1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/debugInfo.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/compilerDirectives.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/c2/barrierSetC2.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "opto/ad.hpp"
  39 #include "opto/block.hpp"
  40 #include "opto/c2compiler.hpp"
  41 #include "opto/callnode.hpp"
  42 #include "opto/cfgnode.hpp"
  43 #include "opto/locknode.hpp"
  44 #include "opto/machnode.hpp"
  45 #include "opto/node.hpp"
  46 #include "opto/optoreg.hpp"
  47 #include "opto/output.hpp"
  48 #include "opto/regalloc.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subnode.hpp"
  51 #include "opto/type.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/macros.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/xmlstream.hpp"
  57 
  58 #ifndef PRODUCT
  59 #define DEBUG_ARG(x) , x
  60 #else
  61 #define DEBUG_ARG(x)
  62 #endif
  63 
  64 //------------------------------Scheduling----------------------------------
  65 // This class contains all the information necessary to implement instruction
  66 // scheduling and bundling.
  67 class Scheduling {
  68 
  69 private:
  70   // Arena to use
  71   Arena *_arena;
  72 
  73   // Control-Flow Graph info
  74   PhaseCFG *_cfg;
  75 
  76   // Register Allocation info
  77   PhaseRegAlloc *_regalloc;
  78 
  79   // Number of nodes in the method
  80   uint _node_bundling_limit;
  81 
  82   // List of scheduled nodes. Generated in reverse order
  83   Node_List _scheduled;
  84 
  85   // List of nodes currently available for choosing for scheduling
  86   Node_List _available;
  87 
  88   // For each instruction beginning a bundle, the number of following
  89   // nodes to be bundled with it.
  90   Bundle *_node_bundling_base;
  91 
  92   // Mapping from register to Node
  93   Node_List _reg_node;
  94 
  95   // Free list for pinch nodes.
  96   Node_List _pinch_free_list;
  97 
  98   // Latency from the beginning of the containing basic block (base 1)
  99   // for each node.
 100   unsigned short *_node_latency;
 101 
 102   // Number of uses of this node within the containing basic block.
 103   short *_uses;
 104 
 105   // Schedulable portion of current block.  Skips Region/Phi/CreateEx up
 106   // front, branch+proj at end.  Also skips Catch/CProj (same as
 107   // branch-at-end), plus just-prior exception-throwing call.
 108   uint _bb_start, _bb_end;
 109 
 110   // Latency from the end of the basic block as scheduled
 111   unsigned short *_current_latency;
 112 
 113   // Remember the next node
 114   Node *_next_node;
 115 
 116   // Use this for an unconditional branch delay slot
 117   Node *_unconditional_delay_slot;
 118 
 119   // Pointer to a Nop
 120   MachNopNode *_nop;
 121 
 122   // Length of the current bundle, in instructions
 123   uint _bundle_instr_count;
 124 
 125   // Current Cycle number, for computing latencies and bundling
 126   uint _bundle_cycle_number;
 127 
 128   // Bundle information
 129   Pipeline_Use_Element _bundle_use_elements[resource_count];
 130   Pipeline_Use         _bundle_use;
 131 
 132   // Dump the available list
 133   void dump_available() const;
 134 
 135 public:
 136   Scheduling(Arena *arena, Compile &compile);
 137 
 138   // Destructor
 139   NOT_PRODUCT( ~Scheduling(); )
 140 
 141   // Step ahead "i" cycles
 142   void step(uint i);
 143 
 144   // Step ahead 1 cycle, and clear the bundle state (for example,
 145   // at a branch target)
 146   void step_and_clear();
 147 
 148   Bundle* node_bundling(const Node *n) {
 149     assert(valid_bundle_info(n), "oob");
 150     return (&_node_bundling_base[n->_idx]);
 151   }
 152 
 153   bool valid_bundle_info(const Node *n) const {
 154     return (_node_bundling_limit > n->_idx);
 155   }
 156 
 157   bool starts_bundle(const Node *n) const {
 158     return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
 159   }
 160 
 161   // Do the scheduling
 162   void DoScheduling();
 163 
 164   // Compute the local latencies walking forward over the list of
 165   // nodes for a basic block
 166   void ComputeLocalLatenciesForward(const Block *bb);
 167 
 168   // Compute the register antidependencies within a basic block
 169   void ComputeRegisterAntidependencies(Block *bb);
 170   void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
 171   void verify_good_schedule( Block *b, const char *msg );
 172   void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
 173   void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
 174 
 175   // Add a node to the current bundle
 176   void AddNodeToBundle(Node *n, const Block *bb);
 177 
 178   // Add a node to the list of available nodes
 179   void AddNodeToAvailableList(Node *n);
 180 
 181   // Compute the local use count for the nodes in a block, and compute
 182   // the list of instructions with no uses in the block as available
 183   void ComputeUseCount(const Block *bb);
 184 
 185   // Choose an instruction from the available list to add to the bundle
 186   Node * ChooseNodeToBundle();
 187 
 188   // See if this Node fits into the currently accumulating bundle
 189   bool NodeFitsInBundle(Node *n);
 190 
 191   // Decrement the use count for a node
 192  void DecrementUseCounts(Node *n, const Block *bb);
 193 
 194   // Garbage collect pinch nodes for reuse by other blocks.
 195   void garbage_collect_pinch_nodes();
 196   // Clean up a pinch node for reuse (helper for above).
 197   void cleanup_pinch( Node *pinch );
 198 
 199   // Information for statistics gathering
 200 #ifndef PRODUCT
 201 private:
 202   // Gather information on size of nops relative to total
 203   uint _branches, _unconditional_delays;
 204 
 205   static uint _total_nop_size, _total_method_size;
 206   static uint _total_branches, _total_unconditional_delays;
 207   static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
 208 
 209 public:
 210   static void print_statistics();
 211 
 212   static void increment_instructions_per_bundle(uint i) {
 213     _total_instructions_per_bundle[i]++;
 214   }
 215 
 216   static void increment_nop_size(uint s) {
 217     _total_nop_size += s;
 218   }
 219 
 220   static void increment_method_size(uint s) {
 221     _total_method_size += s;
 222   }
 223 #endif
 224 
 225 };
 226 
 227 
 228 PhaseOutput::PhaseOutput()
 229   : Phase(Phase::Output),
 230     _code_buffer("Compile::Fill_buffer"),
 231     _first_block_size(0),
 232     _handler_table(),
 233     _inc_table(),
 234     _oop_map_set(NULL),
 235     _scratch_buffer_blob(NULL),
 236     _scratch_locs_memory(NULL),
 237     _scratch_const_size(-1),
 238     _in_scratch_emit_size(false),
 239     _frame_slots(0),
 240     _code_offsets(),
 241     _node_bundling_limit(0),
 242     _node_bundling_base(NULL),
 243     _orig_pc_slot(0),
 244     _orig_pc_slot_offset_in_bytes(0),
 245     _buf_sizes(),
 246     _block(NULL),
 247     _index(0) {
 248   C->set_output(this);
 249   if (C->stub_name() == NULL) {
 250     _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size);
 251   }
 252 }
 253 
 254 PhaseOutput::~PhaseOutput() {
 255   C->set_output(NULL);
 256   if (_scratch_buffer_blob != NULL) {
 257     BufferBlob::free(_scratch_buffer_blob);
 258   }
 259 }
 260 
 261 void PhaseOutput::perform_mach_node_analysis() {
 262   // Late barrier analysis must be done after schedule and bundle
 263   // Otherwise liveness based spilling will fail
 264   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 265   bs->late_barrier_analysis();
 266 
 267   pd_perform_mach_node_analysis();
 268 }
 269 
 270 // Convert Nodes to instruction bits and pass off to the VM
 271 void PhaseOutput::Output() {
 272   // RootNode goes
 273   assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
 274 
 275   // The number of new nodes (mostly MachNop) is proportional to
 276   // the number of java calls and inner loops which are aligned.
 277   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
 278                             C->inner_loops()*(OptoLoopAlignment-1)),
 279                            "out of nodes before code generation" ) ) {
 280     return;
 281   }
 282   // Make sure I can find the Start Node
 283   Block *entry = C->cfg()->get_block(1);
 284   Block *broot = C->cfg()->get_root_block();
 285 
 286   const StartNode *start = entry->head()->as_Start();
 287 
 288   // Replace StartNode with prolog
 289   MachPrologNode *prolog = new MachPrologNode();
 290   entry->map_node(prolog, 0);
 291   C->cfg()->map_node_to_block(prolog, entry);
 292   C->cfg()->unmap_node_from_block(start); // start is no longer in any block
 293 
 294   // Virtual methods need an unverified entry point
 295 
 296   if( C->is_osr_compilation() ) {
 297     if( PoisonOSREntry ) {
 298       // TODO: Should use a ShouldNotReachHereNode...
 299       C->cfg()->insert( broot, 0, new MachBreakpointNode() );
 300     }
 301   } else {
 302     if( C->method() && !C->method()->flags().is_static() ) {
 303       // Insert unvalidated entry point
 304       C->cfg()->insert( broot, 0, new MachUEPNode() );
 305     }
 306 
 307   }
 308 
 309   // Break before main entry point
 310   if ((C->method() && C->directive()->BreakAtExecuteOption) ||
 311       (OptoBreakpoint && C->is_method_compilation())       ||
 312       (OptoBreakpointOSR && C->is_osr_compilation())       ||
 313       (OptoBreakpointC2R && !C->method())                   ) {
 314     // checking for C->method() means that OptoBreakpoint does not apply to
 315     // runtime stubs or frame converters
 316     C->cfg()->insert( entry, 1, new MachBreakpointNode() );
 317   }
 318 
 319   // Insert epilogs before every return
 320   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
 321     Block* block = C->cfg()->get_block(i);
 322     if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
 323       Node* m = block->end();
 324       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 325         MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 326         block->add_inst(epilog);
 327         C->cfg()->map_node_to_block(epilog, block);
 328       }
 329     }
 330   }
 331 
 332   // Keeper of sizing aspects
 333   _buf_sizes = BufferSizingData();
 334 
 335   // Initialize code buffer
 336   estimate_buffer_size(_buf_sizes._const);
 337   if (C->failing()) return;
 338 
 339   // Pre-compute the length of blocks and replace
 340   // long branches with short if machine supports it.
 341   // Must be done before ScheduleAndBundle due to SPARC delay slots
 342   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
 343   blk_starts[0] = 0;
 344   shorten_branches(blk_starts);
 345 
 346   ScheduleAndBundle();
 347   if (C->failing()) {
 348     return;
 349   }
 350 
 351   perform_mach_node_analysis();
 352 
 353   // Complete sizing of codebuffer
 354   CodeBuffer* cb = init_buffer();
 355   if (cb == NULL || C->failing()) {
 356     return;
 357   }
 358 
 359   BuildOopMaps();
 360 
 361   if (C->failing())  {
 362     return;
 363   }
 364 
 365   fill_buffer(cb, blk_starts);
 366 }
 367 
 368 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
 369   // Determine if we need to generate a stack overflow check.
 370   // Do it if the method is not a stub function and
 371   // has java calls or has frame size > vm_page_size/8.
 372   // The debug VM checks that deoptimization doesn't trigger an
 373   // unexpected stack overflow (compiled method stack banging should
 374   // guarantee it doesn't happen) so we always need the stack bang in
 375   // a debug VM.
 376   return (UseStackBanging && C->stub_function() == NULL &&
 377           (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
 378            DEBUG_ONLY(|| true)));
 379 }
 380 
 381 bool PhaseOutput::need_register_stack_bang() const {
 382   // Determine if we need to generate a register stack overflow check.
 383   // This is only used on architectures which have split register
 384   // and memory stacks (ie. IA64).
 385   // Bang if the method is not a stub function and has java calls
 386   return (C->stub_function() == NULL && C->has_java_calls());
 387 }
 388 
 389 
 390 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 391 // of a loop. When aligning a loop we need to provide enough instructions
 392 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 393 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 394 // By default, the size is set to 999999 by Block's constructor so that
 395 // a loop will be aligned if the size is not reset here.
 396 //
 397 // Note: Mach instructions could contain several HW instructions
 398 // so the size is estimated only.
 399 //
 400 void PhaseOutput::compute_loop_first_inst_sizes() {
 401   // The next condition is used to gate the loop alignment optimization.
 402   // Don't aligned a loop if there are enough instructions at the head of a loop
 403   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 404   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 405   // equal to 11 bytes which is the largest address NOP instruction.
 406   if (MaxLoopPad < OptoLoopAlignment - 1) {
 407     uint last_block = C->cfg()->number_of_blocks() - 1;
 408     for (uint i = 1; i <= last_block; i++) {
 409       Block* block = C->cfg()->get_block(i);
 410       // Check the first loop's block which requires an alignment.
 411       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 412         uint sum_size = 0;
 413         uint inst_cnt = NumberOfLoopInstrToAlign;
 414         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 415 
 416         // Check subsequent fallthrough blocks if the loop's first
 417         // block(s) does not have enough instructions.
 418         Block *nb = block;
 419         while(inst_cnt > 0 &&
 420               i < last_block &&
 421               !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
 422               !nb->has_successor(block)) {
 423           i++;
 424           nb = C->cfg()->get_block(i);
 425           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 426         } // while( inst_cnt > 0 && i < last_block  )
 427 
 428         block->set_first_inst_size(sum_size);
 429       } // f( b->head()->is_Loop() )
 430     } // for( i <= last_block )
 431   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 432 }
 433 
 434 // The architecture description provides short branch variants for some long
 435 // branch instructions. Replace eligible long branches with short branches.
 436 void PhaseOutput::shorten_branches(uint* blk_starts) {
 437   // Compute size of each block, method size, and relocation information size
 438   uint nblocks  = C->cfg()->number_of_blocks();
 439 
 440   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 441   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 442   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 443 
 444   // Collect worst case block paddings
 445   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 446   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 447 
 448   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 449   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 450 
 451   bool has_short_branch_candidate = false;
 452 
 453   // Initialize the sizes to 0
 454   int code_size  = 0;          // Size in bytes of generated code
 455   int stub_size  = 0;          // Size in bytes of all stub entries
 456   // Size in bytes of all relocation entries, including those in local stubs.
 457   // Start with 2-bytes of reloc info for the unvalidated entry point
 458   int reloc_size = 1;          // Number of relocation entries
 459 
 460   // Make three passes.  The first computes pessimistic blk_starts,
 461   // relative jmp_offset and reloc_size information.  The second performs
 462   // short branch substitution using the pessimistic sizing.  The
 463   // third inserts nops where needed.
 464 
 465   // Step one, perform a pessimistic sizing pass.
