Skip to main content

SuperBenchmark

SuperBench is a validation and profiling tool for AI infrastructure. It highly specializes in GPU performance benchmarking.

System Requirements

This is a GPU-specific workload and requires high-performance graphic cards to run. It is recommended that the system-under-test have a high-performing Nvidia (e.g. M60 or higher) or AMD (e.g. MI25 or higher) graphics card.

Dependencies

The following dependencies are required to be installed on the Unix/Linux system in order to support the requirements of the Superbench workload. Note that the Virtual Client will handle the installation of any required dependencies.

  1. GPU driver (Nvidia: nvidia-smi, AMD: rocm-smi)
  2. Docker CE
  3. CUDA and Nvidia container toolkit
  4. Actual GPU and turned on

⚠️
Note that at the moment, the Virtual Client ONLY has support for Nvidia GPU systems. Work is underway to finalize support for the installation of drivers required in order to support AMD GPU systems.

What is Being Measured?

Measures the GEMM FLOPS for the GPU on the system using different float and int data types, with or without Tensor Core (XDLOPS), using by NVIDIA cutlass or AMD rocblas-bench. The following benchmarks are supported:

Computational Benchmarks

  • kernel-launch
    Measure GPU kernel launch latency which is defined as the time range from the beginning of the launch API call to the beginning of the kernel execution. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    kernel-launch/event_timetime (ms)Launch latency measured in GPU time.
    kernel-launch/wall_timetime (ms)Launch latency measured in CPU time.
  • gemm-flops
    Measure the GPU GEMM FLOPS for different float and int data types with or without Tensor Core (XDLOPS) using NVIDIA cutlass or AMD rocblas-bench. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    gemm-flops/fp64_flopsFLOPS (GFLOPS)GEMM float64 peak FLOPS.
    gemm-flops/fp32_flopsFLOPS (GFLOPS)GEMM float32 peak FLOPS.
    gemm-flops/fp16_flopsFLOPS (GFLOPS)GEMM float16 peak FLOPS.
    gemm-flops/fp64_tc_flopsFLOPS (GFLOPS)GEMM float64 peak FLOPS with NVIDIA Tensor Core.
    gemm-flops/tf32_tc_flopsFLOPS (GFLOPS)GEMM tensor-float32 peak FLOPS with NVIDIA Tensor Core.
    gemm-flops/fp16_tc_flopsFLOPS (GFLOPS)GEMM float16 peak FLOPS with NVIDIA Tensor Core.
    gemm-flops/bf16_tc_flopsFLOPS (GFLOPS)GEMM bfloat16 peak FLOPS with NVIDIA Tensor Core.
    gemm-flops/int8_tc_iopsIOPS (GIOPS)GEMM int8 peak IOPS with NVIDIA Tensor Core.
    gemm-flops/int4_tc_iopsIOPS (GIOPS)GEMM int4 peak IOPS with NVIDIA Tensor Core.
    gemm-flops/fp32_xdlops_flopsFLOPS (GFLOPS)GEMM tensor-float32 peak FLOPS with AMD XDLOPS.
    gemm-flops/fp16_xdlops_flopsFLOPS (GFLOPS)GEMM float16 peak FLOPS with AMD XDLOPS.
    gemm-flops/bf16_xdlops_flopsFLOPS (GFLOPS)GEMM bfloat16 peak FLOPS with AMD XDLOPS.
  • matmul
    Large scale matmul operation using torch.matmul with one GPU. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    pytorch-matmul/nosharding_timetime (ms)Time of pure matmul operation.
  • tensorrt-inference
    Inference PyTorch/ONNX models on NVIDIA GPUs with TensorRT. The following models are currently supported:

    • alexnet
    • densenet121
    • densenet169
    • densenet201
    • densenet161
    • googlenet
    • inception_v3
    • mnasnet0_5
    • mnasnet1_0
    • mobilenet_v2
    • resnet18
    • resnet34
    • resnet50
    • resnet101
    • resnet152
    • resnext50_32x4d
    • resnext101_32x8d
    • wide_resnet50_2
    • wide_resnet101_2
    • shufflenet_v2_x0_5
    • shufflenet_v2_x1_0
    • squeezenet1_0
    • squeezenet1_1
    • vgg11
    • vgg11_bn
    • vgg13
    • vgg13_bn
    • vgg16
    • vgg16_bn
    • vgg19_bn
    • vgg19

    The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    tensorrt-inference/${model}_gpu_time_meantime (ms)The mean GPU latency to execute the kernels for a query.
    tensorrt-inference/${model}_gpu_time_99time (ms)The 99th percentile GPU latency to execute the kernels for a query.
    tensorrt-inference/${model}_host_time_meantime (ms)The mean H2D, GPU, and D2H latency to execute the kernels for a query.
    tensorrt-inference/${model}_host_time_99time (ms)The 99th percentile H2D, GPU, and D2H latency to execute the kernels for a query.
    tensorrt-inference/${model}_end_to_end_time_meantime (ms)The mean duration from when the H2D of a query is called to when the D2H of the same query is completed.
    tensorrt-inference/${model}_end_to_end_time_99time (ms)The P99 duration from when the H2D of a query is called to when the D2H of the same query is completed.
  • ort-inference
    Inference performance of the torchvision models using ONNXRuntime. The following models are currently supported:

    • alexnet
    • densenet121
    • densenet169
    • densenet201
    • densenet161
    • googlenet
    • inception_v3
    • mnasnet0_5
    • mnasnet1_0
    • mobilenet_v2
    • resnet18
    • resnet34
    • resnet50
    • resnet101
    • resnet152
    • resnext50_32x4d
    • resnext101_32x8d
    • wide_resnet50_2
    • wide_resnet101_2
    • shufflenet_v2_x0_5
    • shufflenet_v2_x1_0
    • squeezenet1_0
    • squeezenet1_1
    • vgg11
    • vgg11_bn
    • vgg13
    • vgg13_bn
    • vgg16
    • vgg16_bn
    • vgg19_bn
    • vgg19

    The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    ort-inference/{precision}_{model}_timetime (ms)The mean latency to execute one batch of inference.

Communication Benchmarks

  • membw
    Measure the memory copy bandwidth across PCI-e and memory copy bandwidth between GPUs, using NVIDIA or AMD bandwidth test tools. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    mem-bw/h2d_bwbandwidth (GB/s)Host to device copy bandwidth.
    mem-bw/d2h_bwbandwidth (GB/s)Device to host copy bandwidth.
    mem-bw/d2d_bwbandwidth (GB/s)Device to device copy bandwidth.
  • gpu-copy-bw
    Measure the memory copy bandwidth performed by GPU SM/DMA engine including device-to-host, host-to-device and device-to-device. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    cpu_to_gpu[0-9]+_by_gpu[0-9]+_using_(sm|dma)_under_numa[0-9]+_bwbandwidth (GB/s)The bandwidth reading from all NUMA nodes' host memory using DMA engine or GPU SM by all GPUs.
    gpu[0-9]+_to_cpu_by_gpu[0-9]+_using_(sm|dma)_under_numa[0-9]+_bwbandwidth (GB/s)The bandwidth writing to all NUMA nodes' host memory using DMA engine or GPU SM by all GPUs.
    gpu[0-9]+_to_gpu[0-9]+_by_gpu[0-9]+_using_(sm|dma)_under_numa[0-9]+_bwbandwidth (GB/s)The bandwidth reading from or writing to all GPUs using DMA engine or GPU SM by all GPUs with peer communication enabled.
  • ib-loopback
    Measure the InfiniBand loopback verbs bandwidth using OFED performance tests. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    ib-loopback/ib_write_${msg_size}_ib[0-9]_bwbandwidth (GB/s)InfiniBand loopback write bandwidth with given message size.
    ib-loopback/ib_read_${msg_size}_ib[0-9]_bwbandwidth (GB/s)InfiniBand loopback read bandwidth with given message size.
    ib-loopback/ib_send_${msg_size}_ib[0-9]_bwbandwidth (GB/s)InfiniBand loopback send bandwidth with given message size.
  • ib-traffic
    Measure the InfiniBand performance under multi nodes' traffic pattern. The traffic pattern is defined in a config file, which is pre-defined for one-to-many, many-to-one and all-to-all patterns. Each row in the config is one round, and all pairs of nodes in a row run ib command simultaneous. The following examples illustrate the metrics that are emitted:

    MetricsUnitDescription
    ib-traffic/${command}${line}${pair}${server}${client}_bwbandwidth (GB/s)The max bandwidth of ib command (ib_write_bw, ib_send_bw, ib_read_bw) run between the ${pair}th node pair in the ${line}th line of the config, ${server} and ${client} are the hostname of server and client
    ib-traffic/${command}${line}${pair}${server}${client}_lattime (us)The max latency of ib command (ib_write_lat, ib_send_lat, ib_read_lat) run between the ${pair}th node pair in the ${line}th line of the config, ${server} and ${client} are the hostname of server and client
  • nccl-bw/rccl-bw
    Measure the performance of NCCL/RCCL operations using nccl-tests or rccl-tests. The following operations are currently supported:

    • allreduce
    • allgather
    • broadcast
    • reduce
    • reducescatter
    • alltoall

    The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    nccl-bw/${operation}_${msg_size}_timetime (us)NCCL operation lantency with given message size.
    nccl-bw/${operation}_${msg_size}_algbwbandwidth (GB/s)NCCL operation algorithm bandwidth with given message size.
    nccl-bw/${operation}_${msg_size}_busbwbandwidth (GB/s)NCCL operation bus bandwidth with given message size.
    rccl-bw/${operation}_${msg_size}_timetime (us)RCCL operation lantency with given message size.
    rccl-bw/${operation}_${msg_size}_algbwbandwidth (GB/s)RCCL operation algorithm bandwidth with given message size.
    rccl-bw/${operation}_${msg_size}_busbwbandwidth (GB/s)RCCL operation bus bandwidth with given message size.
  • tcp-connectivity
    Test the TCP connectivity between current node and nodes in the hostfile using tcping tools. The following examples illustrate the metrics that are emitted:

    MetricsUnitDescription
    tcp-connectivity/${hostname/ip}_successed_countcountsuccessed times of tcp connections between current node and other nodes
    tcp-connectivity/${hostname/ip}_failed_countcountfailed times of tcp connections between current node and other nodes
    tcp-connectivity/${hostname/ip}_success_ratesuccess rate (successed/total) of tcp connection between current node and other nodes
    tcp-connectivity/${hostname/ip}_time_mintime (ms)mininum latency of tcp connections between current node and other nodes
    tcp-connectivity/${hostname/ip}_time_maxtime (ms)maximum latency of tcp connections between current node and other nodes
    tcp-connectivity/${hostname/ip}_time_avgtime (ms)average latency of tcp connections between current node and other nodes
  • gpcnet-network-test/gpcnet-network-load-test
    Distributed test of the global network performance and congestion using GPCNET tools. The following variations are supported:

    • gpcnet-network-test: Full system network tests in random and natural ring, alltoall and allreduce, at least 2 nodes
    • gpcnet-network-load-test: Select full system network tests run with four congestors to measure network congestion or contention, at least 10 nodes
      • supporting network tests: RR Two-sided Lat (8 B), RR Get Lat (8 B), RR Two-sided BW (131072 B), RR Put BW (131072 B), RR Two-sided BW+Sync (131072 B), Nat Two-sided BW (131072 B), Multiple Allreduce (8 B), Multiple Alltoall (4096 B)
      • supporting congestors: Alltoall (4096 B), Two-sided Incast (4096 B), Put Incast (4096 B), Get Bcast (4096 B)

    The following examples illustrate the metrics that are emitted:

    MetricsUnitDescription
    gpcnet-network-test/rr_two-sided_lat_${stat}time (us)statistical values(min, max, avg, 99%, 99.9%) obtained by all nodes use algorithm 'random ring communication pattern two-side latency' for network testing
    gpcnet-network-test/rr_two-sided+sync_bw_${stat}bandwidth (MiB/s/rank)fstatistical values(min, max, avg, 99%, 99.9%) obtained by all nodes use algorithm 'random ring communication pattern two-side bandwidth with barrier' for network testing
    gpcnet-network-test/multiple_allreduce_time_${stat}time (us)statistical values(min, max, avg, 99%, 99.9%) obtained by all nodes use algorithm 'multiple allreduce bandwidth' for network testing
    gpcnet-network-test/rr_get_lat_${stat}bandwidth (MiB/s/rank)statistical values(min, max, avg, 99%, 99.9%) obtained by all nodes use algorithm 'RR GetLat (8 B)' for network testing
    gpcnet-network-test/rr_two-sided_bw_${stat}bandwidth (MiB/s/rank)statistical values(min, max, avg, 99%, 99.9%) obtained by all nodes use algorithm 'RR Two-sidedBW (131072 B)' for network testing
    gpcnet-network-test/nat_two-sided_bw_${stat}bandwidth (MiB/s/rank)statistical values(min, max, avg, 99%, 99.9%) obtained by all nodes use algorithm 'Nat Two-sidedBW (131072 B)' for network testing
    gpcnet-network-test/multiple_alltoall_bw_${stat}bandwidth (MiB/s/rank)statistical values(min, max, avg, 99%, 99.9%) obtained by all nodes use algorithm 'Multiple Alltoall (4096 B)' for network testing
    gpcnet-network-load-test/rr_two-sided_lat_x_${stat}factor (x)summary about congestion impact factor of the network test algorithm
    gpcnet-network-load-test/rr_two-sided+sync_bw_x_${stat}factor (x)summary about congestion impact factor of the network test algorithm
    gpcnet-network-load-test/multiple_allreduce_x_${stat}factor (x)summary about congestion impact factor of the network test algorithm

Computation-Communication Benchmarks

  • computation-communication-overlap
    Test the performance of single node when communication and computation overlap. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    pytorch-computation-communication-overlap/mul_timetime (ms)Time of communication and mul kernel computation overlap.
    pytorch-computation-communication-overlap/matmul_timetime (ms)Time of communication and matmul kernel computation overlap.
  • sharding-matmul
    Test the performance of large scale matmul operation with multiple GPUs:

    • allreduce: Each GPU will calculate part of the MM calculation, and use AllReduce to merge all data into one tensor.
    • allgather: Each GPU will calculate part of the MM calculation, and use AllGather + Concat to merge all data into one tensor.

