Model Benchmarks
#
PyTorch Model Benchmarksmodel-benchmarks
#
#
IntroductionRun training or inference tasks with single or half precision for deep learning models, including the following categories:
- GPT: gpt2-small, gpt2-medium, gpt2-large and gpt2-xl
- LLAMA: llama2-7b, llama2-13b, llama2-70b
- BERT: bert-base and bert-large
- LSTM
- CNN, listed in
torchvision.models
, including:- resnet: resnet18, resnet34, resnet50, resnet101, resnet152
- resnext: resnext50_32x4d, resnext101_32x8d
- wide_resnet: wide_resnet50_2, wide_resnet101_2
- densenet: densenet121, densenet169, densenet201, densenet161
- vgg: vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19_bn, vgg19
- mnasnet: mnasnet0_5, mnasnet0_75, mnasnet1_0, mnasnet1_3
- mobilenet: mobilenet_v2
- shufflenet: shufflenet_v2_x0_5, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x2_0
- squeezenet: squeezenet1_0, squeezenet1_1
- others: alexnet, googlenet, inception_v3
For inference, supported percentiles include 50th, 90th, 95th, 99th, and 99.9th.
New: Support fp8_hybrid and fp8_e4m3 precision for BERT models.
#
MetricsName | Unit | Description |
---|---|---|
model-benchmarks/pytorch-${model_name}/${precision}_train_step_time | time (ms) | The average training step time with fp32/fp16 precision. |
model-benchmarks/pytorch-${model_name}/${precision}_train_throughput | throughput (samples/s) | The average training throughput with fp32/fp16 precision per GPU. |
model-benchmarks/pytorch-${model_name}/${precision}_inference_step_time | time (ms) | The average inference step time with fp32/fp16 precision. |
model-benchmarks/pytorch-${model_name}/${precision}_inference_throughput | throughput (samples/s) | The average inference throughput with fp32/fp16 precision. |
model-benchmarks/pytorch-${model_name}/${precision}_inference_step_time_${percentile} | time (ms) | The nth percentile inference step time with fp32/fp16 precision. |
model-benchmarks/pytorch-${model_name}/${precision}_inference_throughput_${percentile} | throughput (samples/s) | The nth percentile inference throughput with fp32/fp16 precision. |
#
Megatron Model benchmarksmegatron-gpt
#
#
IntroductionRun GPT pretrain tasks with float32, float16, bfloat16 precisions with Megatron-LM or Megatron-DeepSpeed.
tips: batch_size in this benchmark represents global batch size, the batch size on each GPU instance is micro_batch_size.
#
MetricsName | Unit | Description |
---|---|---|
megatron-gpt/${precision}_train_step_time | time (ms) | The average training step time per iteration. |
megatron-gpt/${precision}_train_throughput | throughput (samples/s) | The average training throughput per iteration. |
megatron-gpt/${precision}_train_tflops | tflops/s | The average training tflops per second per iteration. |
megatron-gpt/${precision}_train_mem_allocated | GB | The average GPU memory allocated per iteration. |
megatron-gpt/${precision}_train_max_mem_allocated | GB | The average maximum GPU memory allocated per iteration. |