 466   uint last_call_adr = max_juint;
 467   uint last_avoid_back_to_back_adr = max_juint;
 468   uint nop_size = (new MachNopNode())->size(C->regalloc());
 469   for (uint i = 0; i < nblocks; i++) { // For all blocks
 470     Block* block = C->cfg()->get_block(i);
 471     _block = block;
 472 
 473     // During short branch replacement, we store the relative (to blk_starts)
 474     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 475     // This is so that we do not need to recompute sizes of all nodes when
 476     // we compute correct blk_starts in our next sizing pass.
 477     jmp_offset[i] = 0;
 478     jmp_size[i]   = 0;
 479     jmp_nidx[i]   = -1;
 480     DEBUG_ONLY( jmp_target[i] = 0; )
 481     DEBUG_ONLY( jmp_rule[i]   = 0; )
 482 
 483     // Sum all instruction sizes to compute block size
 484     uint last_inst = block->number_of_nodes();
 485     uint blk_size = 0;
 486     for (uint j = 0; j < last_inst; j++) {
 487       _index = j;
 488       Node* nj = block->get_node(_index);
 489       // Handle machine instruction nodes
 490       if (nj->is_Mach()) {
 491         MachNode* mach = nj->as_Mach();
 492         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 493         reloc_size += mach->reloc();
 494         if (mach->is_MachCall()) {
 495           // add size information for trampoline stub
 496           // class CallStubImpl is platform-specific and defined in the *.ad files.
 497           stub_size  += CallStubImpl::size_call_trampoline();
 498           reloc_size += CallStubImpl::reloc_call_trampoline();
 499 
 500           MachCallNode *mcall = mach->as_MachCall();
 501           // This destination address is NOT PC-relative
 502 
 503           mcall->method_set((intptr_t)mcall->entry_point());
 504 
 505           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 506             stub_size  += CompiledStaticCall::to_interp_stub_size();
 507             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 508 #if INCLUDE_AOT
 509             stub_size  += CompiledStaticCall::to_aot_stub_size();
 510             reloc_size += CompiledStaticCall::reloc_to_aot_stub();
 511 #endif
 512           }
 513         } else if (mach->is_MachSafePoint()) {
 514           // If call/safepoint are adjacent, account for possible
 515           // nop to disambiguate the two safepoints.
 516           // ScheduleAndBundle() can rearrange nodes in a block,
 517           // check for all offsets inside this block.
 518           if (last_call_adr >= blk_starts[i]) {
 519             blk_size += nop_size;
 520           }
 521         }
 522         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 523           // Nop is inserted between "avoid back to back" instructions.
 524           // ScheduleAndBundle() can rearrange nodes in a block,
 525           // check for all offsets inside this block.
 526           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 527             blk_size += nop_size;
 528           }
 529         }
 530         if (mach->may_be_short_branch()) {
 531           if (!nj->is_MachBranch()) {
 532 #ifndef PRODUCT
 533             nj->dump(3);
 534 #endif
 535             Unimplemented();
 536           }
 537           assert(jmp_nidx[i] == -1, "block should have only one branch");
 538           jmp_offset[i] = blk_size;
 539           jmp_size[i]   = nj->size(C->regalloc());
 540           jmp_nidx[i]   = j;
 541           has_short_branch_candidate = true;
 542         }
 543       }
 544       blk_size += nj->size(C->regalloc());
 545       // Remember end of call offset
 546       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 547         last_call_adr = blk_starts[i]+blk_size;
 548       }
 549       // Remember end of avoid_back_to_back offset
 550       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
 551         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 552       }
 553     }
 554 
 555     // When the next block starts a loop, we may insert pad NOP
 556     // instructions.  Since we cannot know our future alignment,
 557     // assume the worst.
 558     if (i < nblocks - 1) {
 559       Block* nb = C->cfg()->get_block(i + 1);
 560       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 561       if (max_loop_pad > 0) {
 562         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 563         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 564         // If either is the last instruction in this block, bump by
 565         // max_loop_pad in lock-step with blk_size, so sizing
 566         // calculations in subsequent blocks still can conservatively
 567         // detect that it may the last instruction in this block.
 568         if (last_call_adr == blk_starts[i]+blk_size) {
 569           last_call_adr += max_loop_pad;
 570         }
 571         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 572           last_avoid_back_to_back_adr += max_loop_pad;
 573         }
 574         blk_size += max_loop_pad;
 575         block_worst_case_pad[i + 1] = max_loop_pad;
 576       }
 577     }
 578 
 579     // Save block size; update total method size
 580     blk_starts[i+1] = blk_starts[i]+blk_size;
 581   }
 582 
 583   // Step two, replace eligible long jumps.
 584   bool progress = true;
 585   uint last_may_be_short_branch_adr = max_juint;
 586   while (has_short_branch_candidate && progress) {
 587     progress = false;
 588     has_short_branch_candidate = false;
 589     int adjust_block_start = 0;
 590     for (uint i = 0; i < nblocks; i++) {
 591       Block* block = C->cfg()->get_block(i);
 592       int idx = jmp_nidx[i];
 593       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 594       if (mach != NULL && mach->may_be_short_branch()) {
 595 #ifdef ASSERT
 596         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 597         int j;
 598         // Find the branch; ignore trailing NOPs.
 599         for (j = block->number_of_nodes()-1; j>=0; j--) {
 600           Node* n = block->get_node(j);
 601           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 602             break;
 603         }
 604         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 605 #endif
 606         int br_size = jmp_size[i];
 607         int br_offs = blk_starts[i] + jmp_offset[i];
 608 
 609         // This requires the TRUE branch target be in succs[0]
 610         uint bnum = block->non_connector_successor(0)->_pre_order;
 611         int offset = blk_starts[bnum] - br_offs;
 612         if (bnum > i) { // adjust following block's offset
 613           offset -= adjust_block_start;
 614         }
 615 
 616         // This block can be a loop header, account for the padding
 617         // in the previous block.
 618         int block_padding = block_worst_case_pad[i];
 619         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 620         // In the following code a nop could be inserted before
 621         // the branch which will increase the backward distance.
 622         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 623         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 624 
 625         if (needs_padding && offset <= 0)
 626           offset -= nop_size;
 627 
 628         if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
 629           // We've got a winner.  Replace this branch.
 630           MachNode* replacement = mach->as_MachBranch()->short_branch_version();
 631 
 632           // Update the jmp_size.
 633           int new_size = replacement->size(C->regalloc());
 634           int diff     = br_size - new_size;
 635           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 636           // Conservatively take into account padding between
 637           // avoid_back_to_back branches. Previous branch could be
 638           // converted into avoid_back_to_back branch during next
 639           // rounds.
 640           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 641             jmp_offset[i] += nop_size;
 642             diff -= nop_size;
 643           }
 644           adjust_block_start += diff;
 645           block->map_node(replacement, idx);
 646           mach->subsume_by(replacement, C);
 647           mach = replacement;
 648           progress = true;
 649 
 650           jmp_size[i] = new_size;
 651           DEBUG_ONLY( jmp_target[i] = bnum; );
 652           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 653         } else {
 654           // The jump distance is not short, try again during next iteration.
 655           has_short_branch_candidate = true;
 656         }
 657       } // (mach->may_be_short_branch())
 658       if (mach != NULL && (mach->may_be_short_branch() ||
 659                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
 660         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 661       }
 662       blk_starts[i+1] -= adjust_block_start;
 663     }
 664   }
 665 
 666 #ifdef ASSERT
 667   for (uint i = 0; i < nblocks; i++) { // For all blocks
 668     if (jmp_target[i] != 0) {
 669       int br_size = jmp_size[i];
 670       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 671       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 672         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 673       }
 674       assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 675     }
 676   }
 677 #endif
 678 
 679   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 680   // after ScheduleAndBundle().
 681 
 682   // ------------------
 683   // Compute size for code buffer
 684   code_size = blk_starts[nblocks];
 685 
 686   // Relocation records
 687   reloc_size += 1;              // Relo entry for exception handler
 688 
 689   // Adjust reloc_size to number of record of relocation info
 690   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 691   // a relocation index.
 692   // The CodeBuffer will expand the locs array if this estimate is too low.
 693   reloc_size *= 10 / sizeof(relocInfo);
 694 
 695   _buf_sizes._reloc = reloc_size;
 696   _buf_sizes._code  = code_size;
 697   _buf_sizes._stub  = stub_size;
 698 }
 699 
 700 //------------------------------FillLocArray-----------------------------------
 701 // Create a bit of debug info and append it to the array.  The mapping is from
 702 // Java local or expression stack to constant, register or stack-slot.  For
 703 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 704 // entry has been taken care of and caller should skip it).
 705 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 706   // This should never have accepted Bad before
 707   assert(OptoReg::is_valid(regnum), "location must be valid");
 708   return (OptoReg::is_reg(regnum))
 709          ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 710          : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 711 }
 712 
 713 
 714 ObjectValue*
 715 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 716   for (int i = 0; i < objs->length(); i++) {
 717     assert(objs->at(i)->is_object(), "corrupt object cache");
 718     ObjectValue* sv = (ObjectValue*) objs->at(i);
 719     if (sv->id() == id) {
 720       return sv;
 721     }
 722   }
 723   // Otherwise..
 724   return NULL;
 725 }
 726 
 727 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 728                                      ObjectValue* sv ) {
 729   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 730   objs->append(sv);
 731 }
 732 
 733 
 734 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 735                             GrowableArray<ScopeValue*> *array,
 736                             GrowableArray<ScopeValue*> *objs ) {
 737   assert( local, "use _top instead of null" );
 738   if (array->length() != idx) {
 739     assert(array->length() == idx + 1, "Unexpected array count");
 740     // Old functionality:
 741     //   return
 742     // New functionality:
 743     //   Assert if the local is not top. In product mode let the new node
 744     //   override the old entry.
 745     assert(local == C->top(), "LocArray collision");
 746     if (local == C->top()) {
 747       return;
 748     }
 749     array->pop();
 750   }
 751   const Type *t = local->bottom_type();
 752 
 753   // Is it a safepoint scalar object node?
 754   if (local->is_SafePointScalarObject()) {
 755     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 756 
 757     ObjectValue* sv = sv_for_node_id(objs, spobj->_idx);
 758     if (sv == NULL) {
 759       ciKlass* cik = t->is_oopptr()->klass();
 760       assert(cik->is_instance_klass() ||
 761              cik->is_array_klass(), "Not supported allocation.");
 762       sv = new ObjectValue(spobj->_idx,
 763                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 764       set_sv_for_object_node(objs, sv);
 765 
 766       uint first_ind = spobj->first_index(sfpt->jvms());
 767       for (uint i = 0; i < spobj->n_fields(); i++) {
 768         Node* fld_node = sfpt->in(first_ind+i);
 769         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 770       }
 771     }
 772     array->append(sv);
 773     return;
 774   }
 775 
 776   // Grab the register number for the local
 777   OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
 778   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 779     // Record the double as two float registers.
 780     // The register mask for such a value always specifies two adjacent
 781     // float registers, with the lower register number even.
 782     // Normally, the allocation of high and low words to these registers
 783     // is irrelevant, because nearly all operations on register pairs
 784     // (e.g., StoreD) treat them as a single unit.
 785     // Here, we assume in addition that the words in these two registers
 786     // stored "naturally" (by operations like StoreD and double stores
 787     // within the interpreter) such that the lower-numbered register
 788     // is written to the lower memory address.  This may seem like
 789     // a machine dependency, but it is not--it is a requirement on
 790     // the author of the <arch>.ad file to ensure that, for every
 791     // even/odd double-register pair to which a double may be allocated,
 792     // the word in the even single-register is stored to the first
 793     // memory word.  (Note that register numbers are completely
 794     // arbitrary, and are not tied to any machine-level encodings.)
 795 #ifdef _LP64
 796     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 797       array->append(new ConstantIntValue((jint)0));
 798       array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
 799     } else if ( t->base() == Type::Long ) {
 800       array->append(new ConstantIntValue((jint)0));
 801       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 802     } else if ( t->base() == Type::RawPtr ) {
 803       // jsr/ret return address which must be restored into a the full
 804       // width 64-bit stack slot.
 805       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 806     }
 807 #else //_LP64
 808     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 809       // Repack the double/long as two jints.
 810       // The convention the interpreter uses is that the second local
 811       // holds the first raw word of the native double representation.
 812       // This is actually reasonable, since locals and stack arrays
 813       // grow downwards in all implementations.
 814       // (If, on some machine, the interpreter's Java locals or stack
 815       // were to grow upwards, the embedded doubles would be word-swapped.)
 816       array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
 817       array->append(new_loc_value( C->regalloc(),              regnum   , Location::normal ));
 818     }
 819 #endif //_LP64
 820     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 821              OptoReg::is_reg(regnum) ) {
 822       array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
 823                                                       ? Location::float_in_dbl : Location::normal ));
 824     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 825       array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
 826                                                       ? Location::int_in_long : Location::normal ));
 827     } else if( t->base() == Type::NarrowOop ) {
 828       array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
 829     } else {
 830       array->append(new_loc_value( C->regalloc(), regnum, C->regalloc()->is_oop(local) ? Location::oop : Location::normal ));
 831     }
 832     return;
 833   }
 834 
 835   // No register.  It must be constant data.
 836   switch (t->base()) {
 837     case Type::Half:              // Second half of a double
 838       ShouldNotReachHere();       // Caller should skip 2nd halves
 839       break;
 840     case Type::AnyPtr:
 841       array->append(new ConstantOopWriteValue(NULL));
 842       break;
 843     case Type::AryPtr:
 844     case Type::InstPtr:          // fall through
 845       array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 846       break;
 847     case Type::NarrowOop:
 848       if (t == TypeNarrowOop::NULL_PTR) {
 849         array->append(new ConstantOopWriteValue(NULL));
 850       } else {
 851         array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 852       }
 853       break;
 854     case Type::Int:
 855       array->append(new ConstantIntValue(t->is_int()->get_con()));
 856       break;
 857     case Type::RawPtr:
 858       // A return address (T_ADDRESS).
 859       assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 860 #ifdef _LP64
 861       // Must be restored to the full-width 64-bit stack slot.
 862       array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 863 #else
 864       array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 865 #endif
 866       break;
 867     case Type::FloatCon: {
 868       float f = t->is_float_constant()->getf();
 869       array->append(new ConstantIntValue(jint_cast(f)));
 870       break;
 871     }
 872     case Type::DoubleCon: {
 873       jdouble d = t->is_double_constant()->getd();
 874 #ifdef _LP64
 875       array->append(new ConstantIntValue((jint)0));
 876       array->append(new ConstantDoubleValue(d));
 877 #else
 878       // Repack the double as two jints.
 879     // The convention the interpreter uses is that the second local
 880     // holds the first raw word of the native double representation.
 881     // This is actually reasonable, since locals and stack arrays
 882     // grow downwards in all implementations.
