
3419     if( fail++ > 10 ) return;
3420     tty->print("We have it as: ");
3421     id->dump();
3422     tty->print("Verify thinks: ");
3423     loop_verify->idom_no_update(n)->dump();
3424     tty->cr();
3425   }
3426 
3427 }
3428 
3429 //------------------------------verify_tree------------------------------------
3430 // Verify that tree structures match.  Because the CFG can change, siblings
3431 // within the loop tree can be reordered.  We attempt to deal with that by
3432 // reordering the verify's loop tree if possible.
3433 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
3434   assert( _parent == parent, "Badly formed loop tree" );
3435 
3436   // Siblings not in same order?  Attempt to re-order.
3437   if( _head != loop->_head ) {
3438     // Find _next pointer to update
3439     IdealLoopTree **pp = &loop->_parent->_child;
3440     while( *pp != loop )
3441       pp = &((*pp)->_next);
3442     // Find proper sibling to be next
3443     IdealLoopTree **nn = &loop->_next;
3444     while( (*nn) && (*nn)->_head != _head )
3445       nn = &((*nn)->_next);
3446 
3447     // Check for no match.
3448     if( !(*nn) ) {
3449       // Annoyingly, irreducible loops can pick different headers
3450       // after a major_progress operation, so the rest of the loop
3451       // tree cannot be matched.
3452       if (_irreducible && Compile::current()->major_progress())  return;
3453       assert( 0, "failed to match loop tree" );
3454     }
3455 
3456     // Move (*nn) to (*pp)
3457     IdealLoopTree *hit = *nn;
3458     *nn = hit->_next;
3459     hit->_next = loop;
3460     *pp = loop;
3461     loop = hit;
3462     // Now try again to verify
3463   }
3464 
3465   assert( _head  == loop->_head , "mismatched loop head" );
3466   Node *tail = _tail;           // Inline a non-updating version of
3467   while( !tail->in(0) )         // the 'tail()' call.
3468     tail = tail->in(1);
3469   assert( tail == loop->_tail, "mismatched loop tail" );
3470 
3471   // Counted loops that are guarded should be able to find their guards
3472   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
3473     CountedLoopNode *cl = _head->as_CountedLoop();
3474     Node *init = cl->init_trip();
3475     Node *ctrl = cl->in(LoopNode::EntryControl);
3476     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
3477     Node *iff  = ctrl->in(0);
3478     assert( iff->Opcode() == Op_If, "" );
3479     Node *bol  = iff->in(1);
3480     assert( bol->Opcode() == Op_Bool, "" );
3481     Node *cmp  = bol->in(1);
3482     assert( cmp->Opcode() == Op_CmpI, "" );
3483     Node *add  = cmp->in(1);
3484     Node *opaq;
3485     if( add->Opcode() == Op_Opaque1 ) {
3486       opaq = add;
3487     } else {
3488       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
3489       assert( add == init, "" );
3490       opaq = cmp->in(2);
3491     }
3492     assert( opaq->Opcode() == Op_Opaque1, "" );
3493 
3494   }
3495 
3496   if (_child != NULL)  _child->verify_tree(loop->_child, this);
3497   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
3498   // Innermost loops need to verify loop bodies,
3499   // but only if no 'major_progress'
3500   int fail = 0;
3501   if (!Compile::current()->major_progress() && _child == NULL) {
3502     for( uint i = 0; i < _body.size(); i++ ) {
3503       Node *n = _body.at(i);
3504       if (n->outcnt() == 0)  continue; // Ignore dead
3505       uint j;
3506       for( j = 0; j < loop->_body.size(); j++ )
3507         if( loop->_body.at(j) == n )
3508           break;
3509       if( j == loop->_body.size() ) { // Not found in loop body
3510         // Last ditch effort to avoid assertion: Its possible that we
3511         // have some users (so outcnt not zero) but are still dead.
3512         // Try to find from root.
3513         if (Compile::current()->root()->find(n->_idx)) {
3514           fail++;
3515           tty->print("We have that verify does not: ");
3516           n->dump();
3517         }
3518       }
3519     }
3520     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
3521       Node *n = loop->_body.at(i2);
3522       if (n->outcnt() == 0)  continue; // Ignore dead
3523       uint j;
3524       for( j = 0; j < _body.size(); j++ )
3525         if( _body.at(j) == n )
3526           break;
3527       if( j == _body.size() ) { // Not found in loop body
3528         // Last ditch effort to avoid assertion: Its possible that we
3529         // have some users (so outcnt not zero) but are still dead.
3530         // Try to find from root.
3531         if (Compile::current()->root()->find(n->_idx)) {
3532           fail++;
3533           tty->print("Verify has that we do not: ");
3534           n->dump();
3535         }
3536       }
3537     }
3538     assert( !fail, "loop body mismatch" );
3539   }
3540 }
3541 
3542 #endif
3543 
3544 //------------------------------set_idom---------------------------------------
3545 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
3546   uint idx = d->_idx;
3547   if (idx >= _idom_size) {
3548     uint newsize = next_power_of_2(idx);
3549     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
3550     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
3551     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
3552     _idom_size = newsize;
3553   }
3554   _idom[idx] = n;
3555   _dom_depth[idx] = dom_depth;
3556 }
3557 
3558 //------------------------------recompute_dom_depth---------------------------------------
3559 // The dominator tree is constructed with only parent pointers.
3560 // This recomputes the depth in the tree by first tagging all
3561 // nodes as "no depth yet" marker.  The next pass then runs up
3562 // the dom tree from each node marked "no depth yet", and computes
3563 // the depth on the way back down.
3564 void PhaseIdealLoop::recompute_dom_depth() {
3565   uint no_depth_marker = C->unique();
3566   uint i;
3567   // Initialize depth to "no depth yet" and realize all lazy updates
3568   for (i = 0; i < _idom_size; i++) {
3569     // Only indices with a _dom_depth has a Node* or NULL (otherwise uninitalized).
3570     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
3571       _dom_depth[i] = no_depth_marker;
3572 
3573       // heal _idom if it has a fwd mapping in _nodes
3574       if (_idom[i]->in(0) == NULL) {
3575         idom(i);
3576       }
3577     }
3578   }
3579   if (_dom_stk == NULL) {
3580     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
3581     if (init_size < 10) init_size = 10;
3582     _dom_stk = new GrowableArray<uint>(init_size);
3583   }
3584   // Compute new depth for each node.
