Source code for pe.embedding.image.fld_inception

import numpy as np
import torch
import pandas as pd

from fld.features.InceptionFeatureExtractor import InceptionFeatureExtractor

from cleanfid.resize import make_resizer

from pe.embedding import Embedding
from pe.constant.data import IMAGE_DATA_COLUMN_NAME
from pe.logging import execution_logger


[docs] def to_uint8(x, min, max): x = (x - min) / (max - min) x = np.around(np.clip(x * 255, a_min=0, a_max=255)).astype(np.uint8) return x
[docs] class FLDInception(Embedding): """Compute the Inception embedding of images using FLD library."""
[docs] def __init__(self, res=None): """Constructor. :param res: The resolution of the images. The images will be resized to (res, res) before computing the embedding. If None, the images will not be resized. Defaults to None :type res: int, optional """ super().__init__() self._feature_extractor = InceptionFeatureExtractor() if res is not None: self._resize_pre = make_resizer( library="PIL", quantize_after=False, filter="bicubic", output_size=(res, res), ) else: self._resize_pre = None
[docs] def compute_embedding(self, data): """Compute the Inception embedding of images. :param data: The data object containing the images :type data: :py:class:`pe.data.Data` :return: The data object with the computed embedding :rtype: :py:class:`pe.data.Data` """ uncomputed_data = self.filter_uncomputed_rows(data) if len(uncomputed_data.data_frame) == 0: execution_logger.info(f"Embedding: {self.column_name} already computed") return data execution_logger.info( f"Embedding: computing {self.column_name} for {len(uncomputed_data.data_frame)}/{len(data.data_frame)}" " samples" ) x = np.stack(uncomputed_data.data_frame[IMAGE_DATA_COLUMN_NAME].values, axis=0) if x.shape[3] == 1: x = np.repeat(x, 3, axis=3) if self._resize_pre is not None: x = [self._resize_pre(image) for image in x] x = np.stack(x, axis=0) x = to_uint8(x, min=0, max=255) x = np.transpose(x, (0, 3, 1, 2)) x = torch.from_numpy(x) embeddings = self._feature_extractor.get_tensor_features(x) embeddings = embeddings.cpu().detach().numpy() uncomputed_data.data_frame[self.column_name] = pd.Series( list(embeddings), index=uncomputed_data.data_frame.index ) execution_logger.info( f"Embedding: finished computing {self.column_name} for " f"{len(uncomputed_data.data_frame)}/{len(data.data_frame)} samples" ) return self.merge_computed_rows(data, uncomputed_data)