 883     // (If, on some machine, the interpreter's Java locals or stack
 884     // were to grow upwards, the embedded doubles would be word-swapped.)
 885     jlong_accessor acc;
 886     acc.long_value = jlong_cast(d);
 887     array->append(new ConstantIntValue(acc.words[1]));
 888     array->append(new ConstantIntValue(acc.words[0]));
 889 #endif
 890       break;
 891     }
 892     case Type::Long: {
 893       jlong d = t->is_long()->get_con();
 894 #ifdef _LP64
 895       array->append(new ConstantIntValue((jint)0));
 896       array->append(new ConstantLongValue(d));
 897 #else
 898       // Repack the long as two jints.
 899     // The convention the interpreter uses is that the second local
 900     // holds the first raw word of the native double representation.
 901     // This is actually reasonable, since locals and stack arrays
 902     // grow downwards in all implementations.
 903     // (If, on some machine, the interpreter's Java locals or stack
 904     // were to grow upwards, the embedded doubles would be word-swapped.)
 905     jlong_accessor acc;
 906     acc.long_value = d;
 907     array->append(new ConstantIntValue(acc.words[1]));
 908     array->append(new ConstantIntValue(acc.words[0]));
 909 #endif
 910       break;
 911     }
 912     case Type::Top:               // Add an illegal value here
 913       array->append(new LocationValue(Location()));
 914       break;
 915     default:
 916       ShouldNotReachHere();
 917       break;
 918   }
 919 }
 920 
 921 // Determine if this node starts a bundle
 922 bool PhaseOutput::starts_bundle(const Node *n) const {
 923   return (_node_bundling_limit > n->_idx &&
 924           _node_bundling_base[n->_idx].starts_bundle());
 925 }
 926 
 927 //--------------------------Process_OopMap_Node--------------------------------
 928 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
 929   // Handle special safepoint nodes for synchronization
 930   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 931   MachCallNode      *mcall;
 932 
 933   int safepoint_pc_offset = current_offset;
 934   bool is_method_handle_invoke = false;
 935   bool return_oop = false;
 936 
 937   // Add the safepoint in the DebugInfoRecorder
 938   if( !mach->is_MachCall() ) {
 939     mcall = NULL;
 940     C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 941   } else {
 942     mcall = mach->as_MachCall();
 943 
 944     // Is the call a MethodHandle call?
 945     if (mcall->is_MachCallJava()) {
 946       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 947         assert(C->has_method_handle_invokes(), "must have been set during call generation");
 948         is_method_handle_invoke = true;
 949       }
 950     }
 951 
 952     // Check if a call returns an object.
 953     if (mcall->returns_pointer()) {
 954       return_oop = true;
 955     }
 956     safepoint_pc_offset += mcall->ret_addr_offset();
 957     C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 958   }
 959 
 960   // Loop over the JVMState list to add scope information
 961   // Do not skip safepoints with a NULL method, they need monitor info
 962   JVMState* youngest_jvms = sfn->jvms();
 963   int max_depth = youngest_jvms->depth();
 964 
 965   // Allocate the object pool for scalar-replaced objects -- the map from
 966   // small-integer keys (which can be recorded in the local and ostack
 967   // arrays) to descriptions of the object state.
 968   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 969 
 970   // Visit scopes from oldest to youngest.
 971   for (int depth = 1; depth <= max_depth; depth++) {
 972     JVMState* jvms = youngest_jvms->of_depth(depth);
 973     int idx;
 974     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 975     // Safepoints that do not have method() set only provide oop-map and monitor info
 976     // to support GC; these do not support deoptimization.
 977     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 978     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 979     int num_mon  = jvms->nof_monitors();
 980     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 981            "JVMS local count must match that of the method");
 982 
 983     // Add Local and Expression Stack Information
 984 
 985     // Insert locals into the locarray
 986     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 987     for( idx = 0; idx < num_locs; idx++ ) {
 988       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 989     }
 990 
 991     // Insert expression stack entries into the exparray
 992     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 993     for( idx = 0; idx < num_exps; idx++ ) {
 994       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 995     }
 996 
 997     // Add in mappings of the monitors
 998     assert( !method ||
 999             !method->is_synchronized() ||
1000             method->is_native() ||
1001             num_mon > 0 ||
1002             !GenerateSynchronizationCode,
1003             "monitors must always exist for synchronized methods");
1004 
1005     // Build the growable array of ScopeValues for exp stack
1006     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1007 
1008     // Loop over monitors and insert into array
1009     for (idx = 0; idx < num_mon; idx++) {
1010       // Grab the node that defines this monitor
1011       Node* box_node = sfn->monitor_box(jvms, idx);
1012       Node* obj_node = sfn->monitor_obj(jvms, idx);
1013 
1014       // Create ScopeValue for object
1015       ScopeValue *scval = NULL;
1016 
1017       if (obj_node->is_SafePointScalarObject()) {
1018         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1019         scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1020         if (scval == NULL) {
1021           const Type *t = spobj->bottom_type();
1022           ciKlass* cik = t->is_oopptr()->klass();
1023           assert(cik->is_instance_klass() ||
1024                  cik->is_array_klass(), "Not supported allocation.");
1025           ObjectValue* sv = new ObjectValue(spobj->_idx,
1026                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
1027           PhaseOutput::set_sv_for_object_node(objs, sv);
1028 
1029           uint first_ind = spobj->first_index(youngest_jvms);
1030           for (uint i = 0; i < spobj->n_fields(); i++) {
1031             Node* fld_node = sfn->in(first_ind+i);
1032             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1033           }
1034           scval = sv;
1035         }
1036       } else if (!obj_node->is_Con()) {
1037         OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1038         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1039           scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1040         } else {
1041           scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1042         }
1043       } else {
1044         const TypePtr *tp = obj_node->get_ptr_type();
1045         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1046       }
1047 
1048       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1049       Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1050       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1051       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1052     }
1053 
1054     // We dump the object pool first, since deoptimization reads it in first.
1055     C->debug_info()->dump_object_pool(objs);
1056 
1057     // Build first class objects to pass to scope
1058     DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1059     DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1060     DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1061 
1062     // Make method available for all Safepoints
1063     ciMethod* scope_method = method ? method : C->method();
1064     // Describe the scope here
1065     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1066     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1067     // Now we can describe the scope.
1068     methodHandle null_mh;
1069     bool rethrow_exception = false;
1070     C->debug_info()->describe_scope(safepoint_pc_offset, null_mh, scope_method, jvms->bci(), jvms->should_reexecute(), rethrow_exception, is_method_handle_invoke, return_oop, locvals, expvals, monvals);
1071   } // End jvms loop
1072 
1073   // Mark the end of the scope set.
1074   C->debug_info()->end_safepoint(safepoint_pc_offset);
1075 }
1076 
1077 
1078 
1079 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
1080 class NonSafepointEmitter {
1081     Compile*  C;
1082     JVMState* _pending_jvms;
1083     int       _pending_offset;
1084 
1085     void emit_non_safepoint();
1086 
1087  public:
1088     NonSafepointEmitter(Compile* compile) {
1089       this->C = compile;
1090       _pending_jvms = NULL;
1091       _pending_offset = 0;
1092     }
1093 
1094     void observe_instruction(Node* n, int pc_offset) {
1095       if (!C->debug_info()->recording_non_safepoints())  return;
1096 
1097       Node_Notes* nn = C->node_notes_at(n->_idx);
1098       if (nn == NULL || nn->jvms() == NULL)  return;
1099       if (_pending_jvms != NULL &&
1100           _pending_jvms->same_calls_as(nn->jvms())) {
1101         // Repeated JVMS?  Stretch it up here.
1102         _pending_offset = pc_offset;
1103       } else {
1104         if (_pending_jvms != NULL &&
1105             _pending_offset < pc_offset) {
1106           emit_non_safepoint();
1107         }
1108         _pending_jvms = NULL;
1109         if (pc_offset > C->debug_info()->last_pc_offset()) {
1110           // This is the only way _pending_jvms can become non-NULL:
1111           _pending_jvms = nn->jvms();
1112           _pending_offset = pc_offset;
1113         }
1114       }
1115     }
1116 
1117     // Stay out of the way of real safepoints:
1118     void observe_safepoint(JVMState* jvms, int pc_offset) {
1119       if (_pending_jvms != NULL &&
1120           !_pending_jvms->same_calls_as(jvms) &&
1121           _pending_offset < pc_offset) {
1122         emit_non_safepoint();
1123       }
1124       _pending_jvms = NULL;
1125     }
1126 
1127     void flush_at_end() {
1128       if (_pending_jvms != NULL) {
1129         emit_non_safepoint();
1130       }
1131       _pending_jvms = NULL;
1132     }
1133 };
1134 
1135 void NonSafepointEmitter::emit_non_safepoint() {
1136   JVMState* youngest_jvms = _pending_jvms;
1137   int       pc_offset     = _pending_offset;
1138 
1139   // Clear it now:
1140   _pending_jvms = NULL;
1141 
1142   DebugInformationRecorder* debug_info = C->debug_info();
1143   assert(debug_info->recording_non_safepoints(), "sanity");
1144 
1145   debug_info->add_non_safepoint(pc_offset);
1146   int max_depth = youngest_jvms->depth();
1147 
1148   // Visit scopes from oldest to youngest.
1149   for (int depth = 1; depth <= max_depth; depth++) {
1150     JVMState* jvms = youngest_jvms->of_depth(depth);
1151     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1152     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1153     methodHandle null_mh;
1154     debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1155   }
1156 
1157   // Mark the end of the scope set.
1158   debug_info->end_non_safepoint(pc_offset);
1159 }
1160 
1161 //------------------------------init_buffer------------------------------------
1162 void PhaseOutput::estimate_buffer_size(int& const_req) {
1163 
1164   // Set the initially allocated size
1165   const_req = initial_const_capacity;
1166 
1167   // The extra spacing after the code is necessary on some platforms.
1168   // Sometimes we need to patch in a jump after the last instruction,
1169   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1170 
1171   // Compute the byte offset where we can store the deopt pc.
1172   if (C->fixed_slots() != 0) {
1173     _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1174   }
1175 
1176   // Compute prolog code size
1177   _method_size = 0;
1178   _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1179 #if defined(IA64) && !defined(AIX)
1180   if (save_argument_registers()) {
1181     // 4815101: this is a stub with implicit and unknown precision fp args.
1182     // The usual spill mechanism can only generate stfd's in this case, which
1183     // doesn't work if the fp reg to spill contains a single-precision denorm.
1184     // Instead, we hack around the normal spill mechanism using stfspill's and
1185     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1186     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1187     //
1188     // If we ever implement 16-byte 'registers' == stack slots, we can
1189     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1190     // instead of stfd/stfs/ldfd/ldfs.
1191     _frame_slots += 8*(16/BytesPerInt);
1192   }
1193 #endif
1194   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1195 
1196   if (C->has_mach_constant_base_node()) {
1197     uint add_size = 0;
1198     // Fill the constant table.
1199     // Note:  This must happen before shorten_branches.
1200     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1201       Block* b = C->cfg()->get_block(i);
1202 
1203       for (uint j = 0; j < b->number_of_nodes(); j++) {
1204         Node* n = b->get_node(j);
1205 
1206         // If the node is a MachConstantNode evaluate the constant
1207         // value section.
1208         if (n->is_MachConstant()) {
1209           MachConstantNode* machcon = n->as_MachConstant();
1210           machcon->eval_constant(C);
1211         } else if (n->is_Mach()) {
1212           // On Power there are more nodes that issue constants.
1213           add_size += (n->as_Mach()->ins_num_consts() * 8);
1214         }
1215       }
1216     }
1217 
1218     // Calculate the offsets of the constants and the size of the
1219     // constant table (including the padding to the next section).
1220     constant_table().calculate_offsets_and_size();
1221     const_req = constant_table().size() + add_size;
1222   }
1223 
1224   // Initialize the space for the BufferBlob used to find and verify
1225   // instruction size in MachNode::emit_size()
1226   init_scratch_buffer_blob(const_req);
1227 }
1228 
1229 CodeBuffer* PhaseOutput::init_buffer() {
1230   int stub_req  = _buf_sizes._stub;
1231   int code_req  = _buf_sizes._code;
1232   int const_req = _buf_sizes._const;
1233 
1234   int pad_req   = NativeCall::instruction_size;
1235 
1236   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1237   stub_req += bs->estimate_stub_size();
1238 
1239   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1240   // class HandlerImpl is platform-specific and defined in the *.ad files.
1241   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1242   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1243   stub_req += MAX_stubs_size;   // ensure per-stub margin
1244   code_req += MAX_inst_size;    // ensure per-instruction margin
1245 
1246   if (StressCodeBuffers)
1247     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1248 
1249   int total_req =
1250           const_req +
1251           code_req +
1252           pad_req +
1253           stub_req +
1254           exception_handler_req +
1255           deopt_handler_req;               // deopt handler
1256 
1257   if (C->has_method_handle_invokes())
1258     total_req += deopt_handler_req;  // deopt MH handler
1259 
1260   CodeBuffer* cb = code_buffer();
1261   cb->initialize(total_req, _buf_sizes._reloc);
1262 
1263   // Have we run out of code space?
1264   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1265     C->record_failure("CodeCache is full");
1266     return NULL;
1267   }
1268   // Configure the code buffer.
1269   cb->initialize_consts_size(const_req);
1270   cb->initialize_stubs_size(stub_req);
1271   cb->initialize_oop_recorder(C->env()->oop_recorder());
1272 
1273   // fill in the nop array for bundling computations
1274   MachNode *_nop_list[Bundle::_nop_count];
1275   Bundle::initialize_nops(_nop_list);
1276 
1277   return cb;
1278 }
1279 
1280 //------------------------------fill_buffer------------------------------------
1281 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1282   // blk_starts[] contains offsets calculated during short branches processing,
1283   // offsets should not be increased during following steps.
1284 
1285   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1286   // of a loop. It is used to determine the padding for loop alignment.
1287   compute_loop_first_inst_sizes();
1288 
1289   // Create oopmap set.
1290   _oop_map_set = new OopMapSet();
1291 
1292   // !!!!! This preserves old handling of oopmaps for now
1293   C->debug_info()->set_oopmaps(_oop_map_set);
1294 
1295   uint nblocks  = C->cfg()->number_of_blocks();
1296   // Count and start of implicit null check instructions
1297   uint inct_cnt = 0;
1298   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1299 
1300   // Count and start of calls
1301   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1302 
1303   uint  return_offset = 0;
1304   int nop_size = (new MachNopNode())->size(C->regalloc());
1305 
1306   int previous_offset = 0;
1307   int current_offset  = 0;
1308   int last_call_offset = -1;
1309   int last_avoid_back_to_back_offset = -1;
1310 #ifdef ASSERT
1311   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1312   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1313   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1314   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1315 #endif
1316 
1317   // Create an array of unused labels, one for each basic block, if printing is enabled
1318 #if defined(SUPPORT_OPTO_ASSEMBLY)
1319   int *node_offsets      = NULL;
1320   uint node_offset_limit = C->unique();
1321 
1322   if (C->print_assembly()) {
1323     node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1324   }
1325   if (node_offsets != NULL) {
1326     // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1327     memset(node_offsets, 0, node_offset_limit*sizeof(int));
1328   }
1329 #endif
1330 
1331   NonSafepointEmitter non_safepoints(C);  // emit non-safepoints lazily
1332 
1333   // Emit the constant table.