3585   for (i = 0; i < _idom_size; i++) {
3586     uint j = i;
3587     // Run up the dom tree to find a node with a depth
3588     while (_dom_depth[j] == no_depth_marker) {
3589       _dom_stk->push(j);
3590       j = _idom[j]->_idx;
3591     }
3592     // Compute the depth on the way back down this tree branch
3593     uint dd = _dom_depth[j] + 1;
3594     while (_dom_stk->length() > 0) {
3595       uint j = _dom_stk->pop();
3596       _dom_depth[j] = dd;
3597       dd++;
3598     }
3599   }
3600 }
3601 
3602 //------------------------------sort-------------------------------------------
3603 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
3604 // loop tree, not the root.
3605 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
3606   if( !innermost ) return loop; // New innermost loop
3607 
3608   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
3609   assert( loop_preorder, "not yet post-walked loop" );
3610   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
3611   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
3612 
3613   // Insert at start of list
3614   while( l ) {                  // Insertion sort based on pre-order
3615     if( l == loop ) return innermost; // Already on list!
3616     int l_preorder = get_preorder(l->_head); // Cache pre-order number
3617     assert( l_preorder, "not yet post-walked l" );
3618     // Check header pre-order number to figure proper nesting
3619     if( loop_preorder > l_preorder )
3620       break;                    // End of insertion
3621     // If headers tie (e.g., shared headers) check tail pre-order numbers.
3622     // Since I split shared headers, you'd think this could not happen.
3623     // BUT: I must first do the preorder numbering before I can discover I
3624     // have shared headers, so the split headers all get the same preorder
3625     // number as the RegionNode they split from.
3626     if( loop_preorder == l_preorder &&
3627         get_preorder(loop->_tail) < get_preorder(l->_tail) )
3628       break;                    // Also check for shared headers (same pre#)
3629     pp = &l->_parent;           // Chain up list
3630     l = *pp;
3631   }
3632   // Link into list
3633   // Point predecessor to me
3634   *pp = loop;
3635   // Point me to successor
3636   IdealLoopTree *p = loop->_parent;
3637   loop->_parent = l;            // Point me to successor
3638   if( p ) sort( p, innermost ); // Insert my parents into list as well
3639   return innermost;
3640 }
3641 
3642 //------------------------------build_loop_tree--------------------------------
3643 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
3644 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
3645 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
3646 // tightest enclosing IdealLoopTree for post-walked.
3647 //
3648 // During my forward walk I do a short 1-layer lookahead to see if I can find
3649 // a loop backedge with that doesn't have any work on the backedge.  This
3650 // helps me construct nested loops with shared headers better.
3651 //
3652 // Once I've done the forward recursion, I do the post-work.  For each child
3653 // I check to see if there is a backedge.  Backedges define a loop!  I
3654 // insert an IdealLoopTree at the target of the backedge.
3655 //
3656 // During the post-work I also check to see if I have several children
3657 // belonging to different loops.  If so, then this Node is a decision point
3658 // where control flow can choose to change loop nests.  It is at this
3659 // decision point where I can figure out how loops are nested.  At this
3660 // time I can properly order the different loop nests from my children.
3661 // Note that there may not be any backedges at the decision point!
3662 //
3663 // Since the decision point can be far removed from the backedges, I can't
3664 // order my loops at the time I discover them.  Thus at the decision point
3665 // I need to inspect loop header pre-order numbers to properly nest my
3666 // loops.  This means I need to sort my childrens' loops by pre-order.
3667 // The sort is of size number-of-control-children, which generally limits
3668 // it to size 2 (i.e., I just choose between my 2 target loops).
3669 void PhaseIdealLoop::build_loop_tree() {
3670   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3671   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
3672   Node *n = C->root();
3673   bltstack.push(n);
3674   int pre_order = 1;
3675   int stack_size;
3676 
3677   while ( ( stack_size = bltstack.length() ) != 0 ) {
3678     n = bltstack.top(); // Leave node on stack
3679     if ( !is_visited(n) ) {
3680       // ---- Pre-pass Work ----
3681       // Pre-walked but not post-walked nodes need a pre_order number.
3682 
3683       set_preorder_visited( n, pre_order ); // set as visited
3684 
3685       // ---- Scan over children ----
3686       // Scan first over control projections that lead to loop headers.
3687       // This helps us find inner-to-outer loops with shared headers better.
3688 
3689       // Scan children's children for loop headers.
3690       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
3691         Node* m = n->raw_out(i);       // Child
3692         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
3693           // Scan over children's children to find loop
3694           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3695             Node* l = m->fast_out(j);
3696             if( is_visited(l) &&       // Been visited?
3697                 !is_postvisited(l) &&  // But not post-visited
3698                 get_preorder(l) < pre_order ) { // And smaller pre-order
3699               // Found!  Scan the DFS down this path before doing other paths
3700               bltstack.push(m);
3701               break;
3702             }
3703           }
3704         }
3705       }
3706       pre_order++;
3707     }
3708     else if ( !is_postvisited(n) ) {
3709       // Note: build_loop_tree_impl() adds out edges on rare occasions,
3710       // such as com.sun.rsasign.am::a.
3711       // For non-recursive version, first, process current children.
3712       // On next iteration, check if additional children were added.
3713       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
3714         Node* u = n->raw_out(k);
3715         if ( u->is_CFG() && !is_visited(u) ) {
3716           bltstack.push(u);
3717         }
3718       }
3719       if ( bltstack.length() == stack_size ) {
3720         // There were no additional children, post visit node now
3721         (void)bltstack.pop(); // Remove node from stack
3722         pre_order = build_loop_tree_impl( n, pre_order );
3723         // Check for bailout
3724         if (C->failing()) {
3725           return;
3726         }
3727         // Check to grow _preorders[] array for the case when
3728         // build_loop_tree_impl() adds new nodes.
3729         check_grow_preorders();
3730       }
3731     }
3732     else {
3733       (void)bltstack.pop(); // Remove post-visited node from stack
3734     }
3735   }
3736 }
3737 
3738 //------------------------------build_loop_tree_impl---------------------------
3739 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
3740   // ---- Post-pass Work ----
3741   // Pre-walked but not post-walked nodes need a pre_order number.
3742 
3743   // Tightest enclosing loop for this Node
3744   IdealLoopTree *innermost = NULL;
3745 
3746   // For all children, see if any edge is a backedge.  If so, make a loop
3747   // for it.  Then find the tightest enclosing loop for the self Node.