    The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    pytorch-sharding-matmul/allreduce_timetime (ms)Time of sharding matmul using allreduce.
    pytorch-sharding-matmul/allgather_timetime (ms)Time of sharding matmul using allgather.

Storage Benchmarks

  • disk-benchmark
    Measure the disk performance through FIO. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    disk-benchmark/${disk_name}_rand_read_write_bssize (bytes)Disk random read write block size.
    disk-benchmark/${disk_name}_rand_read_write_read_iopsIOPSDisk random read write read IOPS.
    disk-benchmark/${disk_name}_rand_read_write_read_lat_ns_95.0time (ns)Disk random read write read latency in 95.0 percentile.
    disk-benchmark/${disk_name}_rand_read_write_read_lat_ns_99.0time (ns)Disk random read write read latency in 99.0 percentile.
    disk-benchmark/${disk_name}_rand_read_write_read_lat_ns_99.9time (ns)Disk random read write read latency in 99.9 percentile.
    disk-benchmark/${disk_name}_rand_read_write_write_iopsIOPSDisk random read write write IOPS.
    disk-benchmark/${disk_name}_rand_read_write_write_lat_ns_95.0time (ns)Disk random read write write latency in 95.0 percentile.
    disk-benchmark/${disk_name}_rand_read_write_write_lat_ns_99.0time (ns)Disk random read write write latency in 99.0 percentile.
    disk-benchmark/${disk_name}_rand_read_write_write_lat_ns_99.9time (ns)Disk random read write write latency in 99.9 percentile.

Model Benchmarks

  • gpt_models
    PyTorch model running training or inference tasks with single or half precision for GPT models including gpt2-small, gpt2-medium, gpt2-large and gpt2-xl. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    gpt_models/pytorch-${model_name}/fp32_train_step_timetime (ms)Train step time with single precision.
    gpt_models/pytorch-${model_name}/fp32_train_throughputthroughput (samples/s)Train throughput with single precision.
    gpt_models/pytorch-${model_name}/fp32_inference_step_timetime (ms)Inference step time with single precision.
    gpt_models/pytorch-${model_name}/fp32_inference_throughputthroughput (samples/s)Inference throughput with single precision.
    gpt_models/pytorch-${model_name}/fp16_train_step_timetime (ms)Train step time with half precision.
    gpt_models/pytorch-${model_name}/fp16_train_throughputthroughput (samples/s)Train throughput with half precision.
    gpt_models/pytorch-${model_name}/fp16_inference_step_timetime (ms)Inference step time with half precision.
    gpt_models/pytorch-${model_name}/fp16_inference_throughputthroughput (samples/s)Inference throughput with half precision.
  • bert_models
    PyTorch model running training or inference tasks with single or half precision for BERT models including bert-base and bert-large. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    bert_models/pytorch-${model_name}/fp32_train_step_timetime (ms)Train step time with single precision.
    bert_models/pytorch-${model_name}/fp32_train_throughputthroughput (samples/s)Train throughput with single precision.
    bert_models/pytorch-${model_name}/fp32_inference_step_timetime (ms)Inference step time with single precision.
    bert_models/pytorch-${model_name}/fp32_inference_throughputthroughput (samples/s)Inference throughput with single precision.
    bert_models/pytorch-${model_name}/fp16_train_step_timetime (ms)Train step time with half precision.
    bert_models/pytorch-${model_name}/fp16_train_throughputthroughput (samples/s)Train throughput with half precision.
    bert_models/pytorch-${model_name}/fp16_inference_step_timetime (ms)Inference step time with half precision.
    bert_models/pytorch-${model_name}/fp16_inference_throughputthroughput (samples/s)Inference throughput with half precision.
  • lstm_models
    PyTorch model running training or inference tasks with single or half precision for one bidirectional LSTM model. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    lstm_models/pytorch-lstm/fp32_train_step_timetime (ms)Train step time with single precision.
    lstm_models/pytorch-lstm/fp32_train_throughputthroughput (samples/s)Train throughput with single precision.
    lstm_models/pytorch-lstm/fp32_inference_step_timetime (ms)Inference step time with single precision.
    lstm_models/pytorch-lstm/fp32_inference_throughputthroughput (samples/s)Inference throughput with single precision.
    lstm_models/pytorch-lstm/fp16_train_step_timetime (ms)Train step time with half precision.
    lstm_models/pytorch-lstm/fp16_train_throughputthroughput (samples/s)Train throughput with half precision.
    lstm_models/pytorch-lstm/fp16_inference_step_timetime (ms)Inference step time with half precision.
    lstm_models/pytorch-lstm/fp16_inference_throughputthroughput (samples/s)Inference throughput with half precision.
  • cnn_models
    PyTorch model running training or inference tasks with single or half precision for CNN models listed in torchvision.models, including:

    • resnet: resnet18, resnet34, resnet50, resnet101, resnet152
    • resnext: resnext50_32x4d, resnext101_32x8d
    • wide_resnet: wide_resnet50_2, wide_resnet101_2
    • densenet: densenet121, densenet169, densenet201, densenet161
    • vgg: vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19_bn, vgg19
    • mnasnet: mnasnet0_5, mnasnet0_75, mnasnet1_0, mnasnet1_3
    • mobilenet: mobilenet_v2
    • shufflenet: shufflenet_v2_x0_5, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x2_0
    • squeezenet: squeezenet1_0, squeezenet1_1
    • others: alexnet, googlenet, inception_v3

    The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    cnn_models/pytorch-${model_name}/fp32_train_step_timetime (ms)Train step time with single precision.
    cnn_models/pytorch-${model_name}/fp32_train_throughputthroughput (samples/s)Train throughput with single precision.
    cnn_models/pytorch-${model_name}/fp32_inference_step_timetime (ms)Inference step time with single precision.
    cnn_models/pytorch-${model_name}/fp32_inference_throughputthroughput (samples/s)Inference throughput with single precision.
    cnn_models/pytorch-${model_name}/fp16_train_step_timetime (ms)Train step time with half precision.
    cnn_models/pytorch-${model_name}/fp16_train_throughputthroughput (samples/s)Train throughput with half precision.
    cnn_models/pytorch-${model_name}/fp16_inference_step_timetime (ms)Inference step time with half precision.
    cnn_models/pytorch-${model_name}/fp16_inference_throughputthroughput (samples/s)Inference throughput with half precision.

Docker-based Benchmarks

  • ort-models
    Run the rocm onnxruntime model training benchmarks packaged in docker superbench/benchmark:rocm4.3.1-onnxruntime1.9.0 which includes Bert-large, Distilbert-base, GPT-2, facebook/Bart-large and Roberta-large. The following examples illustrate the metrics that are emitted:

    NameUnitDescription
    onnxruntime-ort-models/bert_large_uncased_ngpu_1_train_throughputthroughput (samples/s)The throughput of bert large uncased model on 1 GPU.
    onnxruntime-ort-models/bert_large_uncased_ngpu_8_train_throughputthroughput (samples/s)The throughput of bert large uncased model on 8 GPU.
    onnxruntime-ort-models/distilbert_base_uncased_ngpu_1_train_throughputthroughput (samples/s)The throughput of distilbert base uncased model on 1 GPU.
    onnxruntime-ort-models/distilbert_base_uncased_ngpu_8_train_throughputthroughput (samples/s)The throughput of distilbert base uncased model on 8 GPU.
    onnxruntime-ort-models/gpt2_ngpu_1_train_throughputthroughput (samples/s)The throughput of gpt2 model on 1 GPU.
    onnxruntime-ort-models/gpt2_ngpu_8_train_throughputthroughput (samples/s)The throughput of gpt2 model on 8 GPU.
    onnxruntime-ort-models/facebook_bart_large_ngpu_1_train_throughputthroughput (samples/s)The throughput of facebook bart large model on 1 GPU.
    onnxruntime-ort-models/facebook_bart_large_ngpu_8_train_throughputthroughput (samples/s)The throughput of facebook bart large model on 8 GPU.
    onnxruntime-ort-models/roberta_large_ngpu_1_train_throughputthroughput (samples/s)The throughput of roberta large model on 1 GPU.
    onnxruntime-ort-models/roberta_large_ngpu_8_train_throughputthroughput (samples/s)The throughput of roberta large model on 8 GPU.

Workload Metrics

The following metrics are examples of those captured by the Virtual Client when running the SuperBenchmark workload.