1334   if (C->has_mach_constant_base_node()) {
1335     constant_table().emit(*cb);
1336   }
1337 
1338   // Create an array of labels, one for each basic block
1339   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1340   for (uint i=0; i <= nblocks; i++) {
1341     blk_labels[i].init();
1342   }
1343 
1344   // ------------------
1345   // Now fill in the code buffer
1346   Node *delay_slot = NULL;
1347 
1348   for (uint i = 0; i < nblocks; i++) {
1349     Block* block = C->cfg()->get_block(i);
1350     _block = block;
1351     Node* head = block->head();
1352 
1353     // If this block needs to start aligned (i.e, can be reached other
1354     // than by falling-thru from the previous block), then force the
1355     // start of a new bundle.
1356     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1357       cb->flush_bundle(true);
1358     }
1359 
1360 #ifdef ASSERT
1361     if (!block->is_connector()) {
1362       stringStream st;
1363       block->dump_head(C->cfg(), &st);
1364       MacroAssembler(cb).block_comment(st.as_string());
1365     }
1366     jmp_target[i] = 0;
1367     jmp_offset[i] = 0;
1368     jmp_size[i]   = 0;
1369     jmp_rule[i]   = 0;
1370 #endif
1371     int blk_offset = current_offset;
1372 
1373     // Define the label at the beginning of the basic block
1374     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1375 
1376     uint last_inst = block->number_of_nodes();
1377 
1378     // Emit block normally, except for last instruction.
1379     // Emit means "dump code bits into code buffer".
1380     for (uint j = 0; j<last_inst; j++) {
1381       _index = j;
1382 
1383       // Get the node
1384       Node* n = block->get_node(j);
1385 
1386       // See if delay slots are supported
1387       if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) {
1388         assert(delay_slot == NULL, "no use of delay slot node");
1389         assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1390 
1391         delay_slot = n;
1392         continue;
1393       }
1394 
1395       // If this starts a new instruction group, then flush the current one
1396       // (but allow split bundles)
1397       if (Pipeline::requires_bundling() && starts_bundle(n))
1398         cb->flush_bundle(false);
1399 
1400       // Special handling for SafePoint/Call Nodes
1401       bool is_mcall = false;
1402       if (n->is_Mach()) {
1403         MachNode *mach = n->as_Mach();
1404         is_mcall = n->is_MachCall();
1405         bool is_sfn = n->is_MachSafePoint();
1406 
1407         // If this requires all previous instructions be flushed, then do so
1408         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1409           cb->flush_bundle(true);
1410           current_offset = cb->insts_size();
1411         }
1412 
1413         // A padding may be needed again since a previous instruction
1414         // could be moved to delay slot.
1415 
1416         // align the instruction if necessary
1417         int padding = mach->compute_padding(current_offset);
1418         // Make sure safepoint node for polling is distinct from a call's
1419         // return by adding a nop if needed.
1420         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1421           padding = nop_size;
1422         }
1423         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1424             current_offset == last_avoid_back_to_back_offset) {
1425           // Avoid back to back some instructions.
1426           padding = nop_size;
1427         }
1428 
1429         if (padding > 0) {
1430           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1431           int nops_cnt = padding / nop_size;
1432           MachNode *nop = new MachNopNode(nops_cnt);
1433           block->insert_node(nop, j++);
1434           last_inst++;
1435           C->cfg()->map_node_to_block(nop, block);
1436           // Ensure enough space.
1437           cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1438           if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1439             C->record_failure("CodeCache is full");
1440             return;
1441           }
1442           nop->emit(*cb, C->regalloc());
1443           cb->flush_bundle(true);
1444           current_offset = cb->insts_size();
1445         }
1446 
1447         // Remember the start of the last call in a basic block
1448         if (is_mcall) {
1449           MachCallNode *mcall = mach->as_MachCall();
1450 
1451           // This destination address is NOT PC-relative
1452           mcall->method_set((intptr_t)mcall->entry_point());
1453 
1454           // Save the return address
1455           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1456 
1457           if (mcall->is_MachCallLeaf()) {
1458             is_mcall = false;
1459             is_sfn = false;
1460           }
1461         }
1462 
1463         // sfn will be valid whenever mcall is valid now because of inheritance
1464         if (is_sfn || is_mcall) {
1465 
1466           // Handle special safepoint nodes for synchronization
1467           if (!is_mcall) {
1468             MachSafePointNode *sfn = mach->as_MachSafePoint();
1469             // !!!!! Stubs only need an oopmap right now, so bail out
1470             if (sfn->jvms()->method() == NULL) {
1471               // Write the oopmap directly to the code blob??!!
1472               continue;
1473             }
1474           } // End synchronization
1475 
1476           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1477                                            current_offset);
1478           Process_OopMap_Node(mach, current_offset);
1479         } // End if safepoint
1480 
1481           // If this is a null check, then add the start of the previous instruction to the list
1482         else if( mach->is_MachNullCheck() ) {
1483           inct_starts[inct_cnt++] = previous_offset;
1484         }
1485 
1486           // If this is a branch, then fill in the label with the target BB's label
1487         else if (mach->is_MachBranch()) {
1488           // This requires the TRUE branch target be in succs[0]
1489           uint block_num = block->non_connector_successor(0)->_pre_order;
1490 
1491           // Try to replace long branch if delay slot is not used,
1492           // it is mostly for back branches since forward branch's
1493           // distance is not updated yet.
1494           bool delay_slot_is_used = valid_bundle_info(n) &&
1495                                     C->output()->node_bundling(n)->use_unconditional_delay();
1496           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1497             assert(delay_slot == NULL, "not expecting delay slot node");
1498             int br_size = n->size(C->regalloc());
1499             int offset = blk_starts[block_num] - current_offset;
1500             if (block_num >= i) {
1501               // Current and following block's offset are not
1502               // finalized yet, adjust distance by the difference
1503               // between calculated and final offsets of current block.
1504               offset -= (blk_starts[i] - blk_offset);
1505             }
1506             // In the following code a nop could be inserted before
1507             // the branch which will increase the backward distance.
1508             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1509             if (needs_padding && offset <= 0)
1510               offset -= nop_size;
1511 
1512             if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1513               // We've got a winner.  Replace this branch.
1514               MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1515 
1516               // Update the jmp_size.
1517               int new_size = replacement->size(C->regalloc());
1518               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1519               // Insert padding between avoid_back_to_back branches.
1520               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1521                 MachNode *nop = new MachNopNode();
1522                 block->insert_node(nop, j++);
1523                 C->cfg()->map_node_to_block(nop, block);
1524                 last_inst++;
1525                 nop->emit(*cb, C->regalloc());
1526                 cb->flush_bundle(true);
1527                 current_offset = cb->insts_size();
1528               }
1529 #ifdef ASSERT
1530               jmp_target[i] = block_num;
1531               jmp_offset[i] = current_offset - blk_offset;
1532               jmp_size[i]   = new_size;
1533               jmp_rule[i]   = mach->rule();
1534 #endif
1535               block->map_node(replacement, j);
1536               mach->subsume_by(replacement, C);
1537               n    = replacement;
1538               mach = replacement;
1539             }
1540           }
1541           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1542         } else if (mach->ideal_Opcode() == Op_Jump) {
1543           for (uint h = 0; h < block->_num_succs; h++) {
1544             Block* succs_block = block->_succs[h];
1545             for (uint j = 1; j < succs_block->num_preds(); j++) {
1546               Node* jpn = succs_block->pred(j);
1547               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1548                 uint block_num = succs_block->non_connector()->_pre_order;
1549                 Label *blkLabel = &blk_labels[block_num];
1550                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1551               }
1552             }
1553           }
1554         }
1555 #ifdef ASSERT
1556           // Check that oop-store precedes the card-mark
1557         else if (mach->ideal_Opcode() == Op_StoreCM) {
1558           uint storeCM_idx = j;
1559           int count = 0;
1560           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1561             Node *oop_store = mach->in(prec);  // Precedence edge
1562             if (oop_store == NULL) continue;
1563             count++;
1564             uint i4;
1565             for (i4 = 0; i4 < last_inst; ++i4) {
1566               if (block->get_node(i4) == oop_store) {
1567                 break;
1568               }
1569             }
1570             // Note: This test can provide a false failure if other precedence
1571             // edges have been added to the storeCMNode.
1572             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1573           }
1574           assert(count > 0, "storeCM expects at least one precedence edge");
1575         }
1576 #endif
1577         else if (!n->is_Proj()) {
1578           // Remember the beginning of the previous instruction, in case
1579           // it's followed by a flag-kill and a null-check.  Happens on
1580           // Intel all the time, with add-to-memory kind of opcodes.
1581           previous_offset = current_offset;
1582         }
1583 
1584         // Not an else-if!
1585         // If this is a trap based cmp then add its offset to the list.
1586         if (mach->is_TrapBasedCheckNode()) {
1587           inct_starts[inct_cnt++] = current_offset;
1588         }
1589       }
1590 
1591       // Verify that there is sufficient space remaining
1592       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1593       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1594         C->record_failure("CodeCache is full");
1595         return;
1596       }
1597 
1598       // Save the offset for the listing
1599 #if defined(SUPPORT_OPTO_ASSEMBLY)
1600       if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) {
1601         node_offsets[n->_idx] = cb->insts_size();
1602       }
1603 #endif
1604 
1605       // "Normal" instruction case
1606       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1607       n->emit(*cb, C->regalloc());
1608       current_offset  = cb->insts_size();
1609 
1610       // Above we only verified that there is enough space in the instruction section.
1611       // However, the instruction may emit stubs that cause code buffer expansion.
1612       // Bail out here if expansion failed due to a lack of code cache space.
1613       if (C->failing()) {
1614         return;
1615       }
1616 
1617 #ifdef ASSERT
1618       uint n_size = n->size(C->regalloc());
1619       if (n_size < (current_offset-instr_offset)) {
1620         MachNode* mach = n->as_Mach();
1621         n->dump();
1622         mach->dump_format(C->regalloc(), tty);
1623         tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset);
1624         Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty);
1625         tty->print_cr(" ------------------- ");
1626         BufferBlob* blob = this->scratch_buffer_blob();
1627         address blob_begin = blob->content_begin();
1628         Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty);
1629         assert(false, "wrong size of mach node");
1630       }
1631 #endif
1632       non_safepoints.observe_instruction(n, current_offset);
1633 
1634       // mcall is last "call" that can be a safepoint
1635       // record it so we can see if a poll will directly follow it
1636       // in which case we'll need a pad to make the PcDesc sites unique
1637       // see  5010568. This can be slightly inaccurate but conservative
1638       // in the case that return address is not actually at current_offset.
1639       // This is a small price to pay.
1640 
1641       if (is_mcall) {
1642         last_call_offset = current_offset;
1643       }
1644 
1645       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1646         // Avoid back to back some instructions.
1647         last_avoid_back_to_back_offset = current_offset;
1648       }
1649 
1650       // See if this instruction has a delay slot
1651       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1652         guarantee(delay_slot != NULL, "expecting delay slot node");
1653 
1654         // Back up 1 instruction
1655         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1656 
1657         // Save the offset for the listing
1658 #if defined(SUPPORT_OPTO_ASSEMBLY)
1659         if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) {
1660           node_offsets[delay_slot->_idx] = cb->insts_size();
1661         }
1662 #endif
1663 
1664         // Support a SafePoint in the delay slot
1665         if (delay_slot->is_MachSafePoint()) {
1666           MachNode *mach = delay_slot->as_Mach();
1667           // !!!!! Stubs only need an oopmap right now, so bail out
1668           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1669             // Write the oopmap directly to the code blob??!!
1670             delay_slot = NULL;
1671             continue;
1672           }
1673 
1674           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1675           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1676                                            adjusted_offset);
1677           // Generate an OopMap entry
1678           Process_OopMap_Node(mach, adjusted_offset);
1679         }
1680 
1681         // Insert the delay slot instruction
1682         delay_slot->emit(*cb, C->regalloc());
1683 
1684         // Don't reuse it
1685         delay_slot = NULL;
1686       }
1687 
1688     } // End for all instructions in block
1689 
1690     // If the next block is the top of a loop, pad this block out to align
1691     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1692     if (i < nblocks-1) {
1693       Block *nb = C->cfg()->get_block(i + 1);
1694       int padding = nb->alignment_padding(current_offset);
1695       if( padding > 0 ) {
1696         MachNode *nop = new MachNopNode(padding / nop_size);
1697         block->insert_node(nop, block->number_of_nodes());
1698         C->cfg()->map_node_to_block(nop, block);
1699         nop->emit(*cb, C->regalloc());
1700         current_offset = cb->insts_size();
1701       }
1702     }
1703     // Verify that the distance for generated before forward
1704     // short branches is still valid.
1705     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1706 
1707     // Save new block start offset
1708     blk_starts[i] = blk_offset;
1709   } // End of for all blocks
1710   blk_starts[nblocks] = current_offset;
1711 
1712   non_safepoints.flush_at_end();
1713 
1714   // Offset too large?
1715   if (C->failing())  return;
1716 
1717   // Define a pseudo-label at the end of the code
1718   MacroAssembler(cb).bind( blk_labels[nblocks] );
1719 
1720   // Compute the size of the first block
1721   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1722 
1723 #ifdef ASSERT
1724   for (uint i = 0; i < nblocks; i++) { // For all blocks
1725     if (jmp_target[i] != 0) {
1726       int br_size = jmp_size[i];
1727       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1728       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1729         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1730         assert(false, "Displacement too large for short jmp");
1731       }
1732     }
1733   }
1734 #endif
1735 
1736   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1737   bs->emit_stubs(*cb);
1738   if (C->failing())  return;
1739 
1740 #ifndef PRODUCT
1741   // Information on the size of the method, without the extraneous code
1742   Scheduling::increment_method_size(cb->insts_size());
1743 #endif
1744 
1745   // ------------------
1746   // Fill in exception table entries.
1747   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1748 
1749   // Only java methods have exception handlers and deopt handlers
1750   // class HandlerImpl is platform-specific and defined in the *.ad files.
1751   if (C->method()) {
1752     // Emit the exception handler code.
