Source code for pe.callback.common.compute_precision_recall

import numpy as np
from fld.metrics.PrecisionRecall import PrecisionRecall
import torch

from pe.callback.callback import Callback
from pe.metric_item import FloatMetricItem
from pe.logging import execution_logger


[docs] class ComputePrecisionRecall(Callback): """The callback that computes precision and recall metrics (https://arxiv.org/abs/1904.06991) between the private and synthetic data."""
[docs] def __init__(self, priv_data, embedding, num_precision_neighbors=4, num_recall_neighbors=5, filter_criterion=None): """Constructor. :param priv_data: The private data :type priv_data: :py:class:`pe.data.Data` :param embedding: The embedding to compute the FID :type embedding: :py:class:`pe.embedding.Embedding` :param num_precision_neighbors: The number of neighbors to use for computing precision, defaults to 4 following https://github.com/marcojira/fld/tree/main :type num_precision_neighbors: int, optional :param num_recall_neighbors: The number of neighbors to use for computing recall, defaults to 5 following https://github.com/marcojira/fld/tree/main :type num_recall_neighbors: int, optional :param filter_criterion: Only computes the metric based on samples satisfying the criterion. None means no filtering. Defaults to None :type filter_criterion: dict, optional """ self._priv_data = priv_data self._embedding = embedding self._num_precision_neighbors = num_precision_neighbors self._num_recall_neighbors = num_recall_neighbors self._filter_criterion = filter_criterion self._filter_criterion_str = str(filter_criterion).replace(" ", "") self._precision_metric_name = ( f"precision_{self._embedding.column_name}_{self._filter_criterion_str}" if filter_criterion else f"precision_{self._embedding.column_name}" ) self._recall_metric_name = ( f"recall_{self._embedding.column_name}_{self._filter_criterion_str}" if filter_criterion else f"recall_{self._embedding.column_name}" ) self._priv_data = self._embedding.compute_embedding(self._priv_data) priv_embedding = np.stack(self._priv_data.data_frame[self._embedding.column_name].values, axis=0).astype( np.float32 ) self._priv_embedding = priv_embedding self._precision = PrecisionRecall(mode="Precision", num_neighbors=self._num_precision_neighbors) self._recall = PrecisionRecall(mode="Recall", num_neighbors=self._num_recall_neighbors)
[docs] def __call__(self, syn_data): """This function is called after each PE iteration that computes the FID between the private and synthetic data. :param syn_data: The synthetic data :type syn_data: :py:class:`pe.data.Data` :return: The FID between the private and synthetic data :rtype: list[:py:class:`pe.metric_item.FloatMetricItem`] """ execution_logger.info( f"Computing precision and recall ({self._embedding.column_name}, {self._filter_criterion_str})" ) syn_data = syn_data.filter(self._filter_criterion) execution_logger.info(f"Number of samples after filtering: {len(syn_data.data_frame)}") syn_data = self._embedding.compute_embedding(syn_data) syn_embedding = np.stack(syn_data.data_frame[self._embedding.column_name].values, axis=0).astype(np.float32) priv_embedding_torch = torch.from_numpy(self._priv_embedding) syn_embedding_torch = torch.from_numpy(syn_embedding) precision = self._precision.compute_metric(priv_embedding_torch, None, syn_embedding_torch) recall = self._recall.compute_metric(priv_embedding_torch, None, syn_embedding_torch) precision_metric_item = FloatMetricItem(name=self._precision_metric_name, value=precision) recall_metric_item = FloatMetricItem(name=self._recall_metric_name, value=recall) execution_logger.info( f"Finished computing precision and recall ({self._embedding.column_name}, {self._filter_criterion_str})" ) return [precision_metric_item, recall_metric_item]