Source code for olive.model.handler.hf

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
import logging
from pathlib import Path
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Tuple, Union

from olive.common.config_utils import serialize_to_json, validate_config
from olive.common.constants import DEFAULT_HF_TASK
from olive.common.hf.utils import load_model_from_task
from olive.common.utils import dict_diff
from olive.constants import Framework
from olive.hardware.accelerator import Device
from olive.model.config import HfLoadKwargs, IoConfig
from olive.model.config.registry import model_handler_registry
from olive.model.handler.base import OliveModelHandler
from olive.model.handler.mixin import HfMixin, MLFlowTransformersMixin
from olive.model.handler.pytorch import PyTorchModelHandlerBase
from olive.resource_path import OLIVE_RESOURCE_ANNOTATIONS

if TYPE_CHECKING:
    import torch

logger = logging.getLogger(__name__)


[docs] @model_handler_registry("HFModel") class HfModelHandler(PyTorchModelHandlerBase, MLFlowTransformersMixin, HfMixin): # pylint: disable=too-many-ancestors resource_keys: Tuple[str, ...] = ("model_path", "adapter_path") json_config_keys: Tuple[str, ...] = ("task", "load_kwargs", "generative") def __init__( self, model_path: OLIVE_RESOURCE_ANNOTATIONS, task: str = DEFAULT_HF_TASK, load_kwargs: Union[Dict[str, Any], HfLoadKwargs] = None, io_config: Union[Dict[str, Any], IoConfig, str] = None, adapter_path: OLIVE_RESOURCE_ANNOTATIONS = None, model_attributes: Optional[Dict[str, Any]] = None, generative: bool = False, ): super().__init__( framework=Framework.PYTORCH, model_file_format=None, model_path=model_path, model_attributes=model_attributes, io_config=io_config, generative=generative, ) self.add_resources(locals()) self.task = task self.load_kwargs = validate_config(load_kwargs, HfLoadKwargs, warn_unused_keys=False) if load_kwargs else None self.model_attributes = {**self.get_hf_model_config().to_dict(), **(self.model_attributes or {})} self.model = None self.dummy_inputs = None @property def model_name_or_path(self) -> str: """Return the path to valid hf transformers checkpoint. Call this instead of model_path if you expect a checkpoint path. """ return self.get_mlflow_transformers_path() or self.model_path @property def adapter_path(self) -> str: """Return the path to the peft adapter.""" return self.get_resource("adapter_path") def load_model(self, rank: int = None, cache_model: bool = True) -> "torch.nn.Module": """Load the model from the model path.""" if self.model: model = self.model else: model = load_model_from_task(self.task, self.model_path, **self.get_load_kwargs()) # we only have peft adapters for now if self.adapter_path: from peft import PeftModel model = PeftModel.from_pretrained(model, self.adapter_path) self.model = model if cache_model else None return model @property def io_config(self) -> Dict[str, Any]: """Return io config of the model. Priority: io_config > hf onnx_config """ io_config = None if self._io_config: # io_config is provided io_config = self.get_resolved_io_config( self._io_config, force_kv_cache=self.task.endswith("-with-past"), model_attributes=self.model_attributes ) else: logger.debug("Trying hf optimum export config to get io_config") io_config = self.get_hf_io_config() if io_config: logger.debug("Got io_config from hf optimum export config") return io_config def get_dummy_inputs(self, filter_hook=None, filter_hook_kwargs=None): """Return a dummy input for the model.""" if self.dummy_inputs is not None: return self.dummy_inputs # Priority: io_config > hf onnx_config dummy_inputs = self._get_dummy_inputs_from_io_config( filter_hook=filter_hook, filter_hook_kwargs=filter_hook_kwargs, ) if dummy_inputs: return dummy_inputs logger.debug("Trying hf optimum export config to get dummy inputs") dummy_inputs = self.get_hf_dummy_inputs() if dummy_inputs: logger.debug("Got dummy inputs from hf optimum export config") if dummy_inputs is None: raise ValueError( "Unable to get dummy inputs for the model. Please provide io_config or install an optimum version that" " supports the model for export." ) return dummy_inputs def to_json(self, check_object: bool = False): config = super().to_json(check_object) # only keep model_attributes that are not in hf model config hf_model_config_dict = self.get_hf_model_config().to_dict() config["config"]["model_attributes"] = dict_diff(self.model_attributes, hf_model_config_dict) return serialize_to_json(config, check_object)
[docs] @model_handler_registry("DistributedHfModel") class DistributedHfModelHandler(OliveModelHandler): json_config_keys: Tuple[str, ...] = ( "model_name_pattern", "num_ranks", "task", "load_kwargs", "io_config", "generative", ) DEFAULT_RANKED_MODEL_NAME_FORMAT: ClassVar[str] = "model_{:02d}" def __init__( self, model_path: OLIVE_RESOURCE_ANNOTATIONS, model_name_pattern: str, num_ranks: int, task: str, load_kwargs: Union[Dict[str, Any], HfLoadKwargs] = None, io_config: Union[Dict[str, Any], IoConfig] = None, model_attributes: Optional[Dict[str, Any]] = None, generative: bool = False, ): super().__init__( framework=Framework.PYTORCH, model_file_format=None, model_path=model_path, model_attributes=model_attributes, io_config=io_config, generative=generative, ) self.add_resources(locals()) self.model_name_pattern = model_name_pattern self.num_ranks = num_ranks self.task = task self.load_kwargs = load_kwargs def ranked_model_name(self, rank: int) -> str: return self.model_name_pattern.format(rank) def ranked_model_path(self, rank: int) -> Union[Path, str]: return Path(self.model_path) / self.ranked_model_name(rank) def load_model(self, rank: int = None, cache_model: bool = True) -> HfModelHandler: return HfModelHandler( model_path=self.ranked_model_path(rank), task=self.task, load_kwargs=self.load_kwargs, io_config=self.io_config, model_attributes=self.model_attributes, generative=self.generative, ) def prepare_session( self, inference_settings: Optional[Dict[str, Any]] = None, device: Device = Device.GPU, # pylint: disable=signature-differs execution_providers: Union[str, List[str]] = None, rank: Optional[int] = 0, ) -> "torch.nn.Module": return self.load_model(rank).load_model(rank).eval() def run_session( self, session: Any = None, inputs: Union[Dict[str, Any], List[Any], Tuple[Any, ...]] = None, **kwargs: Dict[str, Any], ) -> Any: if isinstance(inputs, dict): results = session.generate(**inputs, **kwargs) if self.generative else session(**inputs, **kwargs) else: results = session.generate(inputs, **kwargs) if self.generative else session(inputs, **kwargs) return results