Source code for pe.embedding.image.inception

import tempfile
import numpy as np
import torch
import pandas as pd
from tqdm import tqdm

from cleanfid.inception_torchscript import InceptionV3W
from cleanfid.resize import build_resizer
from cleanfid.resize import make_resizer

from pe.embedding import Embedding
from pe.constant.data import IMAGE_DATA_COLUMN_NAME
from pe.logging import execution_logger


[docs] def to_uint8(x, min, max): x = (x - min) / (max - min) x = np.around(np.clip(x * 255, a_min=0, a_max=255)).astype(np.uint8) return x
[docs] class Inception(Embedding): """Compute the Inception embedding of images."""
[docs] def __init__(self, res, device="cuda", batch_size=2000): """Constructor. :param res: The resolution of the images. The images will be resized to (res, res) before computing the embedding :type res: int :param device: The device to use for computing the embedding, defaults to "cuda" :type device: str, optional :param batch_size: The batch size to use for computing the embedding, defaults to 2000 :type batch_size: int, optional """ super().__init__() self._temp_folder = tempfile.TemporaryDirectory() self._device = device self._inception = InceptionV3W(path=self._temp_folder.name, download=True, resize_inside=False).to(device) self._resize_pre = make_resizer( library="PIL", quantize_after=False, filter="bicubic", output_size=(res, res), ) self._resizer = build_resizer("clean") self._batch_size = batch_size
[docs] def compute_embedding(self, data): """Compute the Inception embedding of images. :param data: The data object containing the images :type data: :py:class:`pe.data.Data` :return: The data object with the computed embedding :rtype: :py:class:`pe.data.Data` """ uncomputed_data = self.filter_uncomputed_rows(data) if len(uncomputed_data.data_frame) == 0: execution_logger.info(f"Embedding: {self.column_name} already computed") return data execution_logger.info( f"Embedding: computing {self.column_name} for {len(uncomputed_data.data_frame)}/{len(data.data_frame)}" " samples" ) x = np.stack(uncomputed_data.data_frame[IMAGE_DATA_COLUMN_NAME].values, axis=0) if x.shape[3] == 1: x = np.repeat(x, 3, axis=3) embeddings = [] for i in tqdm(range(0, len(x), self._batch_size)): transformed_x = [] for j in range(i, min(i + self._batch_size, len(x))): image = x[j] image = self._resize_pre(image) image = to_uint8(image, min=0, max=255) image = self._resizer(image) transformed_x.append(image) transformed_x = np.stack(transformed_x, axis=0).transpose((0, 3, 1, 2)) embeddings.append(self._inception(torch.from_numpy(transformed_x).to(self._device))) embeddings = torch.cat(embeddings, dim=0) embeddings = embeddings.cpu().detach().numpy() uncomputed_data.data_frame[self.column_name] = pd.Series( list(embeddings), index=uncomputed_data.data_frame.index ) execution_logger.info( f"Embedding: finished computing {self.column_name} for " f"{len(uncomputed_data.data_frame)}/{len(data.data_frame)} samples" ) return self.merge_computed_rows(data, uncomputed_data)