Source code for pe.callback.image.dpimagebench_lib.wrn

"""Adapted from DPImageBench: https://github.com/fjxmlzn/DPImageBench/blob/main/evaluation/classifier/wrn.py"""

# import math
import torch
import torch.nn as nn
import torch.nn.functional as F


[docs] class BasicBlock(nn.Module): def __init__(self, in_planes, out_planes, stride, dropRate=0.0): super(BasicBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.relu1 = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_planes) self.relu2 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) self.droprate = dropRate self.equalInOut = in_planes == out_planes self.convShortcut = ( (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False) or None )
[docs] def forward(self, x): if not self.equalInOut: x = self.relu1(self.bn1(x)) else: out = self.relu1(self.bn1(x)) out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x))) if self.droprate > 0: out = F.dropout(out, p=self.droprate, training=self.training) out = self.conv2(out) return torch.add(x if self.equalInOut else self.convShortcut(x), out)
[docs] class NetworkBlock(nn.Module): def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0): super(NetworkBlock, self).__init__() self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate) def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate): layers = [] for i in range(int(nb_layers)): layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate)) return nn.Sequential(*layers)
[docs] def forward(self, x): return self.layer(x)
[docs] class WideResNet(nn.Module): def __init__(self, in_c=3, img_size=32, num_classes=10, depth=40, widen_factor=4, dropRate=0.0): super(WideResNet, self).__init__() nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor] assert (depth - 4) % 6 == 0 n = (depth - 4) / 6 block = BasicBlock self.img_size = img_size # 1st conv before any network block self.conv1 = nn.Conv2d(in_c, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False) # 1st block self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate) # 2nd block self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate) # 3rd block self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate) # global average pooling and classifier self.bn1 = nn.BatchNorm2d(nChannels[3]) self.relu = nn.ReLU(inplace=True) self.fc = nn.Linear(nChannels[3], num_classes) self.nChannels = nChannels[3] for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_()
[docs] def forward(self, x): out = self.conv1(x) out = self.block1(out) out = self.block2(out) out = self.block3(out) out = self.relu(self.bn1(out)) out = F.avg_pool2d(out, self.img_size // 4) out = out.view(-1, self.nChannels) return self.fc(out)
if __name__ == "__main__": model = WideResNet(in_c=1, img_size=28) images = torch.randn((4, 1, 28, 28)) out = model(images) print(out.shape)