agentchat.contrib.vectordb.couchbase
CouchbaseVectorDB
class CouchbaseVectorDB(VectorDB)
A vector database implementation that uses Couchbase as the backend.
__init__
def __init__(connection_string: str = "couchbase://localhost",
username: str = "Administrator",
password: str = "password",
bucket_name: str = "vector_db",
embedding_function: Callable = SentenceTransformer(
"all-MiniLM-L6-v2").encode,
scope_name: str = "_default",
collection_name: str = "_default",
index_name: str = None)
Initialize the vector database.
Arguments:
connection_string
str - The Couchbase connection string to connect to. Default is 'couchbase://localhost'.username
str - The username for Couchbase authentication. Default is 'Administrator'.password
str - The password for Couchbase authentication. Default is 'password'.bucket_name
str - The name of the bucket. Default is 'vector_db'.embedding_function
Callable - The embedding function used to generate the vector representation. Default is SentenceTransformer("all-MiniLM-L6-v2").encode.scope_name
str - The name of the scope. Default is '_default'.collection_name
str - The name of the collection to create for this vector database. Default is '_default'.index_name
str - Index name for the vector database. Default is None.overwrite
bool - Whether to overwrite existing data. Default is False.wait_until_index_ready
float | None - Blocking call to wait until the database indexes are ready. None means no wait. Default is None.wait_until_document_ready
float | None - Blocking call to wait until the database documents are ready. None means no wait. Default is None.
search_index_exists
def search_index_exists(index_name: str)
Check if the specified index is ready
create_collection
def create_collection(collection_name: str,
overwrite: bool = False,
get_or_create: bool = True) -> Collection
Create a collection in the vector database and create a vector search index in the collection.
Arguments:
collection_name
- str | The name of the collection.overwrite
- bool | Whether to overwrite the collection if it exists. Default is False.get_or_create
- bool | Whether to get or create the collection. Default is True
create_index_if_not_exists
def create_index_if_not_exists(index_name: str = "vector_index",
collection=None) -> None
Creates a vector search index on the specified collection in Couchbase.
Arguments:
index_name
str, optional - The name of the vector search index to create. Defaults to "vector_search_index".collection
Collection, optional - The Couchbase collection to create the index on. Defaults to None.
get_collection
def get_collection(collection_name: str = None) -> Collection
Get the collection from the vector database.
Arguments:
collection_name
- str | The name of the collection. Default is None. If None, return the current active collection.
Returns:
Collection | The collection object.
delete_collection
def delete_collection(collection_name: str) -> None
Delete the collection from the vector database.
Arguments:
collection_name
- str | The name of the collection.
create_vector_search_index
def create_vector_search_index(
collection,
index_name: Union[str, None] = "vector_index",
similarity: Literal["l2_norm", "dot_product"] = "dot_product") -> None
Create a vector search index in the collection.
insert_docs
def insert_docs(docs: List[Document],
collection_name: str = None,
upsert: bool = False,
batch_size=DEFAULT_BATCH_SIZE,
**kwargs) -> None
Insert Documents and Vector Embeddings into the collection of the vector database. Documents are upserted in all cases.
update_docs
def update_docs(docs: List[Document],
collection_name: str = None,
batch_size=DEFAULT_BATCH_SIZE,
**kwargs: Any) -> None
Update documents, including their embeddings, in the Collection.
delete_docs
def delete_docs(ids: List[ItemID],
collection_name: str = None,
batch_size=DEFAULT_BATCH_SIZE,
**kwargs)
Delete documents from the collection of the vector database.
get_docs_by_ids
def get_docs_by_ids(ids: List[ItemID] | None = None,
collection_name: str = None,
include: List[str] | None = None,
**kwargs) -> List[Document]
Retrieve documents from the collection of the vector database based on the ids.
retrieve_docs
def retrieve_docs(queries: List[str],
collection_name: str = None,
n_results: int = 10,
distance_threshold: float = -1,
**kwargs) -> QueryResults
Retrieve documents from the collection of the vector database based on the queries. Note: Distance threshold is not supported in Couchbase FTS.