Metric
Metric
-
pydantic settings olive.evaluator.metric.Metric[source]
-
field name: str [Required]
-
field type: MetricType [Required]
-
field backend: str | None = 'torch_metrics'
-
field sub_types: List[SubMetric] [Required]
-
field user_config: ConfigBase = None
-
field data_config: DataConfig | None = None
-
get_inference_settings(framework)[source]
-
get_run_kwargs() → Dict[str, Any][source]
-
get_sub_type_info(info_name, no_priority_filter=True, callback=<function Metric.<lambda>>)[source]
MetricType
-
class olive.evaluator.metric.MetricType(value)[source]
An enumeration.
-
ACCURACY = 'accuracy'
-
CUSTOM = 'custom'
-
LATENCY = 'latency'
-
THROUGHPUT = 'throughput'
AccuracySubType
-
class olive.evaluator.metric.AccuracySubType(value)[source]
An enumeration.
-
ACCURACY_SCORE = 'accuracy_score'
-
AUROC = 'auroc'
-
F1_SCORE = 'f1_score'
-
PERPLEXITY = 'perplexity'
-
PRECISION = 'precision'
-
RECALL = 'recall'
LatencySubType
-
class olive.evaluator.metric.LatencySubType(value)[source]
An enumeration.
-
AVG = 'avg'
-
MAX = 'max'
-
MIN = 'min'
-
P50 = 'p50'
-
P75 = 'p75'
-
P90 = 'p90'
-
P95 = 'p95'
-
P99 = 'p99'
-
P999 = 'p999'
ThroughputSubType
-
class olive.evaluator.metric.ThroughputSubType(value)[source]
An enumeration.
-
AVG = 'avg'
-
MAX = 'max'
-
MIN = 'min'
-
P50 = 'p50'
-
P75 = 'p75'
-
P90 = 'p90'
-
P95 = 'p95'
-
P99 = 'p99'
-
P999 = 'p999'
MetricGoal
-
pydantic settings olive.evaluator.metric.MetricGoal[source]
-
field type: str [Required]
-
field value: float [Required]
-
has_regression_goal()[source]