Source code for olive.hardware.accelerator

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
import logging
from dataclasses import dataclass
from typing import List, Optional, Union

from olive.common.utils import StrEnumBase
from olive.hardware.constants import DEVICE_TO_EXECUTION_PROVIDERS

logger = logging.getLogger(__name__)


[docs] class Device(StrEnumBase): CPU = "cpu" CPU_SPR = "cpu_spr" GPU = "gpu" NPU = "npu" VPU = "vpu" INTEL_MYRIAD = "intel_myriad"
MEM_TO_INT = {"KB": 1e3, "MB": 1e6, "GB": 1e9, "TB": 1e12} @dataclass(frozen=True, eq=True) class AcceleratorSpec: """Accelerator specification is the concept of a hardware device that be used to optimize or evaluate a model.""" accelerator_type: Union[str, Device] execution_provider: Optional[str] = None memory: int = None def __str__(self) -> str: str_rep = str(self.accelerator_type).lower() if self.execution_provider: str_rep += f"-{self.execution_provider[:-17].lower()}" if self.memory: str_rep += f"-memory={self.memory}" return str_rep def to_json(self): json_data = {"accelerator_type": str(self.accelerator_type)} if self.execution_provider: json_data["execution_provider"] = self.execution_provider if self.memory is not None: json_data["memory"] = self.memory return json_data @staticmethod def str_to_int_memory(v: Union[int, str]) -> int: if not isinstance(v, str): return v if v.isdigit(): return int(v) v = v.upper() if v[-2:] not in MEM_TO_INT: raise ValueError(f"Memory unit {v[-2:]} is not supported. Supported units are {MEM_TO_INT.keys()}") return int(v[:-2]) * int(MEM_TO_INT[v[-2:]]) DEFAULT_CPU_ACCELERATOR = AcceleratorSpec(accelerator_type=Device.CPU, execution_provider="CPUExecutionProvider") DEFAULT_GPU_CUDA_ACCELERATOR = AcceleratorSpec(accelerator_type=Device.GPU, execution_provider="CUDAExecutionProvider") DEFAULT_GPU_TRT_ACCELERATOR = AcceleratorSpec( accelerator_type=Device.GPU, execution_provider="TensorrtExecutionProvider" ) class AcceleratorLookup: @staticmethod def get_managed_supported_execution_providers(device: Device): return [*DEVICE_TO_EXECUTION_PROVIDERS.get(device), "CPUExecutionProvider"] @staticmethod def get_execution_providers_for_device(device: Device): import onnxruntime return AcceleratorLookup.get_execution_providers_for_device_by_available_providers( device, onnxruntime.get_available_providers() ) @staticmethod def get_execution_providers_for_device_by_available_providers(device: Device, available_providers): eps_per_device = AcceleratorLookup.get_managed_supported_execution_providers(device) return AcceleratorLookup.get_execution_providers(eps_per_device, available_providers) @staticmethod def get_execution_providers(execution_providers, available_providers): eps = AcceleratorLookup.filter_execution_providers(execution_providers, available_providers) return eps or available_providers @staticmethod def filter_execution_providers(execution_providers, available_providers): if not execution_providers: return execution_providers assert isinstance(execution_providers, list) assert isinstance(available_providers, list) return [ep for ep in available_providers if ep in execution_providers] @staticmethod def infer_devices_from_execution_providers(execution_providers: List[str]): """Infer the device from the execution provider name. If all the execution provider is uniquely mapped to a device, return the device list. Otherwise, return None. Please note that the CPUExecutionProvider is skipped for device infer. And only other ORT EPs are considered. For example: execution_provider = ["CPUExecutionProvider", "CUDAExecutionProvider"] return ["gpu"] execution_provider = ["CUDAExecutionProvider", "TensorrtExecutionProvider"] return ["gpu"] """ if not execution_providers: return None ep_to_devices = {} for ep in execution_providers: if ep == "CPUExecutionProvider": # cannot infer device for CPUExecutionProvider since all ORT EP supports CPU continue inferered_devices = [] for device, eps in DEVICE_TO_EXECUTION_PROVIDERS.items(): if ep in eps: inferered_devices.append(device) if inferered_devices: ep_to_devices[ep] = inferered_devices else: ep_to_devices[ep] = None mapped_devices = [] for ep, inferred_device in ep_to_devices.items(): if inferred_device is None: logger.warning( "Execution provider %s is not able to be mapped to any device. " "Olive cannot infer the device which may cause unexpected behavior. " "Please specify the accelerator in the accelerator configs", ep, ) return None elif len(inferred_device) > 1: logger.warning( "Execution provider %s is mapped to multiple devices %s. " "Olive cannot infer the device which may cause unexpected behavior. " "Please specify the accelerator in the accelerator configs", ep, inferred_device, ) return None else: if inferred_device[0] not in mapped_devices: mapped_devices.append(inferred_device[0]) return mapped_devices if mapped_devices else None @staticmethod def infer_single_device_from_execution_providers(execution_providers: List[str]) -> str: if not execution_providers: return None if execution_providers == ["CPUExecutionProvider"]: inferred_devices = ["cpu"] else: inferred_devices = AcceleratorLookup.infer_devices_from_execution_providers(execution_providers) assert inferred_devices, ( f"Cannot infer the devices from the execution providers {execution_providers}." " Please specify the device in the accelerator configs." ) assert len(inferred_devices) == 1, ( f"Cannot infer the devices from the execution providers {execution_providers}. " f"Multiple devices are inferred: {inferred_devices}." " Please specify the device in the accelerator configs." ) return inferred_devices[0]