Metric NameExample Value (min)Example Value (max)Example Value (avg)Unit
bert_models/pytorch-bert-base/fp16_train_step_time44.9216029047966286.86057925224307201.96287847311863
bert_models/pytorch-bert-base/fp16_train_throughput6.972049207997031373.987827947946427.849846571717746
bert_models/pytorch-bert-base/fp32_train_step_time47.20543313026428361.39744567871096251.49612356031853
bert_models/pytorch-bert-base/fp32_train_throughput5.534098838203878279.6237050739987624.097880131546327
bert_models/pytorch-bert-base/return_code0.00.00.0
bert_models/pytorch-bert-base/return_code:00.00.00.0
bert_models/pytorch-bert-base/return_code:10.00.00.0
bert_models/pytorch-bert-base/return_code:20.00.00.0
bert_models/pytorch-bert-base/return_code:30.00.00.0
bert_models/pytorch-bert-base/return_code:40.00.00.0
bert_models/pytorch-bert-base/return_code:50.00.00.0
bert_models/pytorch-bert-base/return_code:60.00.00.0
bert_models/pytorch-bert-base/return_code:70.00.00.0
bert_models/pytorch-bert-large/fp16_train_step_time203.466139562428206.25331059098245204.63056197638313
bert_models/pytorch-bert-large/fp16_train_throughput155.310178377294157.3466631563798156.47806609792213
bert_models/pytorch-bert-large/fp32_train_step_time304.83736431598666314.97883063554766308.7339255611102
bert_models/pytorch-bert-large/fp32_train_throughput101.65049135797402104.99603397183249103.69163683795266
bert_models/pytorch-bert-large/return_code:00.00.00.0
bert_models/pytorch-bert-large/return_code:10.00.00.0
bert_models/pytorch-bert-large/return_code:20.00.00.0
bert_models/pytorch-bert-large/return_code:30.00.00.0
bert_models/pytorch-bert-large/return_code:40.00.00.0
bert_models/pytorch-bert-large/return_code:50.00.00.0
bert_models/pytorch-bert-large/return_code:60.00.00.0
bert_models/pytorch-bert-large/return_code:70.00.00.0
computation-communication-overlap/matmul_time:0124.91917255175777134.1622295126954128.05827917765303
computation-communication-overlap/matmul_time:1124.91912217480473133.51491016210938127.95046343929033
computation-communication-overlap/matmul_time:2124.91913861621096134.16198100634768128.05830186197918
computation-communication-overlap/matmul_time:3124.91915493115214133.51495779492195127.950445782959
computation-communication-overlap/matmul_time:4124.91920877197282134.1613300390625128.05821213769537
computation-communication-overlap/matmul_time:5124.91912800097671133.51496286474606127.84491153068034
computation-communication-overlap/matmul_time:6124.91904205419924134.16193414843748128.05822409733069
computation-communication-overlap/matmul_time:7124.91913599414062133.51493672265625127.95023592700191
computation-communication-overlap/mul_time:045.0799601796876346.0554587880859245.406273460205138
computation-communication-overlap/mul_time:145.0799447265626346.05545131347654945.40627131144208
computation-communication-overlap/mul_time:245.0799393276366546.0554463330078445.40626473120116
computation-communication-overlap/mul_time:345.079946477539146.0554688364258645.40627796337889
computation-communication-overlap/mul_time:445.07992046191411746.0554802861328245.40627255712889
computation-communication-overlap/mul_time:545.0799508364256946.0555047236326245.40627432942705
computation-communication-overlap/mul_time:645.07994209912125746.0554669140624845.40626869962565
computation-communication-overlap/mul_time:745.0799411010742746.0554650795896945.406253526123048
computation-communication-overlap/return_code:00.00.00.0
computation-communication-overlap/return_code:10.00.00.0
computation-communication-overlap/return_code:20.00.00.0
computation-communication-overlap/return_code:30.00.00.0
computation-communication-overlap/return_code:40.00.00.0
computation-communication-overlap/return_code:50.00.00.0
computation-communication-overlap/return_code:60.00.00.0
computation-communication-overlap/return_code:70.00.00.0
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_128_n_32_transa_0_transb_1_time:0113.1502113.5731113.28080166666666
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_128_n_32_transa_0_transb_1_time:1113.15234113.52696113.36456833333334
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_128_n_32_transa_0_transb_1_time:2113.19463999999999113.63356999999999113.36563666666666
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_128_n_32_transa_0_transb_1_time:3113.2748113.56794000000001113.43090833333334
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_128_n_32_transa_0_transb_1_time:4113.25257113.6575113.40207833333334
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_128_n_32_transa_0_transb_1_time:5113.29926113.63622113.42657833333333
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_128_n_32_transa_0_transb_1_time:6113.18889113.74152113.37978333333332
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_128_n_32_transa_0_transb_1_time:7113.2762113.42837113.31880833333334
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_64_n_32_transa_0_transb_1_time:072.42144673.62654173.12794016666668
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_64_n_32_transa_0_transb_1_time:172.7871373.33490973.016355
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_64_n_32_transa_0_transb_1_time:272.21559373.08297672.80132233333335
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_64_n_32_transa_0_transb_1_time:372.43061573.78010472.92495666666666
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_64_n_32_transa_0_transb_1_time:471.94231473.08668372.63142816666667
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_64_n_32_transa_0_transb_1_time:571.90401673.24226672.38534
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_64_n_32_transa_0_transb_1_time:672.03807973.39065972.85798766666666
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_128_m_64_n_32_transa_0_transb_1_time:772.40027273.28940272.968667
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_3_m_64_n_32_transa_0_transb_1_time:012.06358112.55069412.301183166666667
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_3_m_64_n_32_transa_0_transb_1_time:112.12079712.52936712.323395499999999
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_3_m_64_n_32_transa_0_transb_1_time:212.15037612.59012712.391484333333333
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_3_m_64_n_32_transa_0_transb_1_time:312.17629412.46147412.288187166666665
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_3_m_64_n_32_transa_0_transb_1_time:412.12661112.49618212.327343166666666
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_3_m_64_n_32_transa_0_transb_1_time:512.18013812.6418512.350372
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_3_m_64_n_32_transa_0_transb_1_time:612.29215112.45336112.376233499999998
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_3_m_64_n_32_transa_0_transb_1_time:712.05091712.43057999999999912.311228999999999
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_128_n_32_transa_0_transb_1_time:064.76978864.96845464.82417916666667
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_128_n_32_transa_0_transb_1_time:164.85866265.19166465.03132583333333
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_128_n_32_transa_0_transb_1_time:264.87452165.14817864.99576350000001
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_128_n_32_transa_0_transb_1_time:364.93641965.15044965.07999566666668
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_128_n_32_transa_0_transb_1_time:464.88271165.32865665.03074199999999
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_128_n_32_transa_0_transb_1_time:564.93919665.14822365.074586
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_128_n_32_transa_0_transb_1_time:664.87677865.06956664.98883466666666
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_128_n_32_transa_0_transb_1_time:764.9399400000000165.15480865.05331050000001
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_64_n_32_transa_1_transb_0_time:037.55533837.88636537.68242733333333
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_64_n_32_transa_1_transb_0_time:138.22997438.47779838.324844166666668
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_64_n_32_transa_1_transb_0_time:238.14962538.46737738.267830499999998
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_64_n_32_transa_1_transb_0_time:338.25752838.44229438.338148
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_64_n_32_transa_1_transb_0_time:438.04011238.36848538.23796066666667
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_64_n_32_transa_1_transb_0_time:537.95710838.35585838.18870033333334
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_64_n_32_transa_1_transb_0_time:638.07744338.44059238.27283933333333
cublas-function/name_cublascgemm3mstridedbatched_batchcount_544_k_64_m_64_n_32_transa_1_transb_0_time:738.05983838.33636138.22762683333333
cublas-function/name_cublascgemm_k_32_m_2048_n_512_transa_1_transb_0_time:021.66941821.86488121.7927535
cublas-function/name_cublascgemm_k_32_m_2048_n_512_transa_1_transb_0_time:121.7370121.96548821.80511233333333
cublas-function/name_cublascgemm_k_32_m_2048_n_512_transa_1_transb_0_time:221.65962121.81987621.737663833333334
cublas-function/name_cublascgemm_k_32_m_2048_n_512_transa_1_transb_0_time:321.75879921.98640921.857205000000005
cublas-function/name_cublascgemm_k_32_m_2048_n_512_transa_1_transb_0_time:421.62466222.09962321.794980499999999
cublas-function/name_cublascgemm_k_32_m_2048_n_512_transa_1_transb_0_time:521.68295821.80521821.74106
cublas-function/name_cublascgemm_k_32_m_2048_n_512_transa_1_transb_0_time:621.67959921.85115921.794716166666665
cublas-function/name_cublascgemm_k_32_m_2048_n_512_transa_1_transb_0_time:721.75063821.98461621.820670333333337
cublas-function/name_cublascgemm_k_32_m_512_n_2048_transa_1_transb_0_time:021.6921821.80283321.75483433333333
cublas-function/name_cublascgemm_k_32_m_512_n_2048_transa_1_transb_0_time:121.67852721.75118121.731092500000004
cublas-function/name_cublascgemm_k_32_m_512_n_2048_transa_1_transb_0_time:221.68129121.74063421.706030166666669
cublas-function/name_cublascgemm_k_32_m_512_n_2048_transa_1_transb_0_time:321.6679921.91849621.76981033333333
cublas-function/name_cublascgemm_k_32_m_512_n_2048_transa_1_transb_0_time:421.60553521.81271621.699059166666669
cublas-function/name_cublascgemm_k_32_m_512_n_2048_transa_1_transb_0_time:521.66926621.83408221.7293715
cublas-function/name_cublascgemm_k_32_m_512_n_2048_transa_1_transb_0_time:621.60116621.90886099999999921.708056999999998
cublas-function/name_cublascgemm_k_32_m_512_n_2048_transa_1_transb_0_time:721.66575821.87065621.762912333333334
cublas-function/name_cublascgemm_k_32_m_512_n_512_transa_1_transb_0_time:011.3134911.58405611.408157833333334
cublas-function/name_cublascgemm_k_32_m_512_n_512_transa_1_transb_0_time:111.41536611.70681311.534488833333335
cublas-function/name_cublascgemm_k_32_m_512_n_512_transa_1_transb_0_time:211.26383311.7309811.597118833333335
cublas-function/name_cublascgemm_k_32_m_512_n_512_transa_1_transb_0_time:311.26191211.82935311.525427333333335
cublas-function/name_cublascgemm_k_32_m_512_n_512_transa_1_transb_0_time:411.231111.55417511.387495000000002
cublas-function/name_cublascgemm_k_32_m_512_n_512_transa_1_transb_0_time:511.45475211.5991211.541473000000002
cublas-function/name_cublascgemm_k_32_m_512_n_512_transa_1_transb_0_time:611.27781211.79136411.534079499999999
cublas-function/name_cublascgemm_k_32_m_512_n_512_transa_1_transb_0_time:711.21321711.58319411.423028333333335
cublas-function/name_cublascgemm_k_32_m_640_n_1280_transa_1_transb_0_time:018.40492518.55288000000000318.476811333333335
cublas-function/name_cublascgemm_k_32_m_640_n_1280_transa_1_transb_0_time:118.41515918.68677518.556088
cublas-function/name_cublascgemm_k_32_m_640_n_1280_transa_1_transb_0_time:218.36139718.62938118.504256333333335
cublas-function/name_cublascgemm_k_32_m_640_n_1280_transa_1_transb_0_time:318.45824418.59994218.541639
cublas-function/name_cublascgemm_k_32_m_640_n_1280_transa_1_transb_0_time:418.44000400000000318.62202418.519766
cublas-function/name_cublascgemm_k_32_m_640_n_1280_transa_1_transb_0_time:518.36627918.57417818.481699166666667
cublas-function/name_cublascgemm_k_32_m_640_n_1280_transa_1_transb_0_time:618.40492218.62226818.494112333333335
cublas-function/name_cublascgemm_k_32_m_640_n_1280_transa_1_transb_0_time:718.31905618.63070618.495031833333333
cublas-function/name_cublascgemm_k_32_m_896_n_1792_transa_1_transb_0_time:032.28756432.3772132.346927666666669
cublas-function/name_cublascgemm_k_32_m_896_n_1792_transa_1_transb_0_time:132.28648332.5536332.384691
cublas-function/name_cublascgemm_k_32_m_896_n_1792_transa_1_transb_0_time:232.29461532.43873532.354474333333339
cublas-function/name_cublascgemm_k_32_m_896_n_1792_transa_1_transb_0_time:332.28775232.43118632.35603666666666
cublas-function/name_cublascgemm_k_32_m_896_n_1792_transa_1_transb_0_time:432.25343632.47480732.342323666666668