1753     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1754     if (C->failing()) {
1755       return; // CodeBuffer::expand failed
1756     }
1757     // Emit the deopt handler code.
1758     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1759 
1760     // Emit the MethodHandle deopt handler code (if required).
1761     if (C->has_method_handle_invokes() && !C->failing()) {
1762       // We can use the same code as for the normal deopt handler, we
1763       // just need a different entry point address.
1764       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1765     }
1766   }
1767 
1768   // One last check for failed CodeBuffer::expand:
1769   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1770     C->record_failure("CodeCache is full");
1771     return;
1772   }
1773 
1774 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1775   if (C->print_assembly()) {
1776     tty->cr();
1777     tty->print_cr("============================= C2-compiled nmethod ==============================");
1778   }
1779 #endif
1780 
1781 #if defined(SUPPORT_OPTO_ASSEMBLY)
1782   // Dump the assembly code, including basic-block numbers
1783   if (C->print_assembly()) {
1784     ttyLocker ttyl;  // keep the following output all in one block
1785     if (!VMThread::should_terminate()) {  // test this under the tty lock
1786       // This output goes directly to the tty, not the compiler log.
1787       // To enable tools to match it up with the compilation activity,
1788       // be sure to tag this tty output with the compile ID.
1789       if (xtty != NULL) {
1790         xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1791                    C->is_osr_compilation()    ? " compile_kind='osr'" :
1792                    "");
1793       }
1794       if (C->method() != NULL) {
1795         tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
1796         C->method()->print_metadata();
1797       } else if (C->stub_name() != NULL) {
1798         tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
1799       }
1800       tty->cr();
1801       tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
1802       dump_asm(node_offsets, node_offset_limit);
1803       tty->print_cr("--------------------------------------------------------------------------------");
1804       if (xtty != NULL) {
1805         // print_metadata and dump_asm above may safepoint which makes us loose the ttylock.
1806         // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done
1807         // thread safe
1808         ttyLocker ttyl2;
1809         xtty->tail("opto_assembly");
1810       }
1811     }
1812   }
1813 #endif
1814 }
1815 
1816 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1817   _inc_table.set_size(cnt);
1818 
1819   uint inct_cnt = 0;
1820   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1821     Block* block = C->cfg()->get_block(i);
1822     Node *n = NULL;
1823     int j;
1824 
1825     // Find the branch; ignore trailing NOPs.
1826     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1827       n = block->get_node(j);
1828       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1829         break;
1830       }
1831     }
1832 
1833     // If we didn't find anything, continue
1834     if (j < 0) {
1835       continue;
1836     }
1837 
1838     // Compute ExceptionHandlerTable subtable entry and add it
1839     // (skip empty blocks)
1840     if (n->is_Catch()) {
1841 
1842       // Get the offset of the return from the call
1843       uint call_return = call_returns[block->_pre_order];
1844 #ifdef ASSERT
1845       assert( call_return > 0, "no call seen for this basic block" );
1846       while (block->get_node(--j)->is_MachProj()) ;
1847       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1848 #endif
1849       // last instruction is a CatchNode, find it's CatchProjNodes
1850       int nof_succs = block->_num_succs;
1851       // allocate space
1852       GrowableArray<intptr_t> handler_bcis(nof_succs);
1853       GrowableArray<intptr_t> handler_pcos(nof_succs);
1854       // iterate through all successors
1855       for (int j = 0; j < nof_succs; j++) {
1856         Block* s = block->_succs[j];
1857         bool found_p = false;
1858         for (uint k = 1; k < s->num_preds(); k++) {
1859           Node* pk = s->pred(k);
1860           if (pk->is_CatchProj() && pk->in(0) == n) {
1861             const CatchProjNode* p = pk->as_CatchProj();
1862             found_p = true;
1863             // add the corresponding handler bci & pco information
1864             if (p->_con != CatchProjNode::fall_through_index) {
1865               // p leads to an exception handler (and is not fall through)
1866               assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
1867               // no duplicates, please
1868               if (!handler_bcis.contains(p->handler_bci())) {
1869                 uint block_num = s->non_connector()->_pre_order;
1870                 handler_bcis.append(p->handler_bci());
1871                 handler_pcos.append(blk_labels[block_num].loc_pos());
1872               }
1873             }
1874           }
1875         }
1876         assert(found_p, "no matching predecessor found");
1877         // Note:  Due to empty block removal, one block may have
1878         // several CatchProj inputs, from the same Catch.
1879       }
1880 
1881       // Set the offset of the return from the call
1882       assert(handler_bcis.find(-1) != -1, "must have default handler");
1883       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1884       continue;
1885     }
1886 
1887     // Handle implicit null exception table updates
1888     if (n->is_MachNullCheck()) {
1889       uint block_num = block->non_connector_successor(0)->_pre_order;
1890       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1891       continue;
1892     }
1893     // Handle implicit exception table updates: trap instructions.
1894     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1895       uint block_num = block->non_connector_successor(0)->_pre_order;
1896       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1897       continue;
1898     }
1899   } // End of for all blocks fill in exception table entries
1900 }
1901 
1902 // Static Variables
1903 #ifndef PRODUCT
1904 uint Scheduling::_total_nop_size = 0;
1905 uint Scheduling::_total_method_size = 0;
1906 uint Scheduling::_total_branches = 0;
1907 uint Scheduling::_total_unconditional_delays = 0;
1908 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1909 #endif
1910 
1911 // Initializer for class Scheduling
1912 
1913 Scheduling::Scheduling(Arena *arena, Compile &compile)
1914         : _arena(arena),
1915           _cfg(compile.cfg()),
1916           _regalloc(compile.regalloc()),
1917           _scheduled(arena),
1918           _available(arena),
1919           _reg_node(arena),
1920           _pinch_free_list(arena),
1921           _next_node(NULL),
1922           _bundle_instr_count(0),
1923           _bundle_cycle_number(0),
1924           _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
1925 #ifndef PRODUCT
1926         , _branches(0)
1927         , _unconditional_delays(0)
1928 #endif
1929 {
1930   // Create a MachNopNode
1931   _nop = new MachNopNode();
1932 
1933   // Now that the nops are in the array, save the count
1934   // (but allow entries for the nops)
1935   _node_bundling_limit = compile.unique();
1936   uint node_max = _regalloc->node_regs_max_index();
1937 
1938   compile.output()->set_node_bundling_limit(_node_bundling_limit);
1939 
1940   // This one is persistent within the Compile class
1941   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1942 
1943   // Allocate space for fixed-size arrays
1944   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1945   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1946   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1947 
1948   // Clear the arrays
1949   for (uint i = 0; i < node_max; i++) {
1950     ::new (&_node_bundling_base[i]) Bundle();
1951   }
1952   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1953   memset(_uses,               0, node_max * sizeof(short));
1954   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1955 
1956   // Clear the bundling information
1957   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1958 
1959   // Get the last node
1960   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1961 
1962   _next_node = block->get_node(block->number_of_nodes() - 1);
1963 }
1964 
1965 #ifndef PRODUCT
1966 // Scheduling destructor
1967 Scheduling::~Scheduling() {
1968   _total_branches             += _branches;
1969   _total_unconditional_delays += _unconditional_delays;
1970 }
1971 #endif
1972 
1973 // Step ahead "i" cycles
1974 void Scheduling::step(uint i) {
1975 
1976   Bundle *bundle = node_bundling(_next_node);
1977   bundle->set_starts_bundle();
1978 
1979   // Update the bundle record, but leave the flags information alone
1980   if (_bundle_instr_count > 0) {
1981     bundle->set_instr_count(_bundle_instr_count);
1982     bundle->set_resources_used(_bundle_use.resourcesUsed());
1983   }
1984 
1985   // Update the state information
1986   _bundle_instr_count = 0;
1987   _bundle_cycle_number += i;
1988   _bundle_use.step(i);
1989 }
1990 
1991 void Scheduling::step_and_clear() {
1992   Bundle *bundle = node_bundling(_next_node);
1993   bundle->set_starts_bundle();
1994 
1995   // Update the bundle record
1996   if (_bundle_instr_count > 0) {
1997     bundle->set_instr_count(_bundle_instr_count);
1998     bundle->set_resources_used(_bundle_use.resourcesUsed());
1999 
2000     _bundle_cycle_number += 1;
2001   }
2002 
2003   // Clear the bundling information
2004   _bundle_instr_count = 0;
2005   _bundle_use.reset();
2006 
2007   memcpy(_bundle_use_elements,
2008          Pipeline_Use::elaborated_elements,
2009          sizeof(Pipeline_Use::elaborated_elements));
2010 }
2011 
2012 // Perform instruction scheduling and bundling over the sequence of
2013 // instructions in backwards order.
2014 void PhaseOutput::ScheduleAndBundle() {
2015 
2016   // Don't optimize this if it isn't a method
2017   if (!C->method())
2018     return;
2019 
2020   // Don't optimize this if scheduling is disabled
2021   if (!C->do_scheduling())
2022     return;
2023 
2024   // Scheduling code works only with pairs (16 bytes) maximum.
2025   if (C->max_vector_size() > 16)
2026     return;
2027 
2028   Compile::TracePhase tp("isched", &timers[_t_instrSched]);
2029 
2030   // Create a data structure for all the scheduling information
2031   Scheduling scheduling(Thread::current()->resource_area(), *C);
2032 
2033   // Walk backwards over each basic block, computing the needed alignment
2034   // Walk over all the basic blocks
2035   scheduling.DoScheduling();
2036 
2037 #ifndef PRODUCT
2038   if (C->trace_opto_output()) {
2039     tty->print("\n---- After ScheduleAndBundle ----\n");
2040     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2041       tty->print("\nBB#%03d:\n", i);
2042       Block* block = C->cfg()->get_block(i);
2043       for (uint j = 0; j < block->number_of_nodes(); j++) {
2044         Node* n = block->get_node(j);
2045         OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2046         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2047         n->dump();
2048       }
2049     }
2050   }
2051 #endif
2052 }
2053 
2054 // Compute the latency of all the instructions.  This is fairly simple,
2055 // because we already have a legal ordering.  Walk over the instructions
2056 // from first to last, and compute the latency of the instruction based
2057 // on the latency of the preceding instruction(s).
2058 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
2059 #ifndef PRODUCT
2060   if (_cfg->C->trace_opto_output())
2061     tty->print("# -> ComputeLocalLatenciesForward\n");
2062 #endif
2063 
2064   // Walk over all the schedulable instructions
2065   for( uint j=_bb_start; j < _bb_end; j++ ) {
2066 
2067     // This is a kludge, forcing all latency calculations to start at 1.
2068     // Used to allow latency 0 to force an instruction to the beginning
2069     // of the bb
2070     uint latency = 1;
2071     Node *use = bb->get_node(j);
2072     uint nlen = use->len();
2073 
2074     // Walk over all the inputs
2075     for ( uint k=0; k < nlen; k++ ) {
2076       Node *def = use->in(k);
2077       if (!def)
2078         continue;
2079 
2080       uint l = _node_latency[def->_idx] + use->latency(k);
2081       if (latency < l)
2082         latency = l;
2083     }
2084 
2085     _node_latency[use->_idx] = latency;
2086 
2087 #ifndef PRODUCT
2088     if (_cfg->C->trace_opto_output()) {
2089       tty->print("# latency %4d: ", latency);
2090       use->dump();
2091     }
2092 #endif
2093   }
2094 
2095 #ifndef PRODUCT
2096   if (_cfg->C->trace_opto_output())
2097     tty->print("# <- ComputeLocalLatenciesForward\n");
2098 #endif
2099 
2100 } // end ComputeLocalLatenciesForward
2101 
2102 // See if this node fits into the present instruction bundle
2103 bool Scheduling::NodeFitsInBundle(Node *n) {
2104   uint n_idx = n->_idx;
2105 
2106   // If this is the unconditional delay instruction, then it fits
2107   if (n == _unconditional_delay_slot) {
2108 #ifndef PRODUCT
2109     if (_cfg->C->trace_opto_output())
2110       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2111 #endif
2112     return (true);
2113   }
2114 
2115   // If the node cannot be scheduled this cycle, skip it
2116   if (_current_latency[n_idx] > _bundle_cycle_number) {
2117 #ifndef PRODUCT
2118     if (_cfg->C->trace_opto_output())
2119       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2120                  n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2121 #endif
2122     return (false);
2123   }
2124 
2125   const Pipeline *node_pipeline = n->pipeline();
2126 
2127   uint instruction_count = node_pipeline->instructionCount();
2128   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2129     instruction_count = 0;
2130   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2131     instruction_count++;
2132 
2133   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2134 #ifndef PRODUCT
2135     if (_cfg->C->trace_opto_output())
2136       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2137                  n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2138 #endif
2139     return (false);
2140   }
2141 
2142   // Don't allow non-machine nodes to be handled this way
2143   if (!n->is_Mach() && instruction_count == 0)
2144     return (false);
2145 
2146   // See if there is any overlap
2147   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2148 
2149   if (delay > 0) {
2150 #ifndef PRODUCT
2151     if (_cfg->C->trace_opto_output())
2152       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2153 #endif
2154     return false;
2155   }
2156 
2157 #ifndef PRODUCT
2158   if (_cfg->C->trace_opto_output())
2159     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2160 #endif
2161 
2162   return true;
2163 }
2164 
2165 Node * Scheduling::ChooseNodeToBundle() {
2166   uint siz = _available.size();
2167 
2168   if (siz == 0) {
2169 
2170 #ifndef PRODUCT
2171     if (_cfg->C->trace_opto_output())
2172       tty->print("#   ChooseNodeToBundle: NULL\n");
2173 #endif
2174     return (NULL);
2175   }
2176 
2177   // Fast path, if only 1 instruction in the bundle
2178   if (siz == 1) {
2179 #ifndef PRODUCT
2180     if (_cfg->C->trace_opto_output()) {
2181       tty->print("#   ChooseNodeToBundle (only 1): ");
2182       _available[0]->dump();
2183     }
2184 #endif
2185     return (_available[0]);
2186   }
2187 
2188   // Don't bother, if the bundle is already full
2189   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2190     for ( uint i = 0; i < siz; i++ ) {
2191       Node *n = _available[i];
2192 
2193       // Skip projections, we'll handle them another way
2194       if (n->is_Proj())
2195         continue;
2196 
2197       // This presupposed that instructions are inserted into the
2198       // available list in a legality order; i.e. instructions that
2199       // must be inserted first are at the head of the list
2200       if (NodeFitsInBundle(n)) {
2201 #ifndef PRODUCT
2202         if (_cfg->C->trace_opto_output()) {
2203           tty->print("#   ChooseNodeToBundle: ");
2204           n->dump();
2205         }
2206 #endif
2207         return (n);
2208       }
2209     }
2210   }
2211 
2212   // Nothing fits in this bundle, choose the highest priority
2213 #ifndef PRODUCT
2214   if (_cfg->C->trace_opto_output()) {
2215     tty->print("#   ChooseNodeToBundle: ");
2216     _available[0]->dump();
2217   }
2218 #endif
2219 
2220   return _available[0];
2221 }
2222 
2223 void Scheduling::AddNodeToAvailableList(Node *n) {
2224   assert( !n->is_Proj(), "projections never directly made available" );
2225 #ifndef PRODUCT
2226   if (_cfg->C->trace_opto_output()) {
2227     tty->print("#   AddNodeToAvailableList: ");
2228     n->dump();
2229   }
2230 #endif
2231 
2232   int latency = _current_latency[n->_idx];
2233 
2234   // Insert in latency order (insertion sort)
2235   uint i;
2236   for ( i=0; i < _available.size(); i++ )
2237     if (_current_latency[_available[i]->_idx] > latency)
2238       break;
2239 
2240   // Special Check for compares following branches
2241   if( n->is_Mach() && _scheduled.size() > 0 ) {
2242     int op = n->as_Mach()->ideal_Opcode();
2243     Node *last = _scheduled[0];
2244     if( last->is_MachIf() && last->in(1) == n &&
2245         ( op == Op_CmpI ||
2246           op == Op_CmpU ||
2247           op == Op_CmpUL ||
2248           op == Op_CmpP ||
2249           op == Op_CmpF ||
2250           op == Op_CmpD ||
2251           op == Op_CmpL ) ) {
2252 
2253       // Recalculate position, moving to front of same latency
2254       for ( i=0 ; i < _available.size(); i++ )
2255         if (_current_latency[_available[i]->_idx] >= latency)
2256           break;
2257     }
2258   }
2259 
2260   // Insert the node in the available list
2261   _available.insert(i, n);
2262 
2263 #ifndef PRODUCT
2264   if (_cfg->C->trace_opto_output())
2265     dump_available();
2266 #endif
2267 }
2268 
2269 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2270   for ( uint i=0; i < n->len(); i++ ) {
2271     Node *def = n->in(i);
2272     if (!def) continue;
2273     if( def->is_Proj() )        // If this is a machine projection, then
2274       def = def->in(0);         // propagate usage thru to the base instruction
2275 
2276     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2277       continue;
2278     }
2279 
2280     // Compute the latency
2281     uint l = _bundle_cycle_number + n->latency(i);
2282     if (_current_latency[def->_idx] < l)
2283       _current_latency[def->_idx] = l;
2284 
2285     // If this does not have uses then schedule it
2286     if ((--_uses[def->_idx]) == 0)
2287       AddNodeToAvailableList(def);
2288   }
2289 }
2290 
2291 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2292 #ifndef PRODUCT
2293   if (_cfg->C->trace_opto_output()) {
2294     tty->print("#   AddNodeToBundle: ");
2295     n->dump();
2296   }
2297 #endif
2298 
2299   // Remove this from the available list
2300   uint i;
2301   for (i = 0; i < _available.size(); i++)
2302     if (_available[i] == n)
2303       break;
2304   assert(i < _available.size(), "entry in _available list not found");
2305   _available.remove(i);
2306 
2307   // See if this fits in the current bundle
2308   const Pipeline *node_pipeline = n->pipeline();
2309   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2310 
2311   // Check for instructions to be placed in the delay slot. We
2312   // do this before we actually schedule the current instruction,
2313   // because the delay slot follows the current instruction.