3748   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3749     Node* m = n->fast_out(i);   // Child
3750     if( n == m ) continue;      // Ignore control self-cycles
3751     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
3752 
3753     IdealLoopTree *l;           // Child's loop
3754     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
3755       // Found a backedge
3756       assert( get_preorder(m) < pre_order, "should be backedge" );
3757       // Check for the RootNode, which is already a LoopNode and is allowed
3758       // to have multiple "backedges".
3759       if( m == C->root()) {     // Found the root?
3760         l = _ltree_root;        // Root is the outermost LoopNode
3761       } else {                  // Else found a nested loop
3762         // Insert a LoopNode to mark this loop.
3763         l = new IdealLoopTree(this, m, n);
3764       } // End of Else found a nested loop
3765       if( !has_loop(m) )        // If 'm' does not already have a loop set
3766         set_loop(m, l);         // Set loop header to loop now
3767 
3768     } else {                    // Else not a nested loop
3769       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
3770       l = get_loop(m);          // Get previously determined loop
3771       // If successor is header of a loop (nest), move up-loop till it
3772       // is a member of some outer enclosing loop.  Since there are no
3773       // shared headers (I've split them already) I only need to go up
3774       // at most 1 level.
3775       while( l && l->_head == m ) // Successor heads loop?
3776         l = l->_parent;         // Move up 1 for me
3777       // If this loop is not properly parented, then this loop
3778       // has no exit path out, i.e. its an infinite loop.
3779       if( !l ) {
3780         // Make loop "reachable" from root so the CFG is reachable.  Basically
3781         // insert a bogus loop exit that is never taken.  'm', the loop head,
3782         // points to 'n', one (of possibly many) fall-in paths.  There may be
3783         // many backedges as well.
3784 
3785         // Here I set the loop to be the root loop.  I could have, after
3786         // inserting a bogus loop exit, restarted the recursion and found my
3787         // new loop exit.  This would make the infinite loop a first-class
3788         // loop and it would then get properly optimized.  What's the use of
3789         // optimizing an infinite loop?
3790         l = _ltree_root;        // Oops, found infinite loop
3791 
3792         if (!_verify_only) {
3793           // Insert the NeverBranch between 'm' and it's control user.
3794           NeverBranchNode *iff = new NeverBranchNode( m );
3795           _igvn.register_new_node_with_optimizer(iff);
3796           set_loop(iff, l);
3797           Node *if_t = new CProjNode( iff, 0 );
3798           _igvn.register_new_node_with_optimizer(if_t);
3799           set_loop(if_t, l);
3800 
3801           Node* cfg = NULL;       // Find the One True Control User of m
3802           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3803             Node* x = m->fast_out(j);
3804             if (x->is_CFG() && x != m && x != iff)
3805               { cfg = x; break; }
3806           }
3807           assert(cfg != NULL, "must find the control user of m");
3808           uint k = 0;             // Probably cfg->in(0)
3809           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
3810           cfg->set_req( k, if_t ); // Now point to NeverBranch
3811           _igvn._worklist.push(cfg);
3812 
3813           // Now create the never-taken loop exit
3814           Node *if_f = new CProjNode( iff, 1 );
3815           _igvn.register_new_node_with_optimizer(if_f);
3816           set_loop(if_f, l);
3817           // Find frame ptr for Halt.  Relies on the optimizer
3818           // V-N'ing.  Easier and quicker than searching through
3819           // the program structure.
3820           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
3821           _igvn.register_new_node_with_optimizer(frame);
3822           // Halt & Catch Fire
3823           Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached");
3824           _igvn.register_new_node_with_optimizer(halt);
3825           set_loop(halt, l);
3826           C->root()->add_req(halt);
3827         }
3828         set_loop(C->root(), _ltree_root);
3829       }
3830     }
3831     // Weeny check for irreducible.  This child was already visited (this
3832     // IS the post-work phase).  Is this child's loop header post-visited
3833     // as well?  If so, then I found another entry into the loop.
3834     if (!_verify_only) {
3835       while( is_postvisited(l->_head) ) {
3836         // found irreducible
3837         l->_irreducible = 1; // = true
3838         l = l->_parent;
3839         _has_irreducible_loops = true;
3840         // Check for bad CFG here to prevent crash, and bailout of compile
3841         if (l == NULL) {
3842           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
3843           return pre_order;
3844         }
3845       }
3846       C->set_has_irreducible_loop(_has_irreducible_loops);
3847     }
3848 
3849     // This Node might be a decision point for loops.  It is only if
3850     // it's children belong to several different loops.  The sort call
3851     // does a trivial amount of work if there is only 1 child or all
3852     // children belong to the same loop.  If however, the children
3853     // belong to different loops, the sort call will properly set the
3854     // _parent pointers to show how the loops nest.
3855     //
3856     // In any case, it returns the tightest enclosing loop.
3857     innermost = sort( l, innermost );
3858   }
3859 
3860   // Def-use info will have some dead stuff; dead stuff will have no
3861   // loop decided on.
3862 
3863   // Am I a loop header?  If so fix up my parent's child and next ptrs.
3864   if( innermost && innermost->_head == n ) {
3865     assert( get_loop(n) == innermost, "" );
3866     IdealLoopTree *p = innermost->_parent;
3867     IdealLoopTree *l = innermost;
3868     while( p && l->_head == n ) {
3869       l->_next = p->_child;     // Put self on parents 'next child'
3870       p->_child = l;            // Make self as first child of parent
3871       l = p;                    // Now walk up the parent chain
3872       p = l->_parent;
3873     }
3874   } else {
3875     // Note that it is possible for a LoopNode to reach here, if the
3876     // backedge has been made unreachable (hence the LoopNode no longer
3877     // denotes a Loop, and will eventually be removed).
3878 
3879     // Record tightest enclosing loop for self.  Mark as post-visited.
3880     set_loop(n, innermost);
3881     // Also record has_call flag early on
3882     if( innermost ) {
3883       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
3884         // Do not count uncommon calls
3885         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
3886           Node *iff = n->in(0)->in(0);
3887           // No any calls for vectorized loops.
3888           if( UseSuperWord || !iff->is_If() ||
3889               (n->in(0)->Opcode() == Op_IfFalse &&
3890                (1.0 - iff->as_If()->_prob) >= 0.01) ||
3891               (iff->as_If()->_prob >= 0.01) )
3892             innermost->_has_call = 1;
3893         }
3894       } else if( n->is_Allocate() && (n->as_Allocate()->_is_scalar_replaceable || n->as_Allocate()->_is_stack_allocateable) ) {
3895         // Disable loop optimizations if the loop has a scalar replaceable
3896         // allocation. This disabling may cause a potential performance lost
3897         // if the allocation is not eliminated for some reason.
