

Introduction to Deep Learning for Computer Vision

http://aka.ms/cvworkshop

Dmitry Soshnikov

Cloud Developer Advocate Microsoft

Join the chat at https://aka.ms/LearnLiveTV

Goal

Imagine pet care center that receives many breeds of cats and dogs every day. Nurses need to feed them according to their breeds. We will train a model that can be used to recognize breed of a pet.

Learning objectives

- · Learn about neural networks in general
- Learn about computer vision tasks most commonly solved with neural networks
- Understand how Convolutional Neural Networks (CNNs) work
- Train a neural network to recognize pets breeds from faces
- OPTIONAL: Train a neural network to recognize breeds from original photos using Transfer Learning

Prerequisites

- Basic knowledge of Python and Jupyter Notebooks
- Some familiarity with PyTorch/TensorFlow framework, including tensors, basics of back propagation and building models
- Understanding machine learning concepts, such as classification, train/test dataset, accuracy, etc.

To Learn:

- Read: http://eazify.net/nnintro
- Introduction to PyTorch: http://aka.ms/learntorch/intro
- Introduction to TensorFlow: http://aka.ms/learntf/keras

Introduction to Neural Networks

Neural Networks are inspired by our Brain

http://eazify.net/nnintro

Real Neuron

Artificial Neuron

Tensors

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

$$z = Wx + b$$

Sizes: Z - 2x1, W - 2x3, X - 3x1, b - 2x1

Computing in minibatches (bs=9):

Sizes: Z - 9x2x1, W - 2x3, X - 9x3x1, b - 2x1

Softmax and Loss

 $L(w, b) = \text{CrossEntropy}(\text{Softmax}(wx + b), y) \rightarrow \min$

$$W^{(i+1)} = W^{(i)} - \eta \frac{\partial L}{\partial W} \qquad b^{(i+1)} = b^i - \eta \frac{\partial L}{\partial b}$$

Neural Network Frameworks

Two main things neural network frameworks do:

- Operate on Tensors efficiently (using GPU if possible)
- Offer automatic differentiation (calculate gradients)
- Also: load datasets, transform data, optimization algorithms, built-in network layers, etc.

- First mainstream framework
- A lot of code on GitHub / Samples
- Includes Keras "Deep Learning for Humans"
- Easier to start with

O PyTorch

- Quickly gaining popularity
- Provides deeper understanding of neural network mechanics

Let's Get to Work!

https://aka.ms/learntf/vision

https://aka.ms/learntorch/vision

Convolutional Neural Networks

Pyramid Architecture

Hierarchical Feature Extraction

Project 1: Pet Face Recognition

Project 1: Pet Face Recognition

Get Data

!wget https://mslearntensorflowlp.blob.core.windows.net/data/petfaces.tar.gz

!tar xfz petfaces.tar.gz

!rm petfaces.tar.gz

Neural Network Training

Load data into tensors

- Resize images
- Normalize images
- Split into batches

Run training loop

- Train neural network for an epoch
- Evaluate on test dataset
- Train for several epochs

- torchvision.datasets.ImageFolder
- tf.keras.preprocessing.
 image_dataset_from_directory

- Feel free to use training code from Learn Module
- Keras: model.compile+model.fit

Overfitting

50% Accuracy

Is it good?

[Optional] Top-k Accuracy

cat_Egyptian cat_Maine cat_Siamese dog_Pekinese

Knowledge check

What is a convolution layer?

- A. A special activation function for images
- B. An image preprocessing layer that normalizes and prepares image before the dense layer
- C. A layer that runs a small windows across the image to extract patterns

What is a convolution layer?

- A. A special activation function for images
- B. An image preprocessing layer that normalizes and prepares image before the dense layer
- C. A layer that runs a small windows across the image to extract patterns

How do the number of parameters in a convolutional layer and dense layer correlate?

- A. A convolutional layer contains more parameters
- B. A convolutional layer contains less parameters

How do the number of parameters in a convolutional layer and dense layer correlate?

- A. A convolutional layer contains more parameters
- B. A convolutional layer contains less parameters

If the size of an input color image is 200x200, what would be the size of the tensor after applying a 5x5 convolutional layer with 16 filters?

- A. 16x196x196 (PT) or 196x196x16 (TF)
- B. 3x196x196 (PT) or 196x196x3 (TF)
- C. 16x3x200x200 (PT) or 200x200x16x3 (TF)
- D. 48x200x200 (PT) or 200x200x48 (TF)

If the size of color image is 200x200, what would be the size of the tensor after applying a 5x5 convolutional layer with 16 filters?

- A. 16x196x196 (PT) or 196x16x16 (TF)
- B. 3x196x196 (PT) or 196x196x3 (TF)
- C. 16x3x200x200 (PT) or 200x200x16x3 (TF)
- D. 48x200x200 (PT) or 200x200x48 (TF)

Which layers do we apply to significantly reduce spatial dimension in multi-layered CNN?

- A. Convolution
- B. Flatten
- C. MaxPooling

Which layers do we apply to significantly reduce spatial dimension in multi-layered CNN?

- A. Convolution
- B. Flatten
- C. MaxPooling

Which layer is used between convolutional base of the network and final linear classifier?

- A. Convolution
- B. Flatten
- C. MaxPooling
- D. Sigmoid

Which layer is used between convolutional base of the network and final linear classifier?

- A. Convolution
- B. Flatten
- C. MaxPooling
- D. Sigmoid

Congratulations!

You have completed the main part of the workshop!

However, if you want to continue... go on!

[Optional] Project 2: Pet Face Recognition

Oxford Pets IIIT

!wget https://mslearntensorflowlp.blob.core.windows.net/data/oxpets_images.tar.gz
!tar xfz oxpets_images.tar.gz
!rm oxpets_images.tar.gz

Transfer Learning

Knowledge check

For transfer learning, we are using a VGG-16 network pre-trained on 1000 classes. What is the number of classes we can have in our network?

- A. Any
- B. 1000
- C. 2
- D. less than 1000

For transfer learning, we are using a VGG-16 network pre-trained on 1000 classes. What is the number of classes we can have in our network?

- A. Any
- B. 1000
- C. 2
- D. less than 1000

Summary and Further Steps

Wow!

We have learnt how to classify arbitrary breeds of cats and dogs with ~85% accuracy (~96% top-3) from 37 classes!

Next:

- Learn how to deploy the model on <u>Azure Functions</u> or <u>Azure ML</u>
 <u>Cluster</u>
- Create complete mobile application that can recognize breeds of cats/dogs:
 - Using Mobile-Net and local inference
 - Using model deployed on Azure
- Learn how to deal with text in <u>PyTorch</u> or <u>TensorFlow</u>