2314   if (Pipeline::_branch_has_delay_slot &&
2315       node_pipeline->hasBranchDelay() &&
2316       !_unconditional_delay_slot) {
2317 
2318     uint siz = _available.size();
2319 
2320     // Conditional branches can support an instruction that
2321     // is unconditionally executed and not dependent by the
2322     // branch, OR a conditionally executed instruction if
2323     // the branch is taken.  In practice, this means that
2324     // the first instruction at the branch target is
2325     // copied to the delay slot, and the branch goes to
2326     // the instruction after that at the branch target
2327     if ( n->is_MachBranch() ) {
2328 
2329       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2330       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2331 
2332 #ifndef PRODUCT
2333       _branches++;
2334 #endif
2335 
2336       // At least 1 instruction is on the available list
2337       // that is not dependent on the branch
2338       for (uint i = 0; i < siz; i++) {
2339         Node *d = _available[i];
2340         const Pipeline *avail_pipeline = d->pipeline();
2341 
2342         // Don't allow safepoints in the branch shadow, that will
2343         // cause a number of difficulties
2344         if ( avail_pipeline->instructionCount() == 1 &&
2345              !avail_pipeline->hasMultipleBundles() &&
2346              !avail_pipeline->hasBranchDelay() &&
2347              Pipeline::instr_has_unit_size() &&
2348              d->size(_regalloc) == Pipeline::instr_unit_size() &&
2349              NodeFitsInBundle(d) &&
2350              !node_bundling(d)->used_in_delay()) {
2351 
2352           if (d->is_Mach() && !d->is_MachSafePoint()) {
2353             // A node that fits in the delay slot was found, so we need to
2354             // set the appropriate bits in the bundle pipeline information so
2355             // that it correctly indicates resource usage.  Later, when we
2356             // attempt to add this instruction to the bundle, we will skip
2357             // setting the resource usage.
2358             _unconditional_delay_slot = d;
2359             node_bundling(n)->set_use_unconditional_delay();
2360             node_bundling(d)->set_used_in_unconditional_delay();
2361             _bundle_use.add_usage(avail_pipeline->resourceUse());
2362             _current_latency[d->_idx] = _bundle_cycle_number;
2363             _next_node = d;
2364             ++_bundle_instr_count;
2365 #ifndef PRODUCT
2366             _unconditional_delays++;
2367 #endif
2368             break;
2369           }
2370         }
2371       }
2372     }
2373 
2374     // No delay slot, add a nop to the usage
2375     if (!_unconditional_delay_slot) {
2376       // See if adding an instruction in the delay slot will overflow
2377       // the bundle.
2378       if (!NodeFitsInBundle(_nop)) {
2379 #ifndef PRODUCT
2380         if (_cfg->C->trace_opto_output())
2381           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2382 #endif
2383         step(1);
2384       }
2385 
2386       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2387       _next_node = _nop;
2388       ++_bundle_instr_count;
2389     }
2390 
2391     // See if the instruction in the delay slot requires a
2392     // step of the bundles
2393     if (!NodeFitsInBundle(n)) {
2394 #ifndef PRODUCT
2395       if (_cfg->C->trace_opto_output())
2396         tty->print("#  *** STEP(branch won't fit) ***\n");
2397 #endif
2398       // Update the state information
2399       _bundle_instr_count = 0;
2400       _bundle_cycle_number += 1;
2401       _bundle_use.step(1);
2402     }
2403   }
2404 
2405   // Get the number of instructions
2406   uint instruction_count = node_pipeline->instructionCount();
2407   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2408     instruction_count = 0;
2409 
2410   // Compute the latency information
2411   uint delay = 0;
2412 
2413   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2414     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2415     if (relative_latency < 0)
2416       relative_latency = 0;
2417 
2418     delay = _bundle_use.full_latency(relative_latency, node_usage);
2419 
2420     // Does not fit in this bundle, start a new one
2421     if (delay > 0) {
2422       step(delay);
2423 
2424 #ifndef PRODUCT
2425       if (_cfg->C->trace_opto_output())
2426         tty->print("#  *** STEP(%d) ***\n", delay);
2427 #endif
2428     }
2429   }
2430 
2431   // If this was placed in the delay slot, ignore it
2432   if (n != _unconditional_delay_slot) {
2433 
2434     if (delay == 0) {
2435       if (node_pipeline->hasMultipleBundles()) {
2436 #ifndef PRODUCT
2437         if (_cfg->C->trace_opto_output())
2438           tty->print("#  *** STEP(multiple instructions) ***\n");
2439 #endif
2440         step(1);
2441       }
2442 
2443       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2444 #ifndef PRODUCT
2445         if (_cfg->C->trace_opto_output())
2446           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2447                      instruction_count + _bundle_instr_count,
2448                      Pipeline::_max_instrs_per_cycle);
2449 #endif
2450         step(1);
2451       }
2452     }
2453 
2454     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2455       _bundle_instr_count++;
2456 
2457     // Set the node's latency
2458     _current_latency[n->_idx] = _bundle_cycle_number;
2459 
2460     // Now merge the functional unit information
2461     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2462       _bundle_use.add_usage(node_usage);
2463 
2464     // Increment the number of instructions in this bundle
2465     _bundle_instr_count += instruction_count;
2466 
2467     // Remember this node for later
2468     if (n->is_Mach())
2469       _next_node = n;
2470   }
2471 
2472   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2473   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2474   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2475   // into the block.  All other scheduled nodes get put in the schedule here.
2476   int op = n->Opcode();
2477   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2478       (op != Op_Node &&         // Not an unused antidepedence node and
2479        // not an unallocated boxlock
2480        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2481 
2482     // Push any trailing projections
2483     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2484       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2485         Node *foi = n->fast_out(i);
2486         if( foi->is_Proj() )
2487           _scheduled.push(foi);
2488       }
2489     }
2490 
2491     // Put the instruction in the schedule list
2492     _scheduled.push(n);
2493   }
2494 
2495 #ifndef PRODUCT
2496   if (_cfg->C->trace_opto_output())
2497     dump_available();
2498 #endif
2499 
2500   // Walk all the definitions, decrementing use counts, and
2501   // if a definition has a 0 use count, place it in the available list.
2502   DecrementUseCounts(n,bb);
2503 }
2504 
2505 // This method sets the use count within a basic block.  We will ignore all
2506 // uses outside the current basic block.  As we are doing a backwards walk,
2507 // any node we reach that has a use count of 0 may be scheduled.  This also
2508 // avoids the problem of cyclic references from phi nodes, as long as phi
2509 // nodes are at the front of the basic block.  This method also initializes
2510 // the available list to the set of instructions that have no uses within this
2511 // basic block.
2512 void Scheduling::ComputeUseCount(const Block *bb) {
2513 #ifndef PRODUCT
2514   if (_cfg->C->trace_opto_output())
2515     tty->print("# -> ComputeUseCount\n");
2516 #endif
2517 
2518   // Clear the list of available and scheduled instructions, just in case
2519   _available.clear();
2520   _scheduled.clear();
2521 
2522   // No delay slot specified
2523   _unconditional_delay_slot = NULL;
2524 
2525 #ifdef ASSERT
2526   for( uint i=0; i < bb->number_of_nodes(); i++ )
2527     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2528 #endif
2529 
2530   // Force the _uses count to never go to zero for unscheduable pieces
2531   // of the block
2532   for( uint k = 0; k < _bb_start; k++ )
2533     _uses[bb->get_node(k)->_idx] = 1;
2534   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2535     _uses[bb->get_node(l)->_idx] = 1;
2536 
2537   // Iterate backwards over the instructions in the block.  Don't count the
2538   // branch projections at end or the block header instructions.
2539   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2540     Node *n = bb->get_node(j);
2541     if( n->is_Proj() ) continue; // Projections handled another way
2542 
2543     // Account for all uses
2544     for ( uint k = 0; k < n->len(); k++ ) {
2545       Node *inp = n->in(k);
2546       if (!inp) continue;
2547       assert(inp != n, "no cycles allowed" );
2548       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2549         if (inp->is_Proj()) { // Skip through Proj's
2550           inp = inp->in(0);
2551         }
2552         ++_uses[inp->_idx];     // Count 1 block-local use
2553       }
2554     }
2555 
2556     // If this instruction has a 0 use count, then it is available
2557     if (!_uses[n->_idx]) {
2558       _current_latency[n->_idx] = _bundle_cycle_number;
2559       AddNodeToAvailableList(n);
2560     }
2561 
2562 #ifndef PRODUCT
2563     if (_cfg->C->trace_opto_output()) {
2564       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2565       n->dump();
2566     }
2567 #endif
2568   }
2569 
2570 #ifndef PRODUCT
2571   if (_cfg->C->trace_opto_output())
2572     tty->print("# <- ComputeUseCount\n");
2573 #endif
2574 }
2575 
2576 // This routine performs scheduling on each basic block in reverse order,
2577 // using instruction latencies and taking into account function unit
2578 // availability.
2579 void Scheduling::DoScheduling() {
2580 #ifndef PRODUCT
2581   if (_cfg->C->trace_opto_output())
2582     tty->print("# -> DoScheduling\n");
2583 #endif
2584 
2585   Block *succ_bb = NULL;
2586   Block *bb;
2587   Compile* C = Compile::current();
2588 
2589   // Walk over all the basic blocks in reverse order
2590   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2591     bb = _cfg->get_block(i);
2592 
2593 #ifndef PRODUCT
2594     if (_cfg->C->trace_opto_output()) {
2595       tty->print("#  Schedule BB#%03d (initial)\n", i);
2596       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2597         bb->get_node(j)->dump();
2598       }
2599     }
2600 #endif
2601 
2602     // On the head node, skip processing
2603     if (bb == _cfg->get_root_block()) {
2604       continue;
2605     }
2606 
2607     // Skip empty, connector blocks
2608     if (bb->is_connector())
2609       continue;
2610 
2611     // If the following block is not the sole successor of
2612     // this one, then reset the pipeline information
2613     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2614 #ifndef PRODUCT
2615       if (_cfg->C->trace_opto_output()) {
2616         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2617                    _next_node->_idx, _bundle_instr_count);
2618       }
2619 #endif
2620       step_and_clear();
2621     }
2622 
2623     // Leave untouched the starting instruction, any Phis, a CreateEx node
2624     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2625     _bb_end = bb->number_of_nodes()-1;
2626     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2627       Node *n = bb->get_node(_bb_start);
2628       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2629       // Also, MachIdealNodes do not get scheduled
2630       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2631       MachNode *mach = n->as_Mach();
2632       int iop = mach->ideal_Opcode();
2633       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2634       if( iop == Op_Con ) continue;      // Do not schedule Top
2635       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2636           mach->pipeline() == MachNode::pipeline_class() &&
2637           !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
2638         continue;
2639       break;                    // Funny loop structure to be sure...
2640     }
2641     // Compute last "interesting" instruction in block - last instruction we
2642     // might schedule.  _bb_end points just after last schedulable inst.  We
2643     // normally schedule conditional branches (despite them being forced last
2644     // in the block), because they have delay slots we can fill.  Calls all
2645     // have their delay slots filled in the template expansions, so we don't
2646     // bother scheduling them.
2647     Node *last = bb->get_node(_bb_end);
2648     // Ignore trailing NOPs.
2649     while (_bb_end > 0 && last->is_Mach() &&
2650            last->as_Mach()->ideal_Opcode() == Op_Con) {
2651       last = bb->get_node(--_bb_end);
2652     }
2653     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2654     if( last->is_Catch() ||
2655         (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2656       // There might be a prior call.  Skip it.