3898         innermost->_allow_optimizations = false;
3899         innermost->_has_call = 1; // = true
3900       } else if (n->Opcode() == Op_SafePoint) {
3901         // Record all safepoints in this loop.
3902         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
3903         innermost->_safepts->push(n);
3904       }
3905     }
3906   }
3907 
3908   // Flag as post-visited now
3909   set_postvisited(n);
3910   return pre_order;
3911 }
3912 
3913 
3914 //------------------------------build_loop_early-------------------------------
3915 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3916 // First pass computes the earliest controlling node possible.  This is the
3917 // controlling input with the deepest dominating depth.
3918 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3919   while (worklist.size() != 0) {
3920     // Use local variables nstack_top_n & nstack_top_i to cache values
3921     // on nstack's top.
3922     Node *nstack_top_n = worklist.pop();
3923     uint  nstack_top_i = 0;
3924 //while_nstack_nonempty:
3925     while (true) {
3926       // Get parent node and next input's index from stack's top.
3927       Node  *n = nstack_top_n;
3928       uint   i = nstack_top_i;
3929       uint cnt = n->req(); // Count of inputs
3930       if (i == 0) {        // Pre-process the node.
3931         if( has_node(n) &&            // Have either loop or control already?
3932             !has_ctrl(n) ) {          // Have loop picked out already?
3933           // During "merge_many_backedges" we fold up several nested loops
3934           // into a single loop.  This makes the members of the original
3935           // loop bodies pointing to dead loops; they need to move up
3936           // to the new UNION'd larger loop.  I set the _head field of these
3937           // dead loops to NULL and the _parent field points to the owning
3938           // loop.  Shades of UNION-FIND algorithm.
3939           IdealLoopTree *ilt;
3940           while( !(ilt = get_loop(n))->_head ) {
3941             // Normally I would use a set_loop here.  But in this one special
3942             // case, it is legal (and expected) to change what loop a Node
3943             // belongs to.
3944             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
3945           }
3946           // Remove safepoints ONLY if I've already seen I don't need one.
3947           // (the old code here would yank a 2nd safepoint after seeing a
3948           // first one, even though the 1st did not dominate in the loop body
3949           // and thus could be avoided indefinitely)
3950           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
3951               is_deleteable_safept(n)) {
3952             Node *in = n->in(TypeFunc::Control);
3953             lazy_replace(n,in);       // Pull safepoint now
3954             if (ilt->_safepts != NULL) {
3955               ilt->_safepts->yank(n);
3956             }
3957             // Carry on with the recursion "as if" we are walking
3958             // only the control input
3959             if( !visited.test_set( in->_idx ) ) {
3960               worklist.push(in);      // Visit this guy later, using worklist
3961             }
3962             // Get next node from nstack:
3963             // - skip n's inputs processing by setting i > cnt;
3964             // - we also will not call set_early_ctrl(n) since
3965             //   has_node(n) == true (see the condition above).
3966             i = cnt + 1;
3967           }
3968         }
3969       } // if (i == 0)
3970 
3971       // Visit all inputs
3972       bool done = true;       // Assume all n's inputs will be processed
3973       while (i < cnt) {
3974         Node *in = n->in(i);
3975         ++i;
3976         if (in == NULL) continue;
3977         if (in->pinned() && !in->is_CFG())
3978           set_ctrl(in, in->in(0));
3979         int is_visited = visited.test_set( in->_idx );
3980         if (!has_node(in)) {  // No controlling input yet?
3981           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
3982           assert( !is_visited, "visit only once" );
3983           nstack.push(n, i);  // Save parent node and next input's index.
3984           nstack_top_n = in;  // Process current input now.
3985           nstack_top_i = 0;
3986           done = false;       // Not all n's inputs processed.
3987           break; // continue while_nstack_nonempty;
3988         } else if (!is_visited) {
3989           // This guy has a location picked out for him, but has not yet
3990           // been visited.  Happens to all CFG nodes, for instance.
3991           // Visit him using the worklist instead of recursion, to break
3992           // cycles.  Since he has a location already we do not need to
3993           // find his location before proceeding with the current Node.
3994           worklist.push(in);  // Visit this guy later, using worklist
3995         }
3996       }
3997       if (done) {
3998         // All of n's inputs have been processed, complete post-processing.
3999 
4000         // Compute earliest point this Node can go.
4001         // CFG, Phi, pinned nodes already know their controlling input.
4002         if (!has_node(n)) {
4003           // Record earliest legal location
4004           set_early_ctrl( n );
4005         }
4006         if (nstack.is_empty()) {
4007           // Finished all nodes on stack.
4008           // Process next node on the worklist.
4009           break;
4010         }
4011         // Get saved parent node and next input's index.
4012         nstack_top_n = nstack.node();
4013         nstack_top_i = nstack.index();
4014         nstack.pop();
4015       }
4016     } // while (true)
4017   }
4018 }
4019 
4020 //------------------------------dom_lca_internal--------------------------------
4021 // Pair-wise LCA
4022 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
4023   if( !n1 ) return n2;          // Handle NULL original LCA
4024   assert( n1->is_CFG(), "" );
4025   assert( n2->is_CFG(), "" );
4026   // find LCA of all uses
4027   uint d1 = dom_depth(n1);
4028   uint d2 = dom_depth(n2);
4029   while (n1 != n2) {
4030     if (d1 > d2) {
4031       n1 =      idom(n1);
4032       d1 = dom_depth(n1);
4033     } else if (d1 < d2) {
4034       n2 =      idom(n2);
4035       d2 = dom_depth(n2);
4036     } else {
4037       // Here d1 == d2.  Due to edits of the dominator-tree, sections
4038       // of the tree might have the same depth.  These sections have
4039       // to be searched more carefully.
4040 
4041       // Scan up all the n1's with equal depth, looking for n2.
4042       Node *t1 = idom(n1);
4043       while (dom_depth(t1) == d1) {
4044         if (t1 == n2)  return n2;
4045         t1 = idom(t1);
4046       }
4047       // Scan up all the n2's with equal depth, looking for n1.
4048       Node *t2 = idom(n2);
4049       while (dom_depth(t2) == d2) {
4050         if (t2 == n1)  return n1;
4051         t2 = idom(t2);
4052       }
4053       // Move up to a new dominator-depth value as well as up the dom-tree.