cublas-function/name_cublascgemm_k_32_m_896_n_1792_transa_1_transb_0_time:532.39000832.46586100000000732.42295483333333
cublas-function/name_cublascgemm_k_32_m_896_n_1792_transa_1_transb_0_time:632.29124332.49608232.381914333333337
cublas-function/name_cublascgemm_k_32_m_896_n_1792_transa_1_transb_0_time:732.31011200000000732.44663232.37400183333333
cublas-function/name_cublasgemmex_datatype_float_k_1000_m_4000_n_224_transa_0_transb_0_use_tensor_core_false_time:018.63791318.91073918.805563166666667
cublas-function/name_cublasgemmex_datatype_float_k_1000_m_4000_n_224_transa_0_transb_0_use_tensor_core_false_time:118.61969518.93569818.793263166666667
cublas-function/name_cublasgemmex_datatype_float_k_1000_m_4000_n_224_transa_0_transb_0_use_tensor_core_false_time:218.61343418.95643818.810571166666667
cublas-function/name_cublasgemmex_datatype_float_k_1000_m_4000_n_224_transa_0_transb_0_use_tensor_core_false_time:318.68355818.95138318.8162095
cublas-function/name_cublasgemmex_datatype_float_k_1000_m_4000_n_224_transa_0_transb_0_use_tensor_core_false_time:418.6571318.86542418.759739
cublas-function/name_cublasgemmex_datatype_float_k_1000_m_4000_n_224_transa_0_transb_0_use_tensor_core_false_time:518.7200618.85632918.789843833333334
cublas-function/name_cublasgemmex_datatype_float_k_1000_m_4000_n_224_transa_0_transb_0_use_tensor_core_false_time:618.65340218.841418.763620166666667
cublas-function/name_cublasgemmex_datatype_float_k_1000_m_4000_n_224_transa_0_transb_0_use_tensor_core_false_time:718.69021818.97693718.8289865
cublas-function/name_cublasgemmex_datatype_float_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:022.79166500000000323.21891322.994049333333334
cublas-function/name_cublasgemmex_datatype_float_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:122.95456823.35686123.139998333333336
cublas-function/name_cublasgemmex_datatype_float_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:222.90472723.30710723.101424166666665
cublas-function/name_cublasgemmex_datatype_float_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:322.90253123.21784923.076562166666663
cublas-function/name_cublasgemmex_datatype_float_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:423.05003823.37121823.21418266666667
cublas-function/name_cublasgemmex_datatype_float_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:523.12574723.35398423.207172666666666
cublas-function/name_cublasgemmex_datatype_float_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:622.69387923.13855923.021961333333335
cublas-function/name_cublasgemmex_datatype_float_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:722.90889323.16481223.0713145
cublas-function/name_cublasgemmex_datatype_half_k_1000_m_4000_n_224_transa_1_transb_0_use_tensor_core_true_time:0124.99698132.95016127.94383
cublas-function/name_cublasgemmex_datatype_half_k_1000_m_4000_n_224_transa_1_transb_0_use_tensor_core_true_time:1124.73411126.40263125.30798333333333
cublas-function/name_cublasgemmex_datatype_half_k_1000_m_4000_n_224_transa_1_transb_0_use_tensor_core_true_time:2125.03524128.84956126.149285
cublas-function/name_cublasgemmex_datatype_half_k_1000_m_4000_n_224_transa_1_transb_0_use_tensor_core_true_time:3124.80798125.60825125.26699166666667
cublas-function/name_cublasgemmex_datatype_half_k_1000_m_4000_n_224_transa_1_transb_0_use_tensor_core_true_time:4124.71254127.7872125.82094333333333
cublas-function/name_cublasgemmex_datatype_half_k_1000_m_4000_n_224_transa_1_transb_0_use_tensor_core_true_time:5124.83216125.98274125.23543166666666
cublas-function/name_cublasgemmex_datatype_half_k_1000_m_4000_n_224_transa_1_transb_0_use_tensor_core_true_time:6125.12422133.45931127.68385666666666
cublas-function/name_cublasgemmex_datatype_half_k_1000_m_4000_n_224_transa_1_transb_0_use_tensor_core_true_time:7124.96816126.26232125.33655499999999
cublas-function/name_cublasgemmex_datatype_half_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:0126.73955138.14419133.77800166666669
cublas-function/name_cublasgemmex_datatype_half_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:1126.2757137.97529129.996325
cublas-function/name_cublasgemmex_datatype_half_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:2126.74078137.5417130.47226666666669
cublas-function/name_cublasgemmex_datatype_half_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:3125.81039135.2722127.76204999999999
cublas-function/name_cublasgemmex_datatype_half_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:4126.69252137.93747132.11799833333334
cublas-function/name_cublasgemmex_datatype_half_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:5126.71193138.18089135.10967833333334
cublas-function/name_cublasgemmex_datatype_half_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:6126.19409137.16478129.35203666666667
cublas-function/name_cublasgemmex_datatype_half_k_4000_m_1000_n_224_transa_0_transb_0_use_tensor_core_false_time:7126.08915999999999135.27791127.80049333333334
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_224_m_64_n_224_transa_0_transb_0_use_tensor_core_true_time:0141.48361141.71545141.60326
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_224_m_64_n_224_transa_0_transb_0_use_tensor_core_true_time:1141.30208141.91832141.59414833333333
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_224_m_64_n_224_transa_0_transb_0_use_tensor_core_true_time:2141.09747141.8533141.49698999999999
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_224_m_64_n_224_transa_0_transb_0_use_tensor_core_true_time:3141.49727142.00213141.78461666666667
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_224_m_64_n_224_transa_0_transb_0_use_tensor_core_true_time:4141.31918141.72713141.53211166666669
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_224_m_64_n_224_transa_0_transb_0_use_tensor_core_true_time:5141.26917141.66486141.45829833333336
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_224_m_64_n_224_transa_0_transb_0_use_tensor_core_true_time:6141.25491141.85207141.646635
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_224_m_64_n_224_transa_0_transb_0_use_tensor_core_true_time:7141.53578141.84118141.64705833333336
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_64_m_224_n_224_transa_0_transb_0_use_tensor_core_true_time:099.3650499.69979399.51787233333333
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_64_m_224_n_224_transa_0_transb_0_use_tensor_core_true_time:199.54885599.83897499.69164083333334
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_64_m_224_n_224_transa_0_transb_0_use_tensor_core_true_time:299.61655899.84383799.69539466666667
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_64_m_224_n_224_transa_0_transb_0_use_tensor_core_true_time:399.64363799.85416999.74750583333334
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_64_m_224_n_224_transa_0_transb_0_use_tensor_core_true_time:499.52672199.83834299.716492
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_64_m_224_n_224_transa_0_transb_0_use_tensor_core_true_time:599.58796799.8120699.72897166666667
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_64_m_224_n_224_transa_0_transb_0_use_tensor_core_true_time:699.56647499.87347699.69902733333334
cublas-function/name_cublasgemmstridedbatchedex_batchcount_160_datatype_half_k_64_m_224_n_224_transa_0_transb_0_use_tensor_core_true_time:799.59675299.81792899.71682016666667
cublas-function/name_cublassgemm_k_1024_m_1024_n_7168_transa_1_transb_0_time:0888.09485963.13637916.1654416666667
cublas-function/name_cublassgemm_k_1024_m_1024_n_7168_transa_1_transb_0_time:1880.5754902.21527888.61487
cublas-function/name_cublassgemm_k_1024_m_1024_n_7168_transa_1_transb_0_time:2880.49301935.46902900.415465
cublas-function/name_cublassgemm_k_1024_m_1024_n_7168_transa_1_transb_0_time:3881.87991900.87385890.3336283333333
cublas-function/name_cublassgemm_k_1024_m_1024_n_7168_transa_1_transb_0_time:4889.4206800000001910.28188898.9274599999999
cublas-function/name_cublassgemm_k_1024_m_1024_n_7168_transa_1_transb_0_time:5879.49043896.70566886.7843616666665
cublas-function/name_cublassgemm_k_1024_m_1024_n_7168_transa_1_transb_0_time:6893.81145960.55522913.502915
cublas-function/name_cublassgemm_k_1024_m_1024_n_7168_transa_1_transb_0_time:7883.81064905.73327890.1238649999999
cublas-function/name_cublassgemmstridedbatched_batchcount_160_k_224_m_64_n_224_transa_0_transb_0_time:0141.50558141.80538141.60270666666669
cublas-function/name_cublassgemmstridedbatched_batchcount_160_k_224_m_64_n_224_transa_0_transb_0_time:1141.23597141.83432141.5282983333333
cublas-function/name_cublassgemmstridedbatched_batchcount_160_k_224_m_64_n_224_transa_0_transb_0_time:2141.23346141.77578141.54340833333334
cublas-function/name_cublassgemmstridedbatched_batchcount_160_k_224_m_64_n_224_transa_0_transb_0_time:3141.50979999999999142.04881141.793665
cublas-function/name_cublassgemmstridedbatched_batchcount_160_k_224_m_64_n_224_transa_0_transb_0_time:4141.25271141.78397999999999141.53754333333334
cublas-function/name_cublassgemmstridedbatched_batchcount_160_k_224_m_64_n_224_transa_0_transb_0_time:5141.17042141.86512141.49822666666666
cublas-function/name_cublassgemmstridedbatched_batchcount_160_k_224_m_64_n_224_transa_0_transb_0_time:6141.53064141.97602141.72193833333334
cublas-function/name_cublassgemmstridedbatched_batchcount_160_k_224_m_64_n_224_transa_0_transb_0_time:7141.47393142.00744141.67315
cublas-function/name_cublassgemmstridedbatched_batchcount_512_k_224_m_64_n_224_transa_0_transb_0_time:0436.7874437.87871437.1637533333333
cublas-function/name_cublassgemmstridedbatched_batchcount_512_k_224_m_64_n_224_transa_0_transb_0_time:1436.7638437.76444437.0509016666667
cublas-function/name_cublassgemmstridedbatched_batchcount_512_k_224_m_64_n_224_transa_0_transb_0_time:2436.74471437.85488437.1689666666666
cublas-function/name_cublassgemmstridedbatched_batchcount_512_k_224_m_64_n_224_transa_0_transb_0_time:3437.24612437.94029437.53083666666665
cublas-function/name_cublassgemmstridedbatched_batchcount_512_k_224_m_64_n_224_transa_0_transb_0_time:4436.83899437.70129437.3024833333334
cublas-function/name_cublassgemmstridedbatched_batchcount_512_k_224_m_64_n_224_transa_0_transb_0_time:5436.61882437.85636999999999437.2927966666667
cublas-function/name_cublassgemmstridedbatched_batchcount_512_k_224_m_64_n_224_transa_0_transb_0_time:6437.0036439.0005437.50746333333339
cublas-function/name_cublassgemmstridedbatched_batchcount_512_k_224_m_64_n_224_transa_0_transb_0_time:7436.88984437.42201437.0986249999999
cublas-function/return_code:00.00.00.0
cublas-function/return_code:10.00.00.0
cublas-function/return_code:20.00.00.0
cublas-function/return_code:30.00.00.0
cublas-function/return_code:40.00.00.0
cublas-function/return_code:50.00.00.0
cublas-function/return_code:60.00.00.0
cublas-function/return_code:70.00.00.0
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_0_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_false_time:098.897146100.11445699.27759283333335
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_0_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_false_time:198.838041100.345999.36282933333333
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_0_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_false_time:298.95689199.94524399.301897
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_0_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_false_time:398.803667100.254799.29956416666666
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_0_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_false_time:498.72370599999999100.09672199.32875133333335
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_0_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_false_time:599.046737100.3970799.62480083333333
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_0_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_false_time:698.83335299.5764279999999999.11962533333333
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_0_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_false_time:798.7716899.48437499.17583116666667
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_2_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_true_time:099.003094100.3889500000000199.342777
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_2_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_true_time:198.69342999999999100.03275399.24435166666668
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_2_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_true_time:298.95378599.92484899.36696866666667
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_2_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_true_time:398.84662199.90238299.27426083333335
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_2_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_true_time:498.72703200000001100.13352999.27913083333333