2657       while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2658     } else if( last->is_MachNullCheck() ) {
2659       // Backup so the last null-checked memory instruction is
2660       // outside the schedulable range. Skip over the nullcheck,
2661       // projection, and the memory nodes.
2662       Node *mem = last->in(1);
2663       do {
2664         _bb_end--;
2665       } while (mem != bb->get_node(_bb_end));
2666     } else {
2667       // Set _bb_end to point after last schedulable inst.
2668       _bb_end++;
2669     }
2670 
2671     assert( _bb_start <= _bb_end, "inverted block ends" );
2672 
2673     // Compute the register antidependencies for the basic block
2674     ComputeRegisterAntidependencies(bb);
2675     if (C->failing())  return;  // too many D-U pinch points
2676 
2677     // Compute intra-bb latencies for the nodes
2678     ComputeLocalLatenciesForward(bb);
2679 
2680     // Compute the usage within the block, and set the list of all nodes
2681     // in the block that have no uses within the block.
2682     ComputeUseCount(bb);
2683 
2684     // Schedule the remaining instructions in the block
2685     while ( _available.size() > 0 ) {
2686       Node *n = ChooseNodeToBundle();
2687       guarantee(n != NULL, "no nodes available");
2688       AddNodeToBundle(n,bb);
2689     }
2690 
2691     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2692 #ifdef ASSERT
2693     for( uint l = _bb_start; l < _bb_end; l++ ) {
2694       Node *n = bb->get_node(l);
2695       uint m;
2696       for( m = 0; m < _bb_end-_bb_start; m++ )
2697         if( _scheduled[m] == n )
2698           break;
2699       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2700     }
2701 #endif
2702 
2703     // Now copy the instructions (in reverse order) back to the block
2704     for ( uint k = _bb_start; k < _bb_end; k++ )
2705       bb->map_node(_scheduled[_bb_end-k-1], k);
2706 
2707 #ifndef PRODUCT
2708     if (_cfg->C->trace_opto_output()) {
2709       tty->print("#  Schedule BB#%03d (final)\n", i);
2710       uint current = 0;
2711       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2712         Node *n = bb->get_node(j);
2713         if( valid_bundle_info(n) ) {
2714           Bundle *bundle = node_bundling(n);
2715           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2716             tty->print("*** Bundle: ");
2717             bundle->dump();
2718           }
2719           n->dump();
2720         }
2721       }
2722     }
2723 #endif
2724 #ifdef ASSERT
2725     verify_good_schedule(bb,"after block local scheduling");
2726 #endif
2727   }
2728 
2729 #ifndef PRODUCT
2730   if (_cfg->C->trace_opto_output())
2731     tty->print("# <- DoScheduling\n");
2732 #endif
2733 
2734   // Record final node-bundling array location
2735   _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2736 
2737 } // end DoScheduling
2738 
2739 // Verify that no live-range used in the block is killed in the block by a
2740 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2741 
2742 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2743 static bool edge_from_to( Node *from, Node *to ) {
2744   for( uint i=0; i<from->len(); i++ )
2745     if( from->in(i) == to )
2746       return true;
2747   return false;
2748 }
2749 
2750 #ifdef ASSERT
2751 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2752   // Check for bad kills
2753   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2754     Node *prior_use = _reg_node[def];
2755     if( prior_use && !edge_from_to(prior_use,n) ) {
2756       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2757       n->dump();
2758       tty->print_cr("...");
2759       prior_use->dump();
2760       assert(edge_from_to(prior_use,n), "%s", msg);
2761     }
2762     _reg_node.map(def,NULL); // Kill live USEs
2763   }
2764 }
2765 
2766 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2767 
2768   // Zap to something reasonable for the verify code
2769   _reg_node.clear();
2770 
2771   // Walk over the block backwards.  Check to make sure each DEF doesn't
2772   // kill a live value (other than the one it's supposed to).  Add each
2773   // USE to the live set.
2774   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2775     Node *n = b->get_node(i);
2776     int n_op = n->Opcode();
2777     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2778       // Fat-proj kills a slew of registers
2779       RegMask rm = n->out_RegMask();// Make local copy
2780       while( rm.is_NotEmpty() ) {
2781         OptoReg::Name kill = rm.find_first_elem();
2782         rm.Remove(kill);
2783         verify_do_def( n, kill, msg );
2784       }
2785     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2786       // Get DEF'd registers the normal way
2787       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2788       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2789     }
2790 
2791     // Now make all USEs live
2792     for( uint i=1; i<n->req(); i++ ) {
2793       Node *def = n->in(i);
2794       assert(def != 0, "input edge required");
2795       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2796       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2797       if( OptoReg::is_valid(reg_lo) ) {
2798         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2799         _reg_node.map(reg_lo,n);
2800       }
2801       if( OptoReg::is_valid(reg_hi) ) {
2802         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2803         _reg_node.map(reg_hi,n);
2804       }
2805     }
2806 
2807   }
2808 
2809   // Zap to something reasonable for the Antidependence code
2810   _reg_node.clear();
2811 }
2812 #endif
2813 
2814 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2815 static void add_prec_edge_from_to( Node *from, Node *to ) {
2816   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2817     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2818     from = from->in(0);
2819   }
2820   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2821       !edge_from_to( from, to ) ) // Avoid duplicate edge
2822     from->add_prec(to);
2823 }
2824 
2825 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2826   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2827     return;
2828 
2829   Node *pinch = _reg_node[def_reg]; // Get pinch point
2830   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2831       is_def ) {    // Check for a true def (not a kill)
2832     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2833     return;
2834   }
2835 
2836   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2837   debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
2838 
2839   // After some number of kills there _may_ be a later def
2840   Node *later_def = NULL;
2841 
2842   Compile* C = Compile::current();
2843 
2844   // Finding a kill requires a real pinch-point.
2845   // Check for not already having a pinch-point.
2846   // Pinch points are Op_Node's.
2847   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2848     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2849     if ( _pinch_free_list.size() > 0) {
2850       pinch = _pinch_free_list.pop();
2851     } else {
2852       pinch = new Node(1); // Pinch point to-be
2853     }
2854     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2855       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2856       return;
2857     }
2858     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2859     _reg_node.map(def_reg,pinch); // Record pinch-point
2860     //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
2861     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2862       pinch->init_req(0, C->top());     // set not NULL for the next call
2863       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2864       later_def = NULL;           // and no later def
2865     }
2866     pinch->set_req(0,later_def);  // Hook later def so we can find it
2867   } else {                        // Else have valid pinch point
2868     if( pinch->in(0) )            // If there is a later-def
2869       later_def = pinch->in(0);   // Get it
2870   }
2871 
2872   // Add output-dependence edge from later def to kill
2873   if( later_def )               // If there is some original def
2874     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2875 
2876   // See if current kill is also a use, and so is forced to be the pinch-point.
2877   if( pinch->Opcode() == Op_Node ) {
2878     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2879     for( uint i=1; i<uses->req(); i++ ) {
2880       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2881           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2882         // Yes, found a use/kill pinch-point
2883         pinch->set_req(0,NULL);  //
2884         pinch->replace_by(kill); // Move anti-dep edges up
2885         pinch = kill;
2886         _reg_node.map(def_reg,pinch);
2887         return;
2888       }
2889     }
2890   }
2891 
2892   // Add edge from kill to pinch-point
2893   add_prec_edge_from_to(kill,pinch);
2894 }
2895 
2896 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2897   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2898     return;
2899   Node *pinch = _reg_node[use_reg]; // Get pinch point
2900   // Check for no later def_reg/kill in block
2901   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2902       // Use has to be block-local as well
2903       _cfg->get_block_for_node(use) == b) {
2904     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2905         pinch->req() == 1 ) {   // pinch not yet in block?
2906       pinch->del_req(0);        // yank pointer to later-def, also set flag
2907       // Insert the pinch-point in the block just after the last use
2908       b->insert_node(pinch, b->find_node(use) + 1);
2909       _bb_end++;                // Increase size scheduled region in block
2910     }
2911 
2912     add_prec_edge_from_to(pinch,use);
2913   }
2914 }
2915 
2916 // We insert antidependences between the reads and following write of
2917 // allocated registers to prevent illegal code motion. Hopefully, the
2918 // number of added references should be fairly small, especially as we
2919 // are only adding references within the current basic block.
2920 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2921 
2922 #ifdef ASSERT
2923   verify_good_schedule(b,"before block local scheduling");
2924 #endif
2925 
2926   // A valid schedule, for each register independently, is an endless cycle
2927   // of: a def, then some uses (connected to the def by true dependencies),
2928   // then some kills (defs with no uses), finally the cycle repeats with a new
2929   // def.  The uses are allowed to float relative to each other, as are the
2930   // kills.  No use is allowed to slide past a kill (or def).  This requires
2931   // antidependencies between all uses of a single def and all kills that
2932   // follow, up to the next def.  More edges are redundant, because later defs
2933   // & kills are already serialized with true or antidependencies.  To keep
2934   // the edge count down, we add a 'pinch point' node if there's more than
2935   // one use or more than one kill/def.
2936 
2937   // We add dependencies in one bottom-up pass.
2938 
2939   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2940 
2941   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2942   // register.  If not, we record the DEF/KILL in _reg_node, the
2943   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2944   // "pinch point", a new Node that's in the graph but not in the block.
2945   // We put edges from the prior and current DEF/KILLs to the pinch point.
2946   // We put the pinch point in _reg_node.  If there's already a pinch point
2947   // we merely add an edge from the current DEF/KILL to the pinch point.
2948 
2949   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2950   // put an edge from the pinch point to the USE.
2951 
2952   // To be expedient, the _reg_node array is pre-allocated for the whole
2953   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2954   // or a valid def/kill/pinch-point, or a leftover node from some prior
2955   // block.  Leftover node from some prior block is treated like a NULL (no
2956   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2957   // it being in the current block.
2958   bool fat_proj_seen = false;
2959   uint last_safept = _bb_end-1;
2960   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2961   Node* last_safept_node = end_node;
2962   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2963     Node *n = b->get_node(i);
2964     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2965     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2966       // Fat-proj kills a slew of registers
2967       // This can add edges to 'n' and obscure whether or not it was a def,
2968       // hence the is_def flag.
2969       fat_proj_seen = true;
2970       RegMask rm = n->out_RegMask();// Make local copy
2971       while( rm.is_NotEmpty() ) {
2972         OptoReg::Name kill = rm.find_first_elem();
2973         rm.Remove(kill);
2974         anti_do_def( b, n, kill, is_def );
2975       }
2976     } else {
2977       // Get DEF'd registers the normal way
2978       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2979       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2980     }
2981 
2982     // Kill projections on a branch should appear to occur on the
2983     // branch, not afterwards, so grab the masks from the projections
2984     // and process them.
2985     if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
2986       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2987         Node* use = n->fast_out(i);
2988         if (use->is_Proj()) {
2989           RegMask rm = use->out_RegMask();// Make local copy
2990           while( rm.is_NotEmpty() ) {
2991             OptoReg::Name kill = rm.find_first_elem();
2992             rm.Remove(kill);
2993             anti_do_def( b, n, kill, false );
2994           }
2995         }
2996       }
2997     }
2998 
2999     // Check each register used by this instruction for a following DEF/KILL
3000     // that must occur afterward and requires an anti-dependence edge.
3001     for( uint j=0; j<n->req(); j++ ) {
3002       Node *def = n->in(j);
3003       if( def ) {
3004         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
3005         anti_do_use( b, n, _regalloc->get_reg_first(def) );
3006         anti_do_use( b, n, _regalloc->get_reg_second(def) );
3007       }
3008     }
3009     // Do not allow defs of new derived values to float above GC
3010     // points unless the base is definitely available at the GC point.
3011 
3012     Node *m = b->get_node(i);
3013 
3014     // Add precedence edge from following safepoint to use of derived pointer
3015     if( last_safept_node != end_node &&
3016         m != last_safept_node) {
3017       for (uint k = 1; k < m->req(); k++) {
3018         const Type *t = m->in(k)->bottom_type();
3019         if( t->isa_oop_ptr() &&
3020             t->is_ptr()->offset() != 0 ) {
3021           last_safept_node->add_prec( m );
3022           break;
3023         }
3024       }
3025     }
3026 
3027     if( n->jvms() ) {           // Precedence edge from derived to safept
3028       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3029       if( b->get_node(last_safept) != last_safept_node ) {
3030         last_safept = b->find_node(last_safept_node);
3031       }
3032       for( uint j=last_safept; j > i; j-- ) {
3033         Node *mach = b->get_node(j);
3034         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3035           mach->add_prec( n );
3036       }
3037       last_safept = i;
3038       last_safept_node = m;
3039     }
3040   }
3041 
3042   if (fat_proj_seen) {
3043     // Garbage collect pinch nodes that were not consumed.
3044     // They are usually created by a fat kill MachProj for a call.
3045     garbage_collect_pinch_nodes();
3046   }
3047 }
3048 
3049 // Garbage collect pinch nodes for reuse by other blocks.
3050 //
3051 // The block scheduler's insertion of anti-dependence
3052 // edges creates many pinch nodes when the block contains
3053 // 2 or more Calls.  A pinch node is used to prevent a
3054 // combinatorial explosion of edges.  If a set of kills for a
3055 // register is anti-dependent on a set of uses (or defs), rather
3056 // than adding an edge in the graph between each pair of kill
3057 // and use (or def), a pinch is inserted between them:
3058 //
3059 //            use1   use2  use3
3060 //                \   |   /
3061 //                 \  |  /
3062 //                  pinch
3063 //                 /  |  \
3064 //                /   |   \
3065 //            kill1 kill2 kill3
3066 //
3067 // One pinch node is created per register killed when
3068 // the second call is encountered during a backwards pass
3069 // over the block.  Most of these pinch nodes are never
3070 // wired into the graph because the register is never
3071 // used or def'ed in the block.
3072 //
3073 void Scheduling::garbage_collect_pinch_nodes() {
3074 #ifndef PRODUCT
3075   if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3076 #endif
3077   int trace_cnt = 0;
3078   for (uint k = 0; k < _reg_node.Size(); k++) {
3079     Node* pinch = _reg_node[k];
3080     if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
3081         // no predecence input edges
3082         (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
3083       cleanup_pinch(pinch);
3084       _pinch_free_list.push(pinch);
3085       _reg_node.map(k, NULL);
3086 #ifndef PRODUCT
3087       if (_cfg->C->trace_opto_output()) {
3088         trace_cnt++;
3089         if (trace_cnt > 40) {
3090           tty->print("\n");
3091           trace_cnt = 0;
3092         }
3093         tty->print(" %d", pinch->_idx);
3094       }
3095 #endif
3096     }
3097   }
3098 #ifndef PRODUCT
3099   if (_cfg->C->trace_opto_output()) tty->print("\n");
3100 #endif
3101 }
3102 
3103 // Clean up a pinch node for reuse.