4054       n1 = t1;
4055       n2 = t2;
4056       d1 = dom_depth(n1);
4057       d2 = dom_depth(n2);
4058     }
4059   }
4060   return n1;
4061 }
4062 
4063 //------------------------------compute_idom-----------------------------------
4064 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
4065 // IDOMs are correct.
4066 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
4067   assert( region->is_Region(), "" );
4068   Node *LCA = NULL;
4069   for( uint i = 1; i < region->req(); i++ ) {
4070     if( region->in(i) != C->top() )
4071       LCA = dom_lca( LCA, region->in(i) );
4072   }
4073   return LCA;
4074 }
4075 
4076 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
4077   bool had_error = false;
4078 #ifdef ASSERT
4079   if (early != C->root()) {
4080     // Make sure that there's a dominance path from LCA to early
4081     Node* d = LCA;
4082     while (d != early) {
4083       if (d == C->root()) {
4084         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
4085         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
4086         had_error = true;
4087         break;
4088       }
4089       d = idom(d);
4090     }
4091   }
4092 #endif
4093   return had_error;
4094 }
4095 
4096 
4097 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
4098   // Compute LCA over list of uses
4099   bool had_error = false;
4100   Node *LCA = NULL;
4101   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
4102     Node* c = n->fast_out(i);
4103     if (_nodes[c->_idx] == NULL)
4104       continue;                 // Skip the occasional dead node
4105     if( c->is_Phi() ) {         // For Phis, we must land above on the path
4106       for( uint j=1; j<c->req(); j++ ) {// For all inputs
4107         if( c->in(j) == n ) {   // Found matching input?
4108           Node *use = c->in(0)->in(j);
4109           if (_verify_only && use->is_top()) continue;
4110           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
4111           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
4112         }
4113       }
4114     } else {
4115       // For CFG data-users, use is in the block just prior
4116       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
4117       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
4118       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
4119     }
4120   }
4121   assert(!had_error, "bad dominance");
4122   return LCA;
4123 }
4124 
4125 // Check the shape of the graph at the loop entry. In some cases,
4126 // the shape of the graph does not match the shape outlined below.
4127 // That is caused by the Opaque1 node "protecting" the shape of
4128 // the graph being removed by, for example, the IGVN performed
4129 // in PhaseIdealLoop::build_and_optimize().
4130 //
4131 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
4132 // loop unswitching, and IGVN, or a combination of them) can freely change
4133 // the graph's shape. As a result, the graph shape outlined below cannot
4134 // be guaranteed anymore.
4135 bool PhaseIdealLoop::is_canonical_loop_entry(CountedLoopNode* cl) {
4136   if (!cl->is_main_loop() && !cl->is_post_loop()) {
4137     return false;
4138   }
4139   Node* ctrl = cl->skip_predicates();
4140 
4141   if (ctrl == NULL || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
4142     return false;
4143   }
4144   Node* iffm = ctrl->in(0);
4145   if (iffm == NULL || !iffm->is_If()) {
4146     return false;
4147   }
4148   Node* bolzm = iffm->in(1);
4149   if (bolzm == NULL || !bolzm->is_Bool()) {
4150     return false;
4151   }
4152   Node* cmpzm = bolzm->in(1);
4153   if (cmpzm == NULL || !cmpzm->is_Cmp()) {
4154     return false;
4155   }
4156   // compares can get conditionally flipped
4157   bool found_opaque = false;
4158   for (uint i = 1; i < cmpzm->req(); i++) {
4159     Node* opnd = cmpzm->in(i);
4160     if (opnd && opnd->Opcode() == Op_Opaque1) {
4161       found_opaque = true;
4162       break;
4163     }
4164   }
4165   if (!found_opaque) {
4166     return false;
4167   }
4168   return true;
4169 }
4170 
4171 //------------------------------get_late_ctrl----------------------------------
4172 // Compute latest legal control.
4173 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
4174   assert(early != NULL, "early control should not be NULL");
4175 
4176   Node* LCA = compute_lca_of_uses(n, early);
4177 #ifdef ASSERT
4178   if (LCA == C->root() && LCA != early) {
4179     // def doesn't dominate uses so print some useful debugging output
4180     compute_lca_of_uses(n, early, true);
4181   }
4182 #endif
4183 
4184   // if this is a load, check for anti-dependent stores
4185   // We use a conservative algorithm to identify potential interfering
4186   // instructions and for rescheduling the load.  The users of the memory
4187   // input of this load are examined.  Any use which is not a load and is
4188   // dominated by early is considered a potentially interfering store.
4189   // This can produce false positives.
4190   if (n->is_Load() && LCA != early) {
4191     int load_alias_idx = C->get_alias_index(n->adr_type());
4192     if (C->alias_type(load_alias_idx)->is_rewritable()) {
4193 
4194       Node_List worklist;
4195 
4196       Node *mem = n->in(MemNode::Memory);
4197       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
4198         Node* s = mem->fast_out(i);
4199         worklist.push(s);
4200       }
4201       while(worklist.size() != 0 && LCA != early) {
4202         Node* s = worklist.pop();
4203         if (s->is_Load() || s->Opcode() == Op_SafePoint ||
4204             (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0)) {
4205           continue;
4206         } else if (s->is_MergeMem()) {
4207           for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
4208             Node* s1 = s->fast_out(i);
4209             worklist.push(s1);
4210           }
4211         } else {
4212           Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
4213           const TypePtr* adr_type = s->adr_type();
4214           if (s->is_ArrayCopy()) {
4215             // Copy to known instance needs destination type to test for aliasing
4216             const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type;
4217             if (dest_type != TypeOopPtr::BOTTOM) {
4218               adr_type = dest_type;
4219             }
4220           }
4221           assert(sctrl != NULL || !s->is_reachable_from_root(), "must have control");
4222           if (sctrl != NULL && !sctrl->is_top() && C->can_alias(adr_type, load_alias_idx) && is_dominator(early, sctrl)) {
4223             LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
4224           }
4225         }
4226       }
4227     }
4228   }
4229 
4230   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
4231   return LCA;
4232 }
4233 
4234 // true if CFG node d dominates CFG node n
4235 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
4236   if (d == n)
4237     return true;
4238   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
4239   uint dd = dom_depth(d);
4240   while (dom_depth(n) >= dd) {
4241     if (n == d)
4242       return true;
4243     n = idom(n);
4244   }
4245   return false;
4246 }
4247 
4248 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
4249 // Pair-wise LCA with tags.
4250 // Tag each index with the node 'tag' currently being processed
4251 // before advancing up the dominator chain using idom().