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_2_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_true_time:598.956783100.2238699.61754283333335
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_2_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_true_time:698.9409920000000199.54802499.11557933333335
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_1024_14_14]inputstride[200704_196_14_1]inputtype_2_mode_1_outputdims[32_256_14_14]outputstride[50176_196_14_1]pada[0_0]_tensorop_true_time:798.9008080000000199.11496698.99175983333335
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_2_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_true_time:023.97492225.3540624.903619833333335
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_2_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_true_time:123.92963125.54646725.027396166666667
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_2_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_true_time:224.02795099999999925.58243324.7997855
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_2_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_true_time:323.92823425.24432999999999924.64035366666667
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_2_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_true_time:423.99097625.30467624.932436666666665
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_2_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_true_time:524.11778325.13225824.784836666666668
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_2_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_true_time:623.98769525.29329724.59107933333333
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_2_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_true_time:724.40971825.97388325.065641833333335
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:0286.69199000000006312.06901295.61654666666666
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:1283.41238000000006291.6127286.96156666666669
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:2285.3074298.35569289.795405
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:3283.04053289.5436286.576165
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:4286.68294291.40693289.04923333333337
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:5283.35194289.2161285.81301333333337
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:6288.24766301.41312292.877235
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:7284.81372999999999291.63749287.01415000000005
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:0286.11574304.05358294.013795
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:1283.39573290.84387286.46210666666669
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:2285.13589298.68152999999998289.62677833333336
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:3283.60374289.26202286.7411866666667
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:4286.99417291.92935289.31070833333339
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:5283.11174289.13318285.70940833333335
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:6288.61318303.50888999999997292.95292666666668
cudnn-function/name_cudnnconvolutionbackwarddata_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:7285.4895290.40579286.893795
cudnn-function/name_cudnnconvolutionbackwarddata_algo_4_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_0_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_false_time:032.4573832.81986399999999932.649939999999997
cudnn-function/name_cudnnconvolutionbackwarddata_algo_4_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_0_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_false_time:132.4084232.66916832.57155383333333
cudnn-function/name_cudnnconvolutionbackwarddata_algo_4_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_0_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_false_time:232.33701399999999932.86640532.58065200000001
cudnn-function/name_cudnnconvolutionbackwarddata_algo_4_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_0_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_false_time:332.37177800000000932.73480232.60792766666667
cudnn-function/name_cudnnconvolutionbackwarddata_algo_4_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_0_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_false_time:432.46024699999999832.5551632.49840183333333
cudnn-function/name_cudnnconvolutionbackwarddata_algo_4_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_0_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_false_time:532.43245432.90882600000000832.639814666666669
cudnn-function/name_cudnnconvolutionbackwarddata_algo_4_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_0_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_false_time:632.45178332.73708132.62559866666667
cudnn-function/name_cudnnconvolutionbackwarddata_algo_4_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_32_14_14]inputstride[6272_196_14_1]inputtype_0_mode_1_outputdims[32_128_14_14]outputstride[25088_196_14_1]pada[1_1]_tensorop_false_time:732.46942732.86946000000000732.603407
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_0_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:052.45254399999999953.83996252.94054366666666
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_0_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:152.35314299999999953.88157152.99805116666667
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_0_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:252.71137153.72851753.06997116666667
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_0_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:352.71826753.61986453.08352183333333
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_0_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:452.38963554.23895253.11242166666667
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_0_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:552.56109199999999853.62324853.20796516666667
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_0_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:652.65741699999999853.32256952.985032
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_0_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:752.57826153.19213952.88673400000001
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:0103.28532999999999104.19723103.72608500000001
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:1103.14918103.81811103.58045333333333
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:2103.10739000000001104.08642103.44405166666668
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:3103.27082104.27927103.87550833333335
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:4102.82226104.38625103.53797666666667
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:5102.87612999999999104.41082999999999103.69927499999999
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:6103.17764104.84138103.79870166666668
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:7103.48083104.09469103.80397
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:0102.95828999999999104.76194103.76726000000001
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:1103.04781103.88047999999999103.43968500000001
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:2103.20629000000001104.15634999999999103.59112999999998
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:3103.16923104.07918103.59432500000001
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:4102.9342104.27656103.53621333333335
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:5102.98955104.2204103.73826000000001
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:6103.08042104.40653103.76822499999999
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:7103.37392104.49996999999999103.95866000000001
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:084.87109485.77873685.32086149999999
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:184.98438885.9876640000000185.4923085
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:285.18158385.70922285.53070050000001
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:384.93114585.56462585.2146445
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:484.98753186.12186585.41115483333334
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:584.96419785.3817409999999985.173823
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:685.0432680000000185.55253385.29111
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:784.87821885.5108785.24390783333333
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:0374.00893398.4525384.599355
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:1372.56185381.89329375.9916616666667
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:2372.36305000000007389.38354377.647195
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:3372.07078380.38815375.6002633333333
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:4374.78021381.29504378.03609166666669
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:5369.60239379.40087374.42107166666667
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:6376.28265999999999397.48848999999998382.381235
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:7373.19208999999997382.53282375.82836
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:0374.60325395.07293384.35002333333338
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:1371.87940000000006381.26268000000007375.766645
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:2372.16082391.08086378.288295
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:3372.20415379.63619375.5568083333333
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:4376.23749381.93471378.45376333333328
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:5370.20596379.10451374.51100333333337
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:6376.7349394.53245999999998382.3466716666667
cudnn-function/name_cudnnconvolutionbackwardfilter_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:7373.10197382.1483375.52106499999999
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:079.2950579.8435289999999979.55798583333334
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:179.37007680.22175179.662027
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:279.310280.21894679.58912149999999
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:379.4708840000000179.67175179.59436166666666
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:479.3764710000000180.09645779.70541733333333
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:579.52339280.0440579.73800916666667
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:679.28024279.913479.59506833333333
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_0_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_false_time:779.40459279.73581879.5726745
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:079.2842979.84039879.54307983333334
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:179.24922980.1688660000000179.58339983333333
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:279.46923579.84175679.67081383333333
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:379.43826679.84551279.64765566666667
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:479.46045380.21036779.80648833333334
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:579.51531480.03020379.70997566666667
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:679.4983070000000179.78135179.62396299999999
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[1024_256_1_1]filterstridea[1_1]inputdims[32_256_14_14]inputstride[50176_196_14_1]inputtype_2_mode_1_outputdims[32_1024_14_14]outputstride[200704_196_14_1]pada[0_0]_tensorop_true_time:779.34310379.81105979.57136183333334
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:055.62635256.373155.959444166666667
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:155.85475256.62825956.132445499999999
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:255.64723956.1167855.9364175
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:355.93892356.64450256.3239235
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:455.62850956.61741756.253504166666669
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:555.83219456.82117656.350377
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:655.85715556.31786356.064628666666667
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_2_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_true_time:755.89733899999999856.27193556.082216499999997
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:0280.36133298.96247287.9489483333333
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:1278.51468286.41778281.32612166666669
