Insights
get_ents_by_label(data, use_lower=True)
¶
Show source code in recon/insights.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
Get a dictionary of unique text spans by label for your data
Parameters
Name | Type | Description | Default |
---|---|---|---|
data |
List[recon.types.Example] |
List of examples | required |
use_lower |
bool |
Use the lowercase form of the span text. | True |
Returns
Type | Description |
---|---|
DefaultDict[str, List[str]] |
DefaultDict[str, List[str]]: DefaultDict mapping label to sorted list of the unique spans annotated for that label. |
get_hardest_examples(pred_errors, return_pred_errors=True, remove_pred_error_examples=True)
¶
Show source code in recon/insights.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
Get hardest examples from list of PredictionError types
Parameters
Name | Type | Description | Default |
---|---|---|---|
pred_errors |
List[recon.types.PredictionError] |
list of PredictionError | required |
return_pred_errors |
bool |
Whether to return prediction errors. Defaults to True. | True |
remove_pred_error_examples |
bool |
Whether to remove examples from returned PredictionError. Defaults to True. | True |
Exceptions
Type | Description |
---|---|
ValueError |
Each PredictionError must have a List of examples |
Returns
Type | Description |
---|---|
List[recon.types.HardestExample] |
List[HardestExample]: Sorted list of the hardest examples for a model to work on. |
get_label_disparities(data, label1, label2, use_lower=True)
¶
Show source code in recon/insights.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
Identify annotated spans that have different labels in different examples
Parameters
Name | Type | Description | Default |
---|---|---|---|
data |
List[recon.types.Example] |
Input List of examples | required |
label1 |
str |
First label to compare | required |
label2 |
str |
Second label to compare | required |
use_lower |
bool |
Use the lowercase form of the span text in ents_to_label. | True |
Returns
Type | Description |
---|---|
Set[str] |
Set[str]: Set of all unique text spans that overlap between label1 and label2 |
top_label_disparities(data, use_lower=True, dedupe=False)
¶
Show source code in recon/insights.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
|
Identify annotated spans that have different labels in different examples for all label pairs in data.
Parameters
Name | Type | Description | Default |
---|---|---|---|
data |
List[recon.types.Example] |
Input List of examples | required |
use_lower |
bool |
Use the lowercase form of the span text in ents_to_label. | True |
dedupe |
bool |
Whether to deduplicate for table view vs confusion matrix. False by default for easy confusion matrix display. | False |
Returns
Type | Description |
---|---|
List[recon.types.LabelDisparity] |
List[LabelDisparity]: List of LabelDisparity objects for each label pair combination sorted by the number of disparities between them. |
top_prediction_errors(recognizer, data, labels=None, n=None, k=None, exclude_fp=False, exclude_fn=False, verbose=False)
¶
Show source code in recon/insights.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
Get a sorted list of examples your model is worst at predicting.
Parameters
Name | Type | Description | Default |
---|---|---|---|
recognizer |
EntityRecognizer |
An instance of EntityRecognizer | required |
data |
List[recon.types.Example] |
List of annotated Examples | required |
labels |
List[str] |
List of labels to get errors for. Defaults to the labels property of recognizer . |
None |
n |
int |
If set, only use the top n examples from data. | None |
k |
int |
If set, return the top k prediction errors, otherwise the whole list. | None |
exclude_fp |
bool |
Flag to exclude False Positive errors. | False |
exclude_fn |
bool |
Flag to exclude False Negative errors. | False |
verbose |
bool |
Show verbose output. | False |
Returns
Type | Description |
---|---|
List[recon.types.PredictionError] |
List[PredictionError]: List of Prediction Errors your model is making, sorted by the spans your model has the most trouble with. |