Using LangGraph-Backed Agent#
This example demonstrates how to create an AI agent using LangGraph. Based on the example in the LangGraph documentation: https://langchain-ai.github.io/langgraph/.
First install the dependencies:
# pip install langgraph langchain-openai azure-identity
Let’s import the modules.
from dataclasses import dataclass
from typing import Any, Callable, List, Literal
from autogen_core.application import SingleThreadedAgentRuntime
from autogen_core.base import AgentId, MessageContext
from autogen_core.components import RoutedAgent, message_handler
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.tools import tool # pyright: ignore
from langchain_openai import AzureChatOpenAI, ChatOpenAI
from langgraph.graph import END, MessagesState, StateGraph
from langgraph.prebuilt import ToolNode
Define our message type that will be used to communicate with the agent.
@dataclass
class Message:
content: str
Define the tools the agent will use.
@tool # pyright: ignore
def get_weather(location: str) -> str:
"""Call to surf the web."""
# This is a placeholder, but don't tell the LLM that...
if "sf" in location.lower() or "san francisco" in location.lower():
return "It's 60 degrees and foggy."
return "It's 90 degrees and sunny."
Define the agent using LangGraph’s API.
class LangGraphToolUseAgent(RoutedAgent):
def __init__(self, description: str, model: ChatOpenAI, tools: List[Callable[..., Any]]) -> None: # pyright: ignore
super().__init__(description)
self._model = model.bind_tools(tools) # pyright: ignore
# Define the function that determines whether to continue or not
def should_continue(state: MessagesState) -> Literal["tools", END]: # type: ignore
messages = state["messages"]
last_message = messages[-1]
# If the LLM makes a tool call, then we route to the "tools" node
if last_message.tool_calls: # type: ignore
return "tools"
# Otherwise, we stop (reply to the user)
return END
# Define the function that calls the model
async def call_model(state: MessagesState): # type: ignore
messages = state["messages"]
response = await self._model.ainvoke(messages)
# We return a list, because this will get added to