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:2279.12944290.73091282.86751
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:3277.47723283.09668280.46655000000006
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:4281.96747286.52072283.48278999999999
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:5277.71227284.26514280.1258583333333
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:6282.28105293.95574000000007286.138955
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_0_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_false_time:7279.21643284.71714280.78393
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:0280.48402297.73650000000006287.61147666666667
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:1278.51189999999999285.75304281.149745
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:2279.38165999999998292.71825283.43276499999998
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:3277.61681284.11545280.7962883333334
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:4281.51338286.18853283.3503216666667
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:5277.76589283.66995000000005280.09838333333337
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:6282.28303999999999297.7684286.6985966666667
cudnn-function/name_cudnnconvolutionforward_algo_1_arraylength_2_convtype_0_dilationa_[1_1]filterdims[512_512_3_3]filterstridea[1_1]inputdims[32_512_14_14]inputstride[100352_196_14_1]inputtype_2_mode_1_outputdims[32_512_14_14]outputstride[100352_196_14_1]pada[1_1]_tensorop_true_time:7279.12564000000006284.71834280.7541166666667
cudnn-function/name_cudnnconvolutionforward_algo_6_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:036.6627237.21227736.934237833333337
cudnn-function/name_cudnnconvolutionforward_algo_6_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:136.680437.44949437.016225666666667
cudnn-function/name_cudnnconvolutionforward_algo_6_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:236.71247837.1207736.92553683333333
cudnn-function/name_cudnnconvolutionforward_algo_6_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:336.78074700000000837.20251836.9789695
cudnn-function/name_cudnnconvolutionforward_algo_6_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:436.68428337.41513099999999837.03319833333334
cudnn-function/name_cudnnconvolutionforward_algo_6_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:536.8983537.34446000000000837.13333266666667
cudnn-function/name_cudnnconvolutionforward_algo_6_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:636.8932837.21246100000000837.09213483333333
cudnn-function/name_cudnnconvolutionforward_algo_6_arraylength_2_convtype_0_dilationa_[1_1]filterdims[32_128_3_3]filterstridea[1_1]inputdims[32_128_14_14]inputstride[25088_196_14_1]inputtype_0_mode_1_outputdims[32_32_14_14]outputstride[6272_196_14_1]pada[1_1]_tensorop_false_time:736.67683237.20052136.95109333333334
cudnn-function/return_code:00.00.00.0
cudnn-function/return_code:10.00.00.0
cudnn-function/return_code:20.00.00.0
cudnn-function/return_code:30.00.00.0
cudnn-function/return_code:40.00.00.0
cudnn-function/return_code:50.00.00.0
cudnn-function/return_code:60.00.00.0
cudnn-function/return_code:70.00.00.0
densenet_models/pytorch-densenet169/fp16_train_step_time133.83819329738618555.9085130691528401.83629462855506
densenet_models/pytorch-densenet169/fp16_train_throughput57.56541168063091239.2000081906667119.74691628345579
densenet_models/pytorch-densenet169/fp32_train_step_time142.33385932445527616.386833190918445.73356583751896
densenet_models/pytorch-densenet169/fp32_train_throughput51.91698154662019224.91214886651253111.00711266121495
densenet_models/pytorch-densenet169/return_code0.00.00.0
densenet_models/pytorch-densenet169/return_code:00.00.00.0
densenet_models/pytorch-densenet169/return_code:10.00.00.0
densenet_models/pytorch-densenet169/return_code:20.00.00.0
densenet_models/pytorch-densenet169/return_code:30.00.00.0
densenet_models/pytorch-densenet169/return_code:40.00.00.0
densenet_models/pytorch-densenet169/return_code:50.00.00.0
densenet_models/pytorch-densenet169/return_code:60.00.00.0
densenet_models/pytorch-densenet169/return_code:70.00.00.0
densenet_models/pytorch-densenet201/fp16_train_step_time163.62678456306458846.3730449676514523.7491532048234
densenet_models/pytorch-densenet201/fp16_train_throughput42.43202766185742195.659529518777295.54036577037239
densenet_models/pytorch-densenet201/fp32_train_step_time173.68286645412446781.9243693351746562.8373178437228
densenet_models/pytorch-densenet201/fp32_train_throughput40.925710830055518184.317489199925889.89816653034312
densenet_models/pytorch-densenet201/return_code0.00.00.0
densenet_models/pytorch-densenet201/return_code:00.00.00.0
densenet_models/pytorch-densenet201/return_code:10.00.00.0
densenet_models/pytorch-densenet201/return_code:20.00.00.0
densenet_models/pytorch-densenet201/return_code:30.00.00.0
densenet_models/pytorch-densenet201/return_code:40.00.00.0
densenet_models/pytorch-densenet201/return_code:50.00.00.0
densenet_models/pytorch-densenet201/return_code:60.00.00.0
densenet_models/pytorch-densenet201/return_code:70.00.00.0
gemm-flops/bf16_tc_flops:0242090.0265192.0256069.16666666667
gemm-flops/bf16_tc_flops:1260007.0267449.0264553.8333333333
gemm-flops/bf16_tc_flops:2255183.0267143.0262783.5
gemm-flops/bf16_tc_flops:3261419.0267710.0264319.8333333333
gemm-flops/bf16_tc_flops:4259160.0264452.0261865.16666666667
gemm-flops/bf16_tc_flops:5261768.0269533.0265895.1666666667
gemm-flops/bf16_tc_flops:6245322.0263075.0257522.83333333335
gemm-flops/bf16_tc_flops:7259195.0266390.0264186.8333333333
gemm-flops/fp16_flops:033780.433914.033877.166666666664
gemm-flops/fp16_flops:133850.933911.633888.46666666667
gemm-flops/fp16_flops:233700.933908.833837.78333333333
gemm-flops/fp16_flops:333754.233910.033812.566666666666
gemm-flops/fp16_flops:433765.533914.133843.066666666666
gemm-flops/fp16_flops:533822.133899.433866.0
gemm-flops/fp16_flops:633637.433910.733855.51666666667
gemm-flops/fp16_flops:733791.533912.633874.99999999999
gemm-flops/fp16_tc_flops:0258756.0280001.0270489.5
gemm-flops/fp16_tc_flops:1274408.0281567.0278977.3333333333
gemm-flops/fp16_tc_flops:2271888.0282078.0277691.6666666667
gemm-flops/fp16_tc_flops:3274942.0282733.0278512.6666666667
gemm-flops/fp16_tc_flops:4272963.0278453.0276253.5
gemm-flops/fp16_tc_flops:5275741.0283778.0280191.6666666667
gemm-flops/fp16_tc_flops:6262348.0277369.0272209.6666666667
gemm-flops/fp16_tc_flops:7273979.0281014.0278726.0
gemm-flops/fp32_flops:018271.718375.918347.100000000002
gemm-flops/fp32_flops:118363.618376.018370.516666666666
gemm-flops/fp32_flops:218281.818374.818344.483333333334
gemm-flops/fp32_flops:318305.818375.018348.733333333334
gemm-flops/fp32_flops:418311.118376.318355.433333333334
gemm-flops/fp32_flops:518284.918373.018338.46666666667
gemm-flops/fp32_flops:618294.718375.818356.783333333333
gemm-flops/fp32_flops:718325.618376.118361.383333333335
gemm-flops/fp64_flops:09000.749041.299031.103333333334
gemm-flops/fp64_flops:19035.289041.539038.538333333334
gemm-flops/fp64_flops:28999.799040.939029.358333333334
gemm-flops/fp64_flops:39021.479041.449031.388333333334
gemm-flops/fp64_flops:49030.249042.039035.491666666667
gemm-flops/fp64_flops:59022.69038.529030.898333333334
gemm-flops/fp64_flops:69031.839041.499037.368333333334
gemm-flops/fp64_flops:79017.39041.779033.703333333333
gemm-flops/fp64_tc_flops:018830.818971.618937.75
gemm-flops/fp64_tc_flops:118949.418971.818963.649999999998
gemm-flops/fp64_tc_flops:218856.318971.018925.899999999998
gemm-flops/fp64_tc_flops:318904.118968.618947.95
gemm-flops/fp64_tc_flops:418919.518970.818955.88333333333
gemm-flops/fp64_tc_flops:518880.018967.818937.350000000002
gemm-flops/fp64_tc_flops:618900.318971.718955.683333333334
gemm-flops/fp64_tc_flops:718913.218972.018953.100000000002
gemm-flops/int4_tc_iops:0917478.0975296.0948284.1666666666
gemm-flops/int4_tc_iops:1952562.0982519.0970722.5
gemm-flops/int4_tc_iops:2951884.0982171.0968316.1666666666
gemm-flops/int4_tc_iops:3958130.0982210.0968647.8333333334
gemm-flops/int4_tc_iops:4948529.0970650.0960465.3333333334
gemm-flops/int4_tc_iops:5957267.0986978.0975829.6666666666
gemm-flops/int4_tc_iops:6937663.0967214.0955392.6666666666
gemm-flops/int4_tc_iops:7953370.0976948.0969971.1666666666
gemm-flops/int8_tc_iops:0440347.0476690.0461061.1666666667
gemm-flops/int8_tc_iops:1464604.0477222.0473194.0
gemm-flops/int8_tc_iops:2462628.0479096.0472533.5
gemm-flops/int8_tc_iops:3468554.0481374.0473731.3333333333
gemm-flops/int8_tc_iops:4463702.0474460.0469655.8333333333
gemm-flops/int8_tc_iops:5470203.0485159.0477810.1666666667
gemm-flops/int8_tc_iops:6448039.0470634.0463783.0
gemm-flops/int8_tc_iops:7464763.0477026.0473455.0
gemm-flops/return_code:00.00.00.0
gemm-flops/return_code:10.00.00.0
gemm-flops/return_code:20.00.00.0
gemm-flops/return_code:30.00.00.0
gemm-flops/return_code:40.00.00.0
gemm-flops/return_code:50.00.00.0
gemm-flops/return_code:60.00.00.0
gemm-flops/return_code:70.00.00.0
gemm-flops/tf32_tc_flops:0117875.0129009.0124596.0
gemm-flops/tf32_tc_flops:1126540.0129292.0128384.33333333333
gemm-flops/tf32_tc_flops:2123638.0129271.0127028.83333333333
gemm-flops/tf32_tc_flops:3126473.0129312.0127978.83333333333
gemm-flops/tf32_tc_flops:4125978.0127695.0127139.66666666667
gemm-flops/tf32_tc_flops:5127370.0129016.0128318.0
gemm-flops/tf32_tc_flops:6118876.0127906.0125119.5
gemm-flops/tf32_tc_flops:7126069.0129244.0128412.83333333333
gpt_models/pytorch-gpt2-large/fp16_train_step_time186.64892454445363189.82946683466435188.38848959406219
gpt_models/pytorch-gpt2-large/fp16_train_throughput42.150121237223942.8736875866761442.47518986495928
gpt_models/pytorch-gpt2-large/fp32_train_step_time291.80782610177996294.7833593636751292.9316874866684
gpt_models/pytorch-gpt2-large/fp32_train_throughput27.14205717355339527.41654465042472727.31380672199087
gpt_models/pytorch-gpt2-large/return_code:00.00.00.0
gpt_models/pytorch-gpt2-large/return_code:10.00.00.0
gpt_models/pytorch-gpt2-large/return_code:20.00.00.0
gpt_models/pytorch-gpt2-large/return_code:30.00.00.0
gpt_models/pytorch-gpt2-large/return_code:40.00.00.0
gpt_models/pytorch-gpt2-large/return_code:50.00.00.0
gpt_models/pytorch-gpt2-large/return_code:60.00.00.0
gpt_models/pytorch-gpt2-large/return_code:70.00.00.0
gpt_models/pytorch-gpt2-small/fp16_train_step_time37.98911726474762326.8325899839401145.26514018069813
gpt_models/pytorch-gpt2-small/fp16_train_throughput4.231499995142115162.677941501063115.460237609909465
gpt_models/pytorch-gpt2-small/fp32_train_step_time39.54342374205589360.50366258621218190.8125524758108
gpt_models/pytorch-gpt2-small/fp32_train_throughput3.134325568246455137.491356629760813.828107705251595
gpt_models/pytorch-gpt2-small/return_code0.00.00.0
gpt_models/pytorch-gpt2-small/return_code:00.00.00.0
gpt_models/pytorch-gpt2-small/return_code:10.00.00.0
gpt_models/pytorch-gpt2-small/return_code:20.00.00.0
gpt_models/pytorch-gpt2-small/return_code:30.00.00.0
gpt_models/pytorch-gpt2-small/return_code:40.00.00.0
gpt_models/pytorch-gpt2-small/return_code:50.00.00.0
gpt_models/pytorch-gpt2-small/return_code:60.00.00.0
gpt_models/pytorch-gpt2-small/return_code:70.00.00.0
ib-loopback/ib_write_1024_ib0_bw3.24963.367573.32694
ib-loopback/ib_write_1024_ib1_bw3.241773.32433.2820966666666666
ib-loopback/ib_write_1024_ib2_bw3.23653.464693.35385
ib-loopback/ib_write_1024_ib3_bw3.18096000000000043.552023.40521
ib-loopback/ib_write_1024_ib4_bw3.249913.398963.317201666666667
ib-loopback/ib_write_1024_ib5_bw3.228183.382613.302766666666667
ib-loopback/ib_write_1024_ib6_bw3.20632000000000053.32867000000000043.2691033333333339
ib-loopback/ib_write_1024_ib7_bw3.283063.384693.345
ib-loopback/ib_write_1048576_ib0_bw22.0268722.6689422.36603
ib-loopback/ib_write_1048576_ib1_bw21.786222.6931422.378761666666667
ib-loopback/ib_write_1048576_ib2_bw22.4635722.8996622.633371666666667
ib-loopback/ib_write_1048576_ib3_bw22.1624522.9312222.578599999999999
ib-loopback/ib_write_1048576_ib4_bw21.6835922.7629822.4438
ib-loopback/ib_write_1048576_ib5_bw11.43428000000000122.64777999999999920.670315
ib-loopback/ib_write_1048576_ib6_bw21.8255522.548522.29513
ib-loopback/ib_write_1048576_ib7_bw21.700322.7845522.228386666666667
ib-loopback/ib_write_131072_ib0_bw21.9404822.6771822.244371666666667
ib-loopback/ib_write_131072_ib1_bw21.7604122.47047000000000422.21943166666667
ib-loopback/ib_write_131072_ib2_bw22.1518322.8644322.451203333333337
ib-loopback/ib_write_131072_ib3_bw21.4656622.5684822.182236666666669
ib-loopback/ib_write_131072_ib4_bw21.3029322.4332421.94987
ib-loopback/ib_write_131072_ib5_bw10.9290722.3579420.266730000000004
ib-loopback/ib_write_131072_ib6_bw22.0125723.4129122.674783333333335
ib-loopback/ib_write_131072_ib7_bw21.6553422.91175999999999922.47101833333333