4252 // Later calls that find a match to 'tag' know that this path has already
4253 // been considered in the current LCA (which is input 'n1' by convention).
4254 // Since get_late_ctrl() is only called once for each node, the tag array
4255 // does not need to be cleared between calls to get_late_ctrl().
4256 // Algorithm trades a larger constant factor for better asymptotic behavior
4257 //
4258 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
4259   uint d1 = dom_depth(n1);
4260   uint d2 = dom_depth(n2);
4261 
4262   do {
4263     if (d1 > d2) {
4264       // current lca is deeper than n2
4265       _dom_lca_tags.map(n1->_idx, tag);
4266       n1 =      idom(n1);
4267       d1 = dom_depth(n1);
4268     } else if (d1 < d2) {
4269       // n2 is deeper than current lca
4270       Node *memo = _dom_lca_tags[n2->_idx];
4271       if( memo == tag ) {
4272         return n1;    // Return the current LCA
4273       }
4274       _dom_lca_tags.map(n2->_idx, tag);
4275       n2 =      idom(n2);
4276       d2 = dom_depth(n2);
4277     } else {
4278       // Here d1 == d2.  Due to edits of the dominator-tree, sections
4279       // of the tree might have the same depth.  These sections have
4280       // to be searched more carefully.
4281 
4282       // Scan up all the n1's with equal depth, looking for n2.
4283       _dom_lca_tags.map(n1->_idx, tag);
4284       Node *t1 = idom(n1);
4285       while (dom_depth(t1) == d1) {
4286         if (t1 == n2)  return n2;
4287         _dom_lca_tags.map(t1->_idx, tag);
4288         t1 = idom(t1);
4289       }
4290       // Scan up all the n2's with equal depth, looking for n1.
4291       _dom_lca_tags.map(n2->_idx, tag);
4292       Node *t2 = idom(n2);
4293       while (dom_depth(t2) == d2) {
4294         if (t2 == n1)  return n1;
4295         _dom_lca_tags.map(t2->_idx, tag);
4296         t2 = idom(t2);
4297       }
4298       // Move up to a new dominator-depth value as well as up the dom-tree.
4299       n1 = t1;
4300       n2 = t2;
4301       d1 = dom_depth(n1);
4302       d2 = dom_depth(n2);
4303     }
4304   } while (n1 != n2);
4305   return n1;
4306 }
4307 
4308 //------------------------------init_dom_lca_tags------------------------------
4309 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
4310 // Intended use does not involve any growth for the array, so it could
4311 // be of fixed size.
4312 void PhaseIdealLoop::init_dom_lca_tags() {
4313   uint limit = C->unique() + 1;
4314   _dom_lca_tags.map( limit, NULL );
4315 #ifdef ASSERT
4316   for( uint i = 0; i < limit; ++i ) {
4317     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
4318   }
4319 #endif // ASSERT
4320 }
4321 
4322 //------------------------------clear_dom_lca_tags------------------------------
4323 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
4324 // Intended use does not involve any growth for the array, so it could
4325 // be of fixed size.
4326 void PhaseIdealLoop::clear_dom_lca_tags() {
4327   uint limit = C->unique() + 1;
4328   _dom_lca_tags.map( limit, NULL );
4329   _dom_lca_tags.clear();
4330 #ifdef ASSERT
4331   for( uint i = 0; i < limit; ++i ) {
4332     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
4333   }
4334 #endif // ASSERT
4335 }
4336 
4337 //------------------------------build_loop_late--------------------------------
4338 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
4339 // Second pass finds latest legal placement, and ideal loop placement.
4340 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
4341   while (worklist.size() != 0) {
4342     Node *n = worklist.pop();
4343     // Only visit once
4344     if (visited.test_set(n->_idx)) continue;
4345     uint cnt = n->outcnt();
4346     uint   i = 0;
4347     while (true) {
4348       assert( _nodes[n->_idx], "no dead nodes" );
4349       // Visit all children
4350       if (i < cnt) {
4351         Node* use = n->raw_out(i);
4352         ++i;
4353         // Check for dead uses.  Aggressively prune such junk.  It might be
4354         // dead in the global sense, but still have local uses so I cannot
4355         // easily call 'remove_dead_node'.
4356         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
4357           // Due to cycles, we might not hit the same fixed point in the verify
4358           // pass as we do in the regular pass.  Instead, visit such phis as
4359           // simple uses of the loop head.
4360           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
4361             if( !visited.test(use->_idx) )
4362               worklist.push(use);
4363           } else if( !visited.test_set(use->_idx) ) {
4364             nstack.push(n, i); // Save parent and next use's index.
4365             n   = use;         // Process all children of current use.
4366             cnt = use->outcnt();
4367             i   = 0;
4368           }
4369         } else {
4370           // Do not visit around the backedge of loops via data edges.
4371           // push dead code onto a worklist
4372           _deadlist.push(use);
4373         }
4374       } else {
4375         // All of n's children have been processed, complete post-processing.
4376         build_loop_late_post(n);
4377         if (nstack.is_empty()) {
4378           // Finished all nodes on stack.
4379           // Process next node on the worklist.
4380           break;
4381         }
4382         // Get saved parent node and next use's index. Visit the rest of uses.
4383         n   = nstack.node();
4384         cnt = n->outcnt();
4385         i   = nstack.index();
4386         nstack.pop();
4387       }
4388     }
4389   }
4390 }
4391 
4392 // Verify that no data node is scheduled in the outer loop of a strip
4393 // mined loop.
4394 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
4395 #ifdef ASSERT
4396   if (get_loop(least)->_nest == 0) {
4397     return;
4398   }
4399   IdealLoopTree* loop = get_loop(least);
4400   Node* head = loop->_head;
4401   if (head->is_OuterStripMinedLoop() &&
4402       // Verification can't be applied to fully built strip mined loops
4403       head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) {
4404     Node* sfpt = head->as_Loop()->outer_safepoint();
4405     ResourceMark rm;
4406     Unique_Node_List wq;
4407     wq.push(sfpt);
4408     for (uint i = 0; i < wq.size(); i++) {
4409       Node *m = wq.at(i);
4410       for (uint i = 1; i < m->req(); i++) {
4411         Node* nn = m->in(i);
4412         if (nn == n) {
4413           return;
4414         }
4415         if (nn != NULL && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
4416           wq.push(nn);
4417         }
4418       }
4419     }
4420     ShouldNotReachHere();
4421   }
4422 #endif
4423 }
4424 
4425 
4426 //------------------------------build_loop_late_post---------------------------
4427 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
4428 // Second pass finds latest legal placement, and ideal loop placement.
