Skip to main content

Tune - Lexicographic Objectives

Requirements

pip install "flaml>=1.1.0" thop torchvision torch

Tuning multiple objectives with Lexicographic preference is a new feature added in version 1.1.0 and is subject to change in future versions.

Tuning accurate and efficient neural networks with lexicographic preference

Data

import torch
import thop
import torch.nn as nn
from flaml import tune
import torch.nn.functional as F
import torchvision
import numpy as np
import os

DEVICE = torch.device("cpu")
BATCHSIZE = 128
N_TRAIN_EXAMPLES = BATCHSIZE * 30
N_VALID_EXAMPLES = BATCHSIZE * 10
data_dir = os.path.abspath("data")

train_dataset = torchvision.datasets.FashionMNIST(
data_dir,
train=True,
download=True,
transform=torchvision.transforms.ToTensor(),
)

train_loader = torch.utils.data.DataLoader(
torch.utils.data.Subset(train_dataset, list(range(N_TRAIN_EXAMPLES))),
batch_size=BATCHSIZE,
shuffle=True,
)

val_dataset = torchvision.datasets.FashionMNIST(
data_dir, train=False, transform=torchvision.transforms.ToTensor()
)

val_loader = torch.utils.data.DataLoader(
torch.utils.data.Subset(val_dataset, list(range(N_VALID_EXAMPLES))),
batch_size=BATCHSIZE,
shuffle=True,

Specific the model

def define_model(configuration):
n_layers = configuration["n_layers"]
layers = []
in_features = 28 * 28
for i in range(n_layers):
out_features = configuration["n_units_l{}".format(i)]
layers.append(nn.Linear(in_features, out_features))
layers.append(nn.ReLU())
p = configuration["dropout_{}".format(i)]
layers.append(nn.Dropout(p))
in_features = out_features
layers.append(nn.Linear(in_features, 10))
layers.append(nn.LogSoftmax(dim=1))
return nn.Sequential(*layers)

Train

def train_model(model, optimizer, train_loader):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE)
optimizer.zero_grad()
F.nll_loss(model(data), target).backward()
optimizer.step()

Metrics

def eval_model(model, valid_loader):
model.eval()
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(valid_loader):
data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE)
pred = model(data).argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()

accuracy = correct / N_VALID_EXAMPLES
flops, params = thop.profile(
model, inputs=(torch.randn(1, 28 * 28).to(DEVICE),), verbose=False
)
return np.log2(flops), 1 - accuracy, params

Evaluation function

def evaluate_function(configuration):
model = define_model(configuration).to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), configuration["lr"])
n_epoch = configuration["n_epoch"]
for epoch in range(n_epoch):
train_model(model, optimizer, train_loader)
flops, error_rate, params = eval_model(model, val_loader)
return {"error_rate": error_rate, "flops": flops, "params": params}

Search space

search_space = {
"n_layers": tune.randint(lower=1, upper=3),
"n_units_l0": tune.randint(lower=4, upper=128),
"n_units_l1": tune.randint(lower=4, upper=128),
"n_units_l2": tune.randint(lower=4, upper=128),
"dropout_0": tune.uniform(lower=0.2, upper=0.5),
"dropout_1": tune.uniform(lower=0.2, upper=0.5),
"dropout_2": tune.uniform(lower=0.2, upper=0.5),
"lr": tune.loguniform(lower=1e-5, upper=1e-1),
"n_epoch": tune.randint(lower=1, upper=20),
}

Launch the tuning process

# Low cost initial point
low_cost_partial_config = {
"n_layers": 1,
"n_units_l0": 4,
"n_units_l1": 4,
"n_units_l2": 4,
"n_epoch": 1,
}

# Specific lexicographic preference
lexico_objectives = {}
lexico_objectives["metrics"] = ["error_rate", "flops"]
lexico_objectives["tolerances"] = {"error_rate": 0.02, "flops": 0.0}
lexico_objectives["targets"] = {"error_rate": 0.0, "flops": 0.0}
lexico_objectives["modes"] = ["min", "min"]

# launch the tuning process
analysis = tune.run(
evaluate_function,
num_samples=-1,
time_budget_s=100,
config=search_space, # search space of NN
use_ray=False,
lexico_objectives=lexico_objectives,
low_cost_partial_config=low_cost_partial_config, # low cost initial point
)

We also support providing percentage tolerance as shown below.

lexico_objectives["tolerances"] = {"error_rate": "5%", "flops": "0%"}

Link to notebook | Open in colab