ib-loopback/ib_write_16384_ib0_bw20.18172000000000320.9271820.558628333333336
ib-loopback/ib_write_16384_ib1_bw19.8593420.9449420.48742
ib-loopback/ib_write_16384_ib2_bw19.89334999999999921.5106120.632126666666669
ib-loopback/ib_write_16384_ib3_bw19.8144720.728220.298818333333334
ib-loopback/ib_write_16384_ib4_bw19.35558000000000520.4019120.00963
ib-loopback/ib_write_16384_ib5_bw9.9786920.9051818.235578333333334
ib-loopback/ib_write_16384_ib6_bw20.0113521.215220.724634999999997
ib-loopback/ib_write_16384_ib7_bw20.1215721.2254420.627118333333333
ib-loopback/ib_write_2048_ib0_bw6.559547.0241000000000016.716795
ib-loopback/ib_write_2048_ib1_bw6.464086.997556.7765249999999999
ib-loopback/ib_write_2048_ib2_bw6.628387.294327.067228333333333
ib-loopback/ib_write_2048_ib3_bw6.664097.39880000000000096.974786666666667
ib-loopback/ib_write_2048_ib4_bw6.547437.20201000000000096.906501666666666
ib-loopback/ib_write_2048_ib5_bw6.693627.4052799999999997.111085
ib-loopback/ib_write_2048_ib6_bw6.68988000000000097.00956000000000096.789285
ib-loopback/ib_write_2048_ib7_bw6.69447999999999997.040086.7875499999999999
ib-loopback/ib_write_2097152_ib0_bw22.0406322.577322.315158333333334
ib-loopback/ib_write_2097152_ib1_bw22.01590000000000322.6253422.372568333333335
ib-loopback/ib_write_2097152_ib2_bw22.3064422.9985822.698603333333336
ib-loopback/ib_write_2097152_ib3_bw22.44675999999999923.0533122.742793333333336
ib-loopback/ib_write_2097152_ib4_bw21.91916999999999922.9022122.565573333333334
ib-loopback/ib_write_2097152_ib5_bw14.44413999999999922.6747221.17702166666667
ib-loopback/ib_write_2097152_ib6_bw22.2117122.8673222.556905
ib-loopback/ib_write_2097152_ib7_bw21.9859422.9192522.615098333333333
ib-loopback/ib_write_262144_ib0_bw22.03399000000000422.6399622.26207666666667
ib-loopback/ib_write_262144_ib1_bw22.1526122.6094922.366215
ib-loopback/ib_write_262144_ib2_bw22.1625522.969522.579108333333335
ib-loopback/ib_write_262144_ib3_bw22.25484999999999922.9453822.48115833333333
ib-loopback/ib_write_262144_ib4_bw21.37241999999999922.3660921.98141
ib-loopback/ib_write_262144_ib5_bw11.0266622.4747620.19280666666667
ib-loopback/ib_write_262144_ib6_bw22.3486823.0149422.655771666666668
ib-loopback/ib_write_262144_ib7_bw22.3369122.9431322.63854166666667
ib-loopback/ib_write_32768_ib0_bw21.689522.06974000000000421.838328333333334
ib-loopback/ib_write_32768_ib1_bw21.48990000000000322.33674000000000421.993068333333338
ib-loopback/ib_write_32768_ib2_bw21.5604822.3919121.93259333333333
ib-loopback/ib_write_32768_ib3_bw20.2629322.4077821.693888333333335
ib-loopback/ib_write_32768_ib4_bw20.9011222.2452121.502766666666664
ib-loopback/ib_write_32768_ib5_bw9.9413122.0530919.26934
ib-loopback/ib_write_32768_ib6_bw21.420722.6563422.123700000000004
ib-loopback/ib_write_32768_ib7_bw21.7760122.4381322.05366666666667
ib-loopback/ib_write_4096_ib0_bw12.3761414.05145999999999913.418116666666668
ib-loopback/ib_write_4096_ib1_bw13.13454000000000214.0524513.606868333333333
ib-loopback/ib_write_4096_ib2_bw13.046214.2115813.642919999999999
ib-loopback/ib_write_4096_ib3_bw12.00246999999999913.94454000000000213.327836666666665
ib-loopback/ib_write_4096_ib4_bw13.02245000000000114.8008613.829583333333332
ib-loopback/ib_write_4096_ib5_bw8.0574614.7987513.146763333333333
ib-loopback/ib_write_4096_ib6_bw13.1273213.8950813.60103
ib-loopback/ib_write_4096_ib7_bw13.1114914.1057913.785596666666665
ib-loopback/ib_write_4194304_ib0_bw21.9915422.4103422.197133333333338
ib-loopback/ib_write_4194304_ib1_bw21.840522.5213222.26180666666666
ib-loopback/ib_write_4194304_ib2_bw21.9770523.05747999999999922.57337666666667
ib-loopback/ib_write_4194304_ib3_bw22.2625722.9522.553028333333335
ib-loopback/ib_write_4194304_ib4_bw22.2469122.8970622.590473333333333
ib-loopback/ib_write_4194304_ib5_bw17.3677922.6433421.662255
ib-loopback/ib_write_4194304_ib6_bw22.3319423.09322000000000422.755625
ib-loopback/ib_write_4194304_ib7_bw22.2411122.866122.630764999999998
ib-loopback/ib_write_512_ib0_bw1.49064000000000021.55591.5189833333333336
ib-loopback/ib_write_512_ib1_bw1.495581.535671.5134983333333335
ib-loopback/ib_write_512_ib2_bw1.495721.645341.5921899999999998
ib-loopback/ib_write_512_ib3_bw1.497861.623331.5493199999999999
ib-loopback/ib_write_512_ib4_bw1.49007999999999991.561271.5145600000000002
ib-loopback/ib_write_512_ib5_bw1.47640000000000021.567821.5150949999999999
ib-loopback/ib_write_512_ib6_bw1.481221.541991.5145383333333334
ib-loopback/ib_write_512_ib7_bw1.477971.539591.5133133333333333
ib-loopback/ib_write_524288_ib0_bw22.17236999999999922.55891999999999822.328994999999997
ib-loopback/ib_write_524288_ib1_bw22.0174722.74734999999999922.36332833333333
ib-loopback/ib_write_524288_ib2_bw22.31254000000000322.9438922.603493333333334
ib-loopback/ib_write_524288_ib3_bw22.3289922.8415822.558444999999997
ib-loopback/ib_write_524288_ib4_bw21.16325999999999922.4747522.05937
ib-loopback/ib_write_524288_ib5_bw10.4966622.90779999999999920.52802833333333
ib-loopback/ib_write_524288_ib6_bw22.1698522.6812122.434208333333335
ib-loopback/ib_write_524288_ib7_bw22.0409922.88368999999999922.453210000000003
ib-loopback/ib_write_65536_ib0_bw22.0097322.38977000000000322.156201666666666
ib-loopback/ib_write_65536_ib1_bw21.1118422.44393999999999922.043256666666669
ib-loopback/ib_write_65536_ib2_bw21.0531122.92974000000000422.223546666666669
ib-loopback/ib_write_65536_ib3_bw20.87270999999999922.49920999999999921.83387833333333
ib-loopback/ib_write_65536_ib4_bw21.1640322.20754999999999921.677466666666665
ib-loopback/ib_write_65536_ib5_bw10.4516721.8353619.679668333333333
ib-loopback/ib_write_65536_ib6_bw22.1862722.9920722.58490333333333
ib-loopback/ib_write_65536_ib7_bw21.9106522.8780622.421733333333333
ib-loopback/ib_write_8192_ib0_bw17.58413999999999919.427718.576328333333337
ib-loopback/ib_write_8192_ib1_bw18.4061719.4007318.89776833333333
ib-loopback/ib_write_8192_ib2_bw17.11520999999999919.1285218.401526666666667
ib-loopback/ib_write_8192_ib3_bw18.551419.4673418.95923
ib-loopback/ib_write_8192_ib4_bw17.3319.0020118.241576666666668
ib-loopback/ib_write_8192_ib5_bw9.8329919.3218617.04467
ib-loopback/ib_write_8192_ib6_bw18.6390919.41633000000000319.044073333333335
ib-loopback/ib_write_8192_ib7_bw18.7155119.9286519.15118
ib-loopback/ib_write_8388608_ib0_bw22.098122.4728422.298518333333335
ib-loopback/ib_write_8388608_ib1_bw22.0835422.5318222.39095
ib-loopback/ib_write_8388608_ib2_bw22.20416999999999923.14225999999999822.704415
ib-loopback/ib_write_8388608_ib3_bw22.2464822.98747999999999922.60818
ib-loopback/ib_write_8388608_ib4_bw20.8749222.7899122.030941666666668
ib-loopback/ib_write_8388608_ib5_bw19.6049722.58266999999999821.671266666666669
ib-loopback/ib_write_8388608_ib6_bw21.4682323.10731000000000322.52020166666667
ib-loopback/ib_write_8388608_ib7_bw22.1518622.7809322.5986
ib-loopback/return_code:00.00.00.0
ib-loopback/return_code:10.00.00.0
ib-loopback/return_code:20.00.00.0
ib-loopback/return_code:30.00.00.0
ib-loopback/return_code:40.00.00.0
ib-loopback/return_code:50.00.00.0
ib-loopback/return_code:60.00.00.0
ib-loopback/return_code:70.00.00.0
kernel-launch/event_time:00.005580.005790.005661666666666666
kernel-launch/event_time:10.005590.005870.0057350000000000009
kernel-launch/event_time:20.005670.005830.005743333333333333
kernel-launch/event_time:30.005410.00580.005583333333333333
kernel-launch/event_time:40.005470.005820.0056700000000000009
kernel-launch/event_time:50.005390.00590.005645
kernel-launch/event_time:60.005410.005680.005555
kernel-launch/event_time:70.005370.005620.00551
kernel-launch/return_code:00.00.00.0
kernel-launch/return_code:10.00.00.0
kernel-launch/return_code:20.00.00.0
kernel-launch/return_code:30.00.00.0
kernel-launch/return_code:40.00.00.0
kernel-launch/return_code:50.00.00.0
kernel-launch/return_code:60.00.00.0
kernel-launch/return_code:70.00.00.0
kernel-launch/wall_time:00.00960.010370.010065
kernel-launch/wall_time:10.009620.010370.010141666666666667
kernel-launch/wall_time:20.010210.01040.010316666666666667
kernel-launch/wall_time:30.009620.010340.010096666666666666
kernel-launch/wall_time:40.009760.010410.010003333333333333
kernel-launch/wall_time:50.009680.010480.010041666666666666
kernel-launch/wall_time:60.009470.010060.00966
kernel-launch/wall_time:70.00950.010080.009675
lstm_models/pytorch-lstm/fp16_train_step_time29.8228069460019482465.1775150299071601.5951260646269
lstm_models/pytorch-lstm/fp16_train_throughput13.0660832992615787951.362709547692271.023543237469
lstm_models/pytorch-lstm/fp32_train_step_time52.064094224944712554.690876007081702.7455349960774
lstm_models/pytorch-lstm/fp32_train_throughput12.5577790138760544407.142705595614165.27284343271939
lstm_models/pytorch-lstm/return_code0.00.00.0
lstm_models/pytorch-lstm/return_code:00.00.00.0
lstm_models/pytorch-lstm/return_code:10.00.00.0
lstm_models/pytorch-lstm/return_code:20.00.00.0
lstm_models/pytorch-lstm/return_code:30.00.00.0
lstm_models/pytorch-lstm/return_code:40.00.00.0
lstm_models/pytorch-lstm/return_code:50.00.00.0
lstm_models/pytorch-lstm/return_code:60.00.00.0
lstm_models/pytorch-lstm/return_code:70.00.00.0
matmul/nosharding_time34.60880613327026735.75677585601806934.993525981903079
matmul/return_code:00.00.00.0
matmul/return_code:10.00.00.0
matmul/return_code:20.00.00.0
matmul/return_code:30.00.00.0
matmul/return_code:40.00.00.0
matmul/return_code:50.00.00.0
matmul/return_code:60.00.00.0
matmul/return_code:70.00.00.0
mem-bw/d2d_bw:01152.31157.41155.1000000000002
mem-bw/d2d_bw:11148.11160.01153.2
mem-bw/d2d_bw:21144.81155.31150.3166666666667
mem-bw/d2d_bw:31149.21157.91154.6666666666668
mem-bw/d2d_bw:41139.31155.51150.2166666666665
mem-bw/d2d_bw:51148.81159.41153.3999999999999
mem-bw/d2d_bw:61148.41159.11154.5
mem-bw/d2d_bw:71150.41160.61155.9833333333334
mem-bw/d2h_bw:025.226.225.76666666666667
mem-bw/d2h_bw:126.226.326.28333333333333
mem-bw/d2h_bw:223.726.325.566666666666668
mem-bw/d2h_bw:323.026.325.733333333333336
mem-bw/d2h_bw:423.026.325.73333333333333
mem-bw/d2h_bw:526.226.326.28333333333333
mem-bw/d2h_bw:623.026.325.71666666666667
mem-bw/d2h_bw:726.226.326.25
mem-bw/h2d_bw:026.126.126.100000000000006
mem-bw/h2d_bw:126.126.126.100000000000006
mem-bw/h2d_bw:226.126.126.100000000000006
mem-bw/h2d_bw:326.126.226.133333333333338
mem-bw/h2d_bw:426.026.226.100000000000006
mem-bw/h2d_bw:526.126.126.100000000000006
mem-bw/h2d_bw:626.126.126.100000000000006
mem-bw/h2d_bw:726.026.126.083333333333333
mem-bw/return_code:00.00.00.0
mem-bw/return_code:10.00.00.0
mem-bw/return_code:20.00.00.0
mem-bw/return_code:30.00.00.0
mem-bw/return_code:40.00.00.0
mem-bw/return_code:50.00.00.0
mem-bw/return_code:60.00.00.0
mem-bw/return_code:70.00.00.0
monitor/gpu_corrected_ecc:00.00.00.0
monitor/gpu_corrected_ecc:10.00.00.0
monitor/gpu_corrected_ecc:20.00.00.0
monitor/gpu_corrected_ecc:30.00.00.0
monitor/gpu_corrected_ecc:40.00.00.0
monitor/gpu_corrected_ecc:50.00.00.0
monitor/gpu_corrected_ecc:60.00.00.0
monitor/gpu_corrected_ecc:70.00.00.0
monitor/gpu_power_limit:0400.0400.0400.0
monitor/gpu_power_limit:1400.0400.0400.0
monitor/gpu_power_limit:2400.0400.0400.0
monitor/gpu_power_limit:3400.0400.0400.0
monitor/gpu_power_limit:4400.0400.0400.0
monitor/gpu_power_limit:5400.0400.0400.0
monitor/gpu_power_limit:6400.0400.0400.0
monitor/gpu_power_limit:7400.0400.0400.0
monitor/gpu_remap_correctable_error:00.00.00.0
monitor/gpu_remap_correctable_error:10.00.00.0
monitor/gpu_remap_correctable_error:20.00.00.0
monitor/gpu_remap_correctable_error:30.00.00.0
monitor/gpu_remap_correctable_error:40.01.00.16666666666666667
monitor/gpu_remap_correctable_error:50.01.00.16666666666666667
monitor/gpu_remap_correctable_error:60.01.00.16666666666666667
monitor/gpu_remap_correctable_error:70.01.00.16666666666666667
monitor/gpu_remap_high:00.00.00.0
monitor/gpu_remap_high:10.00.00.0
monitor/gpu_remap_high:20.00.00.0
monitor/gpu_remap_high:30.00.00.0
monitor/gpu_remap_high:40.01.00.16666666666666667
monitor/gpu_remap_high:50.01.00.16666666666666667
monitor/gpu_remap_high:60.01.00.16666666666666667
monitor/gpu_remap_high:70.01.00.16666666666666667
monitor/gpu_remap_low:00.00.00.0
monitor/gpu_remap_low:10.00.00.0
monitor/gpu_remap_low:20.00.00.0
monitor/gpu_remap_low:30.00.00.0
monitor/gpu_remap_low:40.00.00.0
monitor/gpu_remap_low:50.00.00.0
monitor/gpu_remap_low:60.00.00.0
monitor/gpu_remap_low:70.00.00.0
monitor/gpu_remap_max:0640.0640.0640.0
monitor/gpu_remap_max:1640.0640.0640.0
monitor/gpu_remap_max:2640.0640.0640.0
monitor/gpu_remap_max:3640.0640.0640.0
monitor/gpu_remap_max:4639.0640.0639.8333333333334
monitor/gpu_remap_max:5639.0640.0639.8333333333334
monitor/gpu_remap_max:6639.0640.0639.8333333333334
monitor/gpu_remap_max:7639.0640.0639.8333333333334
monitor/gpu_remap_none:00.00.00.0
monitor/gpu_remap_none:10.00.00.0
monitor/gpu_remap_none:20.00.00.0
monitor/gpu_remap_none:30.00.00.0
monitor/gpu_remap_none:40.00.00.0
monitor/gpu_remap_none:50.00.00.0
monitor/gpu_remap_none:60.00.00.0
monitor/gpu_remap_none:70.00.00.0
monitor/gpu_remap_partial:00.00.00.0
monitor/gpu_remap_partial:10.00.00.0
monitor/gpu_remap_partial:20.00.00.0
monitor/gpu_remap_partial:30.00.00.0
monitor/gpu_remap_partial:40.00.00.0
monitor/gpu_remap_partial:50.00.00.0
monitor/gpu_remap_partial:60.00.00.0
monitor/gpu_remap_partial:70.00.00.0
monitor/gpu_remap_uncorrectable_error:00.00.00.0
monitor/gpu_remap_uncorrectable_error:10.00.00.0
monitor/gpu_remap_uncorrectable_error:20.00.00.0
monitor/gpu_remap_uncorrectable_error:30.00.00.0
monitor/gpu_remap_uncorrectable_error:40.00.00.0
monitor/gpu_remap_uncorrectable_error:50.00.00.0
monitor/gpu_remap_uncorrectable_error:60.00.00.0
monitor/gpu_remap_uncorrectable_error:70.00.00.0
monitor/gpu_temperature:079.084.081.5
monitor/gpu_temperature:169.081.074.16666666666667
monitor/gpu_temperature:275.085.079.33333333333333
monitor/gpu_temperature:368.081.074.16666666666667
monitor/gpu_temperature:476.084.080.33333333333333
monitor/gpu_temperature:564.077.071.16666666666667
monitor/gpu_temperature:676.084.080.33333333333333
monitor/gpu_temperature:766.079.074.16666666666667
monitor/gpu_uncorrected_ecc:00.00.00.0
monitor/gpu_uncorrected_ecc:10.00.00.0
monitor/gpu_uncorrected_ecc:20.00.00.0
monitor/gpu_uncorrected_ecc:30.00.00.0
monitor/gpu_uncorrected_ecc:40.00.00.0
monitor/gpu_uncorrected_ecc:50.00.00.0
monitor/gpu_uncorrected_ecc:60.00.00.0
monitor/gpu_uncorrected_ecc:70.00.00.0
nccl-bw/allreduce_1024_algbw0.030.030.03
nccl-bw/allreduce_1024_busbw0.060.060.06
nccl-bw/allreduce_1024_time30.8631.8631.461666666666664
nccl-bw/allreduce_1048576_algbw14.6115.1914.971666666666666
nccl-bw/allreduce_1048576_busbw25.5626.5826.2
nccl-bw/allreduce_1048576_time69.0371.7870.05333333333333
nccl-bw/allreduce_1073741824_algbw131.65131.76131.7
nccl-bw/allreduce_1073741824_busbw230.39230.59230.47833333333333
nccl-bw/allreduce_1073741824_time8148.98155.88152.8499999999999
nccl-bw/allreduce_128_algbw0.00.00.0
nccl-bw/allreduce_128_busbw0.010.010.01
nccl-bw/allreduce_128_time31.2632.6731.805000000000005
nccl-bw/allreduce_131072_algbw3.443.543.498333333333333
nccl-bw/allreduce_131072_busbw6.036.196.12
nccl-bw/allreduce_131072_time37.0738.0637.48166666666666
nccl-bw/allreduce_134217728_algbw120.51121.95121.26833333333336
nccl-bw/allreduce_134217728_busbw210.89213.41212.22
nccl-bw/allreduce_134217728_time1100.61113.71106.7666666666667
nccl-bw/allreduce_16384_algbw0.490.510.5016666666666666
nccl-bw/allreduce_16384_busbw0.850.90.8766666666666666
nccl-bw/allreduce_16384_time31.9133.5532.65333333333333
nccl-bw/allreduce_16777216_algbw69.7172.5771.54666666666667
nccl-bw/allreduce_16777216_busbw121.99126.99125.205
nccl-bw/allreduce_16777216_time231.2240.7234.54999999999999
nccl-bw/allreduce_16_algbw0.00.00.0
nccl-bw/allreduce_16_busbw0.00.00.0
nccl-bw/allreduce_16_time31.2632.3331.506666666666665
nccl-bw/allreduce_2048_algbw0.060.060.06
nccl-bw/allreduce_2048_busbw0.110.110.11
nccl-bw/allreduce_2048_time31.9332.5332.25
nccl-bw/allreduce_2097152_algbw23.324.0723.73166666666667
nccl-bw/allreduce_2097152_busbw40.7842.1341.53
nccl-bw/allreduce_2097152_time87.1190.0188.38
nccl-bw/allreduce_2147483648_algbw132.58132.73132.65666666666668
nccl-bw/allreduce_2147483648_busbw232.02232.28232.15
nccl-bw/allreduce_2147483648_time16179.016197.016188.0
nccl-bw/allreduce_256_algbw0.010.010.01
nccl-bw/allreduce_256_busbw0.010.010.01
nccl-bw/allreduce_256_time31.1532.2431.621666666666667
nccl-bw/allreduce_262144_algbw5.786.035.933333333333334
nccl-bw/allreduce_262144_busbw10.1110.5510.383333333333333
nccl-bw/allreduce_262144_time43.4945.3644.19166666666666
nccl-bw/allreduce_268435456_algbw127.93128.57128.19333333333337
nccl-bw/allreduce_268435456_busbw223.87225.0224.33666666666668
nccl-bw/allreduce_268435456_time2087.92098.42094.0499999999999
nccl-bw/allreduce_32768_algbw1.011.061.0366666666666669
nccl-bw/allreduce_32768_busbw1.781.851.8183333333333334
nccl-bw/allreduce_32768_time31.0432.2931.586666666666664
nccl-bw/allreduce_32_algbw0.00.00.0
nccl-bw/allreduce_32_busbw0.00.00.0
nccl-bw/allreduce_32_time31.1532.2431.60833333333333
nccl-bw/allreduce_33554432_algbw93.8894.8594.49166666666668
nccl-bw/allreduce_33554432_busbw164.29165.98165.35999999999999
nccl-bw/allreduce_33554432_time353.8357.4355.11666666666675
nccl-bw/allreduce_4096_algbw0.130.130.13
nccl-bw/allreduce_4096_busbw0.220.220.22
nccl-bw/allreduce_4096_time31.9332.6932.265
nccl-bw/allreduce_4194304_algbw41.3341.8641.595
nccl-bw/allreduce_4194304_busbw72.3273.2672.79333333333334
nccl-bw/allreduce_4194304_time100.2101.5100.83333333333333
nccl-bw/allreduce_4294967296_algbw133.74134.06133.98333333333333
nccl-bw/allreduce_4294967296_busbw234.05234.6234.475
nccl-bw/allreduce_4294967296_time32038.032114.032055.5
nccl-bw/allreduce_512_algbw0.020.020.02
nccl-bw/allreduce_512_busbw0.030.030.03
nccl-bw/allreduce_512_time31.1932.0131.525000000000003
nccl-bw/allreduce_524288_algbw9.19.269.19
nccl-bw/allreduce_524288_busbw15.9316.2116.086666666666667
nccl-bw/allreduce_524288_time56.5957.657.031666666666669
nccl-bw/allreduce_536870912_algbw129.48129.75129.61166666666666
nccl-bw/allreduce_536870912_busbw226.6227.06226.8166666666667
nccl-bw/allreduce_536870912_time4137.84146.34142.216666666667
nccl-bw/allreduce_64_algbw0.00.00.0
nccl-bw/allreduce_64_busbw0.00.00.0
nccl-bw/allreduce_64_time31.2331.6331.355
nccl-bw/allreduce_65536_algbw1.931.961.9416666666666665
nccl-bw/allreduce_65536_busbw3.373.433.3983333333333336
nccl-bw/allreduce_65536_time33.4734.0333.76333333333333
nccl-bw/allreduce_67108864_algbw118.17119.25118.85000000000001
nccl-bw/allreduce_67108864_busbw206.81208.69207.98833333333332
nccl-bw/allreduce_67108864_time562.8567.9564.6666666666666
nccl-bw/allreduce_8192_algbw0.250.260.25666666666666668
nccl-bw/allreduce_8192_busbw0.440.450.4466666666666667
nccl-bw/allreduce_8192_time31.6332.5732.093333333333337
nccl-bw/allreduce_8388608_algbw57.0459.1858.12833333333333
nccl-bw/allreduce_8388608_busbw99.81103.57101.72166666666668
nccl-bw/allreduce_8388608_time141.7147.1144.35
nccl-bw/allreduce_8589934592_algbw134.49134.62134.58333333333335
nccl-bw/allreduce_8589934592_busbw235.36235.59235.5233333333333
nccl-bw/allreduce_8589934592_time63807.063871.063825.666666666664
nccl-bw/allreduce_8_algbw0.00.00.0
nccl-bw/allreduce_8_busbw0.00.00.0
nccl-bw/allreduce_8_time31.3232.1931.618333333333337
nccl-bw/return_code0.00.00.0
resnet_models/pytorch-resnet101/fp16_train_step_time75.2089096903801594.7049889564514410.4021521926425
resnet_models/pytorch-resnet101/fp16_train_throughput53.82110385760114758.410774850355190.275701565551
resnet_models/pytorch-resnet101/fp32_train_step_time92.29285472631455726.5537548065186500.8662575792568
resnet_models/pytorch-resnet101/fp32_train_throughput44.05092328534653499.5588153825924153.46013380837239
resnet_models/pytorch-resnet101/return_code0.00.00.0
resnet_models/pytorch-resnet101/return_code:00.00.00.0
resnet_models/pytorch-resnet101/return_code:10.00.00.0
resnet_models/pytorch-resnet101/return_code:20.00.00.0
resnet_models/pytorch-resnet101/return_code:30.00.00.0
resnet_models/pytorch-resnet101/return_code:40.00.00.0
resnet_models/pytorch-resnet101/return_code:50.00.00.0
resnet_models/pytorch-resnet101/return_code:60.00.00.0
resnet_models/pytorch-resnet101/return_code:70.00.00.0
resnet_models/pytorch-resnet152/fp16_train_step_time110.18137443065644836.2550797462463581.6630462729781
resnet_models/pytorch-resnet152/fp16_train_throughput38.26984987644678545.0770878036914131.0200561380481
resnet_models/pytorch-resnet152/fp32_train_step_time135.509941101074231013.7442817687988702.3912634779719
resnet_models/pytorch-resnet152/fp32_train_throughput31.570805629582649355.7244976219539105.4446247444141
resnet_models/pytorch-resnet152/return_code0.00.00.0
resnet_models/pytorch-resnet152/return_code:00.00.00.0
resnet_models/pytorch-resnet152/return_code:10.00.00.0
resnet_models/pytorch-resnet152/return_code:20.00.00.0
resnet_models/pytorch-resnet152/return_code:30.00.00.0
resnet_models/pytorch-resnet152/return_code:40.00.00.0
resnet_models/pytorch-resnet152/return_code:50.00.00.0
resnet_models/pytorch-resnet152/return_code:60.00.00.0
resnet_models/pytorch-resnet152/return_code:70.00.00.0
resnet_models/pytorch-resnet50/fp16_train_step_time40.51648998260498411.7493374347687249.08652069541203
resnet_models/pytorch-resnet50/fp16_train_throughput83.22084372897371100.1343042177978338.7381451716442
resnet_models/pytorch-resnet50/fp32_train_step_time55.160889238119128461.3578190803528318.3858556666384
resnet_models/pytorch-resnet50/fp32_train_throughput69.38277547344055758.7263290038582252.38379023818295
resnet_models/pytorch-resnet50/return_code0.00.00.0
resnet_models/pytorch-resnet50/return_code:00.00.00.0
resnet_models/pytorch-resnet50/return_code:10.00.00.0
resnet_models/pytorch-resnet50/return_code:20.00.00.0
resnet_models/pytorch-resnet50/return_code:30.00.00.0
resnet_models/pytorch-resnet50/return_code:40.00.00.0
resnet_models/pytorch-resnet50/return_code:50.00.00.0
resnet_models/pytorch-resnet50/return_code:60.00.00.0
resnet_models/pytorch-resnet50/return_code:70.00.00.0
sharding-matmul/allgather_time10.04966354370117210.06487655639648510.057035764058432
sharding-matmul/allreduce_time10.53512620925903410.5739531517028810.551154772440592
sharding-matmul/return_code:00.00.00.0
sharding-matmul/return_code:10.00.00.0
sharding-matmul/return_code:20.00.00.0
sharding-matmul/return_code:30.00.00.0
sharding-matmul/return_code:40.00.00.0
sharding-matmul/return_code:50.00.00.0
sharding-matmul/return_code:60.00.00.0
sharding-matmul/return_code:70.00.00.0
vgg_models/pytorch-vgg11/fp16_train_step_time25.390705093741418333.33779859542849219.33479604352983
vgg_models/pytorch-vgg11/fp16_train_throughput96.024160545507271260.344817373537497.0967924194184
vgg_models/pytorch-vgg11/fp32_train_step_time40.444567799568179408.00737047195437273.79270820471626
vgg_models/pytorch-vgg11/fp32_train_throughput78.44570939667838791.2721035661484324.9363093970622
vgg_models/pytorch-vgg11/return_code0.00.00.0
vgg_models/pytorch-vgg11/return_code:00.00.00.0
vgg_models/pytorch-vgg11/return_code:10.00.00.0
vgg_models/pytorch-vgg11/return_code:20.00.00.0
vgg_models/pytorch-vgg11/return_code:30.00.00.0
vgg_models/pytorch-vgg11/return_code:40.00.00.0
vgg_models/pytorch-vgg11/return_code:50.00.00.0
vgg_models/pytorch-vgg11/return_code:60.00.00.0
vgg_models/pytorch-vgg11/return_code:70.00.00.0
vgg_models/pytorch-vgg13/fp16_train_step_time34.70470201969147566.627167224884359.92531138534607
vgg_models/pytorch-vgg13/fp16_train_throughput57.26963262564189922.08435842867358.1590016309353
vgg_models/pytorch-vgg13/fp32_train_step_time56.147372394800189647.7513403892517419.95702596235568
vgg_models/pytorch-vgg13/fp32_train_throughput49.97278092624873569.9507707944061231.68832214979595
vgg_models/pytorch-vgg13/return_code0.00.00.0
vgg_models/pytorch-vgg13/return_code:00.00.00.0
vgg_models/pytorch-vgg13/return_code:10.00.00.0
vgg_models/pytorch-vgg13/return_code:20.00.00.0
vgg_models/pytorch-vgg13/return_code:30.00.00.0
vgg_models/pytorch-vgg13/return_code:40.00.00.0
vgg_models/pytorch-vgg13/return_code:50.00.00.0
vgg_models/pytorch-vgg13/return_code:60.00.00.0
vgg_models/pytorch-vgg13/return_code:70.00.00.0
vgg_models/pytorch-vgg16/fp16_train_step_time39.8976745903492646.1778335571289419.52491444365656
vgg_models/pytorch-vgg16/fp16_train_throughput49.53667935138827802.063626989122311.40216388428578
vgg_models/pytorch-vgg16/fp32_train_step_time65.62238788604737748.2917523384094489.9213562081081
vgg_models/pytorch-vgg16/fp32_train_throughput43.13893718095357487.6615145076602198.62286471467895
vgg_models/pytorch-vgg16/return_code0.00.00.0
vgg_models/pytorch-vgg16/return_code:00.00.00.0
vgg_models/pytorch-vgg16/return_code:10.00.00.0
vgg_models/pytorch-vgg16/return_code:20.00.00.0
vgg_models/pytorch-vgg16/return_code:30.00.00.0
vgg_models/pytorch-vgg16/return_code:40.00.00.0
vgg_models/pytorch-vgg16/return_code:50.00.00.0
vgg_models/pytorch-vgg16/return_code:60.00.00.0
vgg_models/pytorch-vgg16/return_code:70.00.00.0
vgg_models/pytorch-vgg19/fp16_train_step_time45.13699382543564744.2489204406738480.06073132130049
vgg_models/pytorch-vgg19/fp16_train_throughput43.00179752145532708.9611079567222275.3163537463149
vgg_models/pytorch-vgg19/fp32_train_step_time74.86466133594513864.0479183197022560.2605650500086
vgg_models/pytorch-vgg19/fp32_train_throughput37.4898894091596427.452003309124174.03624176807086
vgg_models/pytorch-vgg19/return_code0.00.00.0
vgg_models/pytorch-vgg19/return_code:00.00.00.0
vgg_models/pytorch-vgg19/return_code:10.00.00.0
vgg_models/pytorch-vgg19/return_code:20.00.00.0
vgg_models/pytorch-vgg19/return_code:30.00.00.0
vgg_models/pytorch-vgg19/return_code:40.00.00.0
vgg_models/pytorch-vgg19/return_code:50.00.00.0
vgg_models/pytorch-vgg19/return_code:60.00.00.0
vgg_models/pytorch-vgg19/return_code:70.00.00.0