4429 void PhaseIdealLoop::build_loop_late_post(Node *n) {
4430   build_loop_late_post_work(n, true);
4431 }
4432 
4433 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) {
4434 
4435   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
4436     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
4437   }
4438 
4439 #ifdef ASSERT
4440   if (_verify_only && !n->is_CFG()) {
4441     // Check def-use domination.
4442     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
4443   }
4444 #endif
4445 
4446   // CFG and pinned nodes already handled
4447   if( n->in(0) ) {
4448     if( n->in(0)->is_top() ) return; // Dead?
4449 
4450     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
4451     // _must_ be pinned (they have to observe their control edge of course).
4452     // Unlike Stores (which modify an unallocable resource, the memory
4453     // state), Mods/Loads can float around.  So free them up.
4454     switch( n->Opcode() ) {
4455     case Op_DivI:
4456     case Op_DivF:
4457     case Op_DivD:
4458     case Op_ModI:
4459     case Op_ModF:
4460     case Op_ModD:
4461     case Op_LoadB:              // Same with Loads; they can sink
4462     case Op_LoadUB:             // during loop optimizations.
4463     case Op_LoadUS:
4464     case Op_LoadD:
4465     case Op_LoadF:
4466     case Op_LoadI:
4467     case Op_LoadKlass:
4468     case Op_LoadNKlass:
4469     case Op_LoadL:
4470     case Op_LoadS:
4471     case Op_LoadP:
4472     case Op_LoadN:
4473     case Op_LoadRange:
4474     case Op_LoadD_unaligned:
4475     case Op_LoadL_unaligned:
4476     case Op_StrComp:            // Does a bunch of load-like effects
4477     case Op_StrEquals:
4478     case Op_StrIndexOf:
4479     case Op_StrIndexOfChar:
4480     case Op_AryEq:
4481     case Op_HasNegatives:
4482       pinned = false;
4483     }
4484     if (n->is_CMove()) {
4485       pinned = false;
4486     }
4487     if( pinned ) {
4488       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
4489       if( !chosen_loop->_child )       // Inner loop?
4490         chosen_loop->_body.push(n); // Collect inner loops
4491       return;
4492     }
4493   } else {                      // No slot zero
4494     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
4495       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
4496       return;
4497     }
4498     assert(!n->is_CFG() || n->outcnt() == 0, "");
4499   }
4500 
4501   // Do I have a "safe range" I can select over?
4502   Node *early = get_ctrl(n);// Early location already computed
4503 
4504   // Compute latest point this Node can go
4505   Node *LCA = get_late_ctrl( n, early );
4506   // LCA is NULL due to uses being dead
4507   if( LCA == NULL ) {
4508 #ifdef ASSERT
4509     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
4510       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
4511     }
4512 #endif
4513     _nodes.map(n->_idx, 0);     // This node is useless
4514     _deadlist.push(n);
4515     return;
4516   }
4517   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
4518 
4519   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
4520   Node *least = legal;          // Best legal position so far
4521   while( early != legal ) {     // While not at earliest legal
4522 #ifdef ASSERT
4523     if (legal->is_Start() && !early->is_Root()) {
4524       // Bad graph. Print idom path and fail.
4525       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
4526       assert(false, "Bad graph detected in build_loop_late");
4527     }
4528 #endif
4529     // Find least loop nesting depth
4530     legal = idom(legal);        // Bump up the IDOM tree
4531     // Check for lower nesting depth
4532     if( get_loop(legal)->_nest < get_loop(least)->_nest )
4533       least = legal;
4534   }
4535   assert(early == legal || legal != C->root(), "bad dominance of inputs");
4536 
4537   // Try not to place code on a loop entry projection
4538   // which can inhibit range check elimination.
4539   if (least != early) {
4540     Node* ctrl_out = least->unique_ctrl_out();
4541     if (ctrl_out && ctrl_out->is_Loop() &&
4542         least == ctrl_out->in(LoopNode::EntryControl)) {
4543       // Move the node above predicates as far up as possible so a
4544       // following pass of loop predication doesn't hoist a predicate
4545       // that depends on it above that node.
4546       Node* new_ctrl = least;
4547       for (;;) {
4548         if (!new_ctrl->is_Proj()) {
4549           break;
4550         }
4551         CallStaticJavaNode* call = new_ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none);
4552         if (call == NULL) {
4553           break;
4554         }
4555         int req = call->uncommon_trap_request();
4556         Deoptimization::DeoptReason trap_reason = Deoptimization::trap_request_reason(req);
4557         if (trap_reason != Deoptimization::Reason_loop_limit_check &&
4558             trap_reason != Deoptimization::Reason_predicate &&
4559             trap_reason != Deoptimization::Reason_profile_predicate) {
4560           break;
4561         }
4562         Node* c = new_ctrl->in(0)->in(0);
4563         if (is_dominator(c, early) && c != early) {
4564           break;
4565         }
4566         new_ctrl = c;
4567       }
4568       least = new_ctrl;
4569     }
4570   }
4571 
4572 #ifdef ASSERT
4573   // If verifying, verify that 'verify_me' has a legal location
4574   // and choose it as our location.
4575   if( _verify_me ) {
4576     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
4577     Node *legal = LCA;
4578     while( early != legal ) {   // While not at earliest legal
4579       if( legal == v_ctrl ) break;  // Check for prior good location
4580       legal = idom(legal)      ;// Bump up the IDOM tree
4581     }
4582     // Check for prior good location
4583     if( legal == v_ctrl ) least = legal; // Keep prior if found
4584   }
4585 #endif
4586 
4587   // Assign discovered "here or above" point
4588   least = find_non_split_ctrl(least);
4589   verify_strip_mined_scheduling(n, least);
4590   set_ctrl(n, least);
4591 
4592   // Collect inner loop bodies
4593   IdealLoopTree *chosen_loop = get_loop(least);
4594   if( !chosen_loop->_child )   // Inner loop?