3104 void Scheduling::cleanup_pinch( Node *pinch ) {
3105   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3106 
3107   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3108     Node* use = pinch->last_out(i);
3109     uint uses_found = 0;
3110     for (uint j = use->req(); j < use->len(); j++) {
3111       if (use->in(j) == pinch) {
3112         use->rm_prec(j);
3113         uses_found++;
3114       }
3115     }
3116     assert(uses_found > 0, "must be a precedence edge");
3117     i -= uses_found;    // we deleted 1 or more copies of this edge
3118   }
3119   // May have a later_def entry
3120   pinch->set_req(0, NULL);
3121 }
3122 
3123 #ifndef PRODUCT
3124 
3125 void Scheduling::dump_available() const {
3126   tty->print("#Availist  ");
3127   for (uint i = 0; i < _available.size(); i++)
3128     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3129   tty->cr();
3130 }
3131 
3132 // Print Scheduling Statistics
3133 void Scheduling::print_statistics() {
3134   // Print the size added by nops for bundling
3135   tty->print("Nops added %d bytes to total of %d bytes",
3136              _total_nop_size, _total_method_size);
3137   if (_total_method_size > 0)
3138     tty->print(", for %.2f%%",
3139                ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3140   tty->print("\n");
3141 
3142   // Print the number of branch shadows filled
3143   if (Pipeline::_branch_has_delay_slot) {
3144     tty->print("Of %d branches, %d had unconditional delay slots filled",
3145                _total_branches, _total_unconditional_delays);
3146     if (_total_branches > 0)
3147       tty->print(", for %.2f%%",
3148                  ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3149     tty->print("\n");
3150   }
3151 
3152   uint total_instructions = 0, total_bundles = 0;
3153 
3154   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3155     uint bundle_count   = _total_instructions_per_bundle[i];
3156     total_instructions += bundle_count * i;
3157     total_bundles      += bundle_count;
3158   }
3159 
3160   if (total_bundles > 0)
3161     tty->print("Average ILP (excluding nops) is %.2f\n",
3162                ((double)total_instructions) / ((double)total_bundles));
3163 }
3164 #endif
3165 
3166 //-----------------------init_scratch_buffer_blob------------------------------
3167 // Construct a temporary BufferBlob and cache it for this compile.
3168 void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3169   // If there is already a scratch buffer blob allocated and the
3170   // constant section is big enough, use it.  Otherwise free the
3171   // current and allocate a new one.
3172   BufferBlob* blob = scratch_buffer_blob();
3173   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
3174     // Use the current blob.
3175   } else {
3176     if (blob != NULL) {
3177       BufferBlob::free(blob);
3178     }
3179 
3180     ResourceMark rm;
3181     _scratch_const_size = const_size;
3182     int size = C2Compiler::initial_code_buffer_size(const_size);
3183     blob = BufferBlob::create("Compile::scratch_buffer", size);
3184     // Record the buffer blob for next time.
3185     set_scratch_buffer_blob(blob);
3186     // Have we run out of code space?
3187     if (scratch_buffer_blob() == NULL) {
3188       // Let CompilerBroker disable further compilations.
3189       C->record_failure("Not enough space for scratch buffer in CodeCache");
3190       return;
3191     }
3192   }
3193 
3194   // Initialize the relocation buffers
3195   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3196   set_scratch_locs_memory(locs_buf);
3197 }
3198 
3199 
3200 //-----------------------scratch_emit_size-------------------------------------
3201 // Helper function that computes size by emitting code
3202 uint PhaseOutput::scratch_emit_size(const Node* n) {
3203   // Start scratch_emit_size section.
3204   set_in_scratch_emit_size(true);
3205 
3206   // Emit into a trash buffer and count bytes emitted.
3207   // This is a pretty expensive way to compute a size,
3208   // but it works well enough if seldom used.
3209   // All common fixed-size instructions are given a size
3210   // method by the AD file.
3211   // Note that the scratch buffer blob and locs memory are
3212   // allocated at the beginning of the compile task, and
3213   // may be shared by several calls to scratch_emit_size.
3214   // The allocation of the scratch buffer blob is particularly
3215   // expensive, since it has to grab the code cache lock.
3216   BufferBlob* blob = this->scratch_buffer_blob();
3217   assert(blob != NULL, "Initialize BufferBlob at start");
3218   assert(blob->size() > MAX_inst_size, "sanity");
3219   relocInfo* locs_buf = scratch_locs_memory();
3220   address blob_begin = blob->content_begin();
3221   address blob_end   = (address)locs_buf;
3222   assert(blob->contains(blob_end), "sanity");
3223   CodeBuffer buf(blob_begin, blob_end - blob_begin);
3224   buf.initialize_consts_size(_scratch_const_size);
3225   buf.initialize_stubs_size(MAX_stubs_size);
3226   assert(locs_buf != NULL, "sanity");
3227   int lsize = MAX_locs_size / 3;
3228   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3229   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3230   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3231   // Mark as scratch buffer.
3232   buf.consts()->set_scratch_emit();
3233   buf.insts()->set_scratch_emit();
3234   buf.stubs()->set_scratch_emit();
3235 
3236   // Do the emission.
3237 
3238   Label fakeL; // Fake label for branch instructions.
3239   Label*   saveL = NULL;
3240   uint save_bnum = 0;
3241   bool is_branch = n->is_MachBranch();
3242   if (is_branch) {
3243     MacroAssembler masm(&buf);
3244     masm.bind(fakeL);
3245     n->as_MachBranch()->save_label(&saveL, &save_bnum);
3246     n->as_MachBranch()->label_set(&fakeL, 0);
3247   }
3248   n->emit(buf, C->regalloc());
3249 
3250   // Emitting into the scratch buffer should not fail
3251   assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3252 
3253   if (is_branch) // Restore label.
3254     n->as_MachBranch()->label_set(saveL, save_bnum);
3255 
3256   // End scratch_emit_size section.
3257   set_in_scratch_emit_size(false);
3258 
3259   return buf.insts_size();
3260 }
3261 
3262 void PhaseOutput::install() {
3263   if (C->stub_function() != NULL) {
3264     install_stub(C->stub_name(),
3265                  C->save_argument_registers());
3266   } else {
3267     install_code(C->method(),
3268                  C->entry_bci(),
3269                  CompileBroker::compiler2(),
3270                  C->has_unsafe_access(),
3271                  SharedRuntime::is_wide_vector(C->max_vector_size()),
3272                  C->rtm_state());
3273   }
3274 }
3275 
3276 void PhaseOutput::install_code(ciMethod*         target,
3277                                int               entry_bci,
3278                                AbstractCompiler* compiler,
3279                                bool              has_unsafe_access,
3280                                bool              has_wide_vectors,
3281                                RTMState          rtm_state) {
3282   // Check if we want to skip execution of all compiled code.
3283   {
3284 #ifndef PRODUCT
3285     if (OptoNoExecute) {
3286       C->record_method_not_compilable("+OptoNoExecute");  // Flag as failed
3287       return;
3288     }
3289 #endif
3290     Compile::TracePhase tp("install_code", &timers[_t_registerMethod]);
3291 
3292     if (C->is_osr_compilation()) {
3293       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3294       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3295     } else {
3296       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3297       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3298     }
3299 
3300     C->env()->register_method(target,
3301                                      entry_bci,
3302                                      &_code_offsets,
3303                                      _orig_pc_slot_offset_in_bytes,
3304                                      code_buffer(),
3305                                      frame_size_in_words(),
3306                                      oop_map_set(),
3307                                      &_handler_table,
3308                                      inc_table(),
3309                                      compiler,
3310                                      has_unsafe_access,
3311                                      SharedRuntime::is_wide_vector(C->max_vector_size()),
3312                                      C->rtm_state());
3313 
3314     if (C->log() != NULL) { // Print code cache state into compiler log
3315       C->log()->code_cache_state();
3316     }
3317   }
3318 }
3319 void PhaseOutput::install_stub(const char* stub_name,
3320                                bool        caller_must_gc_arguments) {
3321   // Entry point will be accessed using stub_entry_point();
3322   if (code_buffer() == NULL) {
3323     Matcher::soft_match_failure();
3324   } else {
3325     if (PrintAssembly && (WizardMode || Verbose))
3326       tty->print_cr("### Stub::%s", stub_name);
3327 
3328     if (!C->failing()) {
3329       assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3330 
3331       // Make the NMethod
3332       // For now we mark the frame as never safe for profile stackwalking
3333       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3334                                                       code_buffer(),
3335                                                       CodeOffsets::frame_never_safe,
3336                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
3337                                                       frame_size_in_words(),
3338                                                       oop_map_set(),
3339                                                       caller_must_gc_arguments);
3340       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
3341 
3342       C->set_stub_entry_point(rs->entry_point());
3343     }
3344   }
3345 }
3346 
3347 // Support for bundling info
3348 Bundle* PhaseOutput::node_bundling(const Node *n) {
3349   assert(valid_bundle_info(n), "oob");
3350   return &_node_bundling_base[n->_idx];
3351 }
3352 
3353 bool PhaseOutput::valid_bundle_info(const Node *n) {
3354   return (_node_bundling_limit > n->_idx);
3355 }
3356 
3357 //------------------------------frame_size_in_words-----------------------------
3358 // frame_slots in units of words
3359 int PhaseOutput::frame_size_in_words() const {
3360   // shift is 0 in LP32 and 1 in LP64
3361   const int shift = (LogBytesPerWord - LogBytesPerInt);
3362   int words = _frame_slots >> shift;
3363   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3364   return words;
3365 }
3366 
3367 // To bang the stack of this compiled method we use the stack size
3368 // that the interpreter would need in case of a deoptimization. This
3369 // removes the need to bang the stack in the deoptimization blob which
3370 // in turn simplifies stack overflow handling.
3371 int PhaseOutput::bang_size_in_bytes() const {
3372   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3373 }
3374 
3375 //------------------------------dump_asm---------------------------------------
3376 // Dump formatted assembly
3377 #if defined(SUPPORT_OPTO_ASSEMBLY)
3378 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3379 
3380   int pc_digits = 3; // #chars required for pc
3381   int sb_chars  = 3; // #chars for "start bundle" indicator
3382   int tab_size  = 8;
3383   if (pcs != NULL) {
3384     int max_pc = 0;
3385     for (uint i = 0; i < pc_limit; i++) {
3386       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3387     }
3388     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3389   }
3390   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3391 
3392   bool cut_short = false;
3393   st->print_cr("#");
3394   st->print("#  ");  C->tf()->dump_on(st);  st->cr();
3395   st->print_cr("#");
3396 
3397   // For all blocks
3398   int pc = 0x0;                 // Program counter
3399   char starts_bundle = ' ';
3400   C->regalloc()->dump_frame();
3401 
3402   Node *n = NULL;
3403   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3404     if (VMThread::should_terminate()) {
3405       cut_short = true;
3406       break;
3407     }
3408     Block* block = C->cfg()->get_block(i);
3409     if (block->is_connector() && !Verbose) {
3410       continue;
3411     }
3412     n = block->head();
3413     if ((pcs != NULL) && (n->_idx < pc_limit)) {
3414       pc = pcs[n->_idx];
3415       st->print("%*.*x", pc_digits, pc_digits, pc);
3416     }
3417     st->fill_to(prefix_len);
3418     block->dump_head(C->cfg(), st);
3419     if (block->is_connector()) {
3420       st->fill_to(prefix_len);
3421       st->print_cr("# Empty connector block");
3422     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3423       st->fill_to(prefix_len);
3424       st->print_cr("# Block is sole successor of call");
3425     }
3426 
3427     // For all instructions
3428     Node *delay = NULL;
3429     for (uint j = 0; j < block->number_of_nodes(); j++) {
3430       if (VMThread::should_terminate()) {
3431         cut_short = true;
3432         break;
3433       }
3434       n = block->get_node(j);
3435       if (valid_bundle_info(n)) {
3436         Bundle* bundle = node_bundling(n);
3437         if (bundle->used_in_unconditional_delay()) {
3438           delay = n;
3439           continue;
3440         }
3441         if (bundle->starts_bundle()) {
3442           starts_bundle = '+';
3443         }
3444       }
3445 
3446       if (WizardMode) {
3447         n->dump();
3448       }
3449 
3450       if( !n->is_Region() &&    // Dont print in the Assembly
3451           !n->is_Phi() &&       // a few noisely useless nodes
3452           !n->is_Proj() &&
3453           !n->is_MachTemp() &&
3454           !n->is_SafePointScalarObject() &&
3455           !n->is_Catch() &&     // Would be nice to print exception table targets
3456           !n->is_MergeMem() &&  // Not very interesting
3457           !n->is_top() &&       // Debug info table constants
3458           !(n->is_Con() && !n->is_Mach())// Debug info table constants
3459           ) {
3460         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3461           pc = pcs[n->_idx];
3462           st->print("%*.*x", pc_digits, pc_digits, pc);
3463         } else {
3464           st->fill_to(pc_digits);
3465         }
3466         st->print(" %c ", starts_bundle);
3467         starts_bundle = ' ';
3468         st->fill_to(prefix_len);
3469         n->format(C->regalloc(), st);
3470         st->cr();
3471       }
3472 
3473       // If we have an instruction with a delay slot, and have seen a delay,
3474       // then back up and print it
3475       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3476         // Coverity finding - Explicit null dereferenced.
3477         guarantee(delay != NULL, "no unconditional delay instruction");
3478         if (WizardMode) delay->dump();
3479 
3480         if (node_bundling(delay)->starts_bundle())
3481           starts_bundle = '+';
3482         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3483           pc = pcs[n->_idx];
3484           st->print("%*.*x", pc_digits, pc_digits, pc);
3485         } else {
3486           st->fill_to(pc_digits);
3487         }
3488         st->print(" %c ", starts_bundle);
3489         starts_bundle = ' ';
3490         st->fill_to(prefix_len);
3491         delay->format(C->regalloc(), st);
3492         st->cr();
3493         delay = NULL;
3494       }
3495 
3496       // Dump the exception table as well
3497       if( n->is_Catch() && (Verbose || WizardMode) ) {
3498         // Print the exception table for this offset
3499         _handler_table.print_subtable_for(pc);
3500       }
3501       st->bol(); // Make sure we start on a new line
3502     }
3503     st->cr(); // one empty line between blocks
3504     assert(cut_short || delay == NULL, "no unconditional delay branch");
3505   } // End of per-block dump
3506 
3507   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3508 }
3509 #endif
3510 
3511 #ifndef PRODUCT
3512 void PhaseOutput::print_statistics() {
3513   Scheduling::print_statistics();
3514 }
3515 #endif