4595     chosen_loop->_body.push(n);// Collect inner loops
4596 }
4597 
4598 #ifdef ASSERT
4599 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
4600   tty->print_cr("%s", msg);
4601   tty->print("n: "); n->dump();
4602   tty->print("early(n): "); early->dump();
4603   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
4604       n->in(0) != early && !n->in(0)->is_Root()) {
4605     tty->print("n->in(0): "); n->in(0)->dump();
4606   }
4607   for (uint i = 1; i < n->req(); i++) {
4608     Node* in1 = n->in(i);
4609     if (in1 != NULL && in1 != n && !in1->is_top()) {
4610       tty->print("n->in(%d): ", i); in1->dump();
4611       Node* in1_early = get_ctrl(in1);
4612       tty->print("early(n->in(%d)): ", i); in1_early->dump();
4613       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
4614           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
4615         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
4616       }
4617       for (uint j = 1; j < in1->req(); j++) {
4618         Node* in2 = in1->in(j);
4619         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
4620           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
4621           Node* in2_early = get_ctrl(in2);
4622           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
4623           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
4624               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
4625             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
4626           }
4627         }
4628       }
4629     }
4630   }
4631   tty->cr();
4632   tty->print("LCA(n): "); LCA->dump();
4633   for (uint i = 0; i < n->outcnt(); i++) {
4634     Node* u1 = n->raw_out(i);
4635     if (u1 == n)
4636       continue;
4637     tty->print("n->out(%d): ", i); u1->dump();
4638     if (u1->is_CFG()) {
4639       for (uint j = 0; j < u1->outcnt(); j++) {
4640         Node* u2 = u1->raw_out(j);
4641         if (u2 != u1 && u2 != n && u2->is_CFG()) {
4642           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4643         }
4644       }
4645     } else {
4646       Node* u1_later = get_ctrl(u1);
4647       tty->print("later(n->out(%d)): ", i); u1_later->dump();
4648       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
4649           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
4650         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
4651       }
4652       for (uint j = 0; j < u1->outcnt(); j++) {
4653         Node* u2 = u1->raw_out(j);
4654         if (u2 == n || u2 == u1)
4655           continue;
4656         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4657         if (!u2->is_CFG()) {
4658           Node* u2_later = get_ctrl(u2);
4659           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
4660           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
4661               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
4662             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
4663           }
4664         }
4665       }
4666     }
4667   }
4668   tty->cr();
4669   int ct = 0;
4670   Node *dbg_legal = LCA;
4671   while(!dbg_legal->is_Start() && ct < 100) {
4672     tty->print("idom[%d] ",ct); dbg_legal->dump();
4673     ct++;
4674     dbg_legal = idom(dbg_legal);
4675   }
4676   tty->cr();
4677 }
4678 #endif
4679 
4680 #ifndef PRODUCT
4681 //------------------------------dump-------------------------------------------
4682 void PhaseIdealLoop::dump() const {
4683   ResourceMark rm;
4684   Arena* arena = Thread::current()->resource_area();
4685   Node_Stack stack(arena, C->live_nodes() >> 2);
4686   Node_List rpo_list;
4687   VectorSet visited(arena);
4688   visited.set(C->top()->_idx);
4689   rpo(C->root(), stack, visited, rpo_list);
4690   // Dump root loop indexed by last element in PO order
4691   dump(_ltree_root, rpo_list.size(), rpo_list);
4692 }
4693 
4694 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const {
4695   loop->dump_head();
4696 
4697   // Now scan for CFG nodes in the same loop
4698   for (uint j = idx; j > 0; j--) {
4699     Node* n = rpo_list[j-1];
4700     if (!_nodes[n->_idx])      // Skip dead nodes
4701       continue;
4702 
4703     if (get_loop(n) != loop) { // Wrong loop nest
4704       if (get_loop(n)->_head == n &&    // Found nested loop?
4705           get_loop(n)->_parent == loop)
4706         dump(get_loop(n), rpo_list.size(), rpo_list);     // Print it nested-ly
4707       continue;
4708     }
4709 
4710     // Dump controlling node
4711     tty->sp(2 * loop->_nest);
4712     tty->print("C");
4713     if (n == C->root()) {
4714       n->dump();
4715     } else {
4716       Node* cached_idom   = idom_no_update(n);
4717       Node* computed_idom = n->in(0);
4718       if (n->is_Region()) {
4719         computed_idom = compute_idom(n);
4720         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
4721         // any MultiBranch ctrl node), so apply a similar transform to
4722         // the cached idom returned from idom_no_update.
4723         cached_idom = find_non_split_ctrl(cached_idom);
4724       }
4725       tty->print(" ID:%d", computed_idom->_idx);
4726       n->dump();
4727       if (cached_idom != computed_idom) {
4728         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
4729                       computed_idom->_idx, cached_idom->_idx);
4730       }
4731     }
4732     // Dump nodes it controls
4733     for (uint k = 0; k < _nodes.Size(); k++) {
4734       // (k < C->unique() && get_ctrl(find(k)) == n)
4735       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
4736         Node* m = C->root()->find(k);
4737         if (m && m->outcnt() > 0) {
4738           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
4739             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
4740                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
4741           }
4742           tty->sp(2 * loop->_nest + 1);
4743           m->dump();
4744         }
4745       }
4746     }
4747   }
4748 }
4749 #endif
4750 
4751 // Collect a R-P-O for the whole CFG.
4752 // Result list is in post-order (scan backwards for RPO)
4753 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const {
4754   stk.push(start, 0);
4755   visited.set(start->_idx);
4756 
4757   while (stk.is_nonempty()) {
4758     Node* m   = stk.node();
4759     uint  idx = stk.index();
4760     if (idx < m->outcnt()) {
4761       stk.set_index(idx + 1);
4762       Node* n = m->raw_out(idx);
4763       if (n->is_CFG() && !visited.test_set(n->_idx)) {
4764         stk.push(n, 0);
4765       }
4766     } else {
4767       rpo_list.push(m);
4768       stk.pop();
4769     }
4770   }
4771 }
4772 
4773 
4774 //=============================================================================
4775 //------------------------------LoopTreeIterator-------------------------------
4776 
4777 // Advance to next loop tree using a preorder, left-to-right traversal.
4778 void LoopTreeIterator::next() {
4779   assert(!done(), "must not be done.");
4780   if (_curnt->_child != NULL) {
4781     _curnt = _curnt->_child;
4782   } else if (_curnt->_next != NULL) {
4783     _curnt = _curnt->_next;
4784   } else {
4785     while (_curnt != _root && _curnt->_next == NULL) {
4786       _curnt = _curnt->_parent;
4787     }
4788     if (_curnt == _root) {
4789       _curnt = NULL;
4790       assert(done(), "must be done.");
4791     } else {
4792       assert(_curnt->_next != NULL, "must be more to do");
4793       _curnt = _curnt->_next;
4794     }
4795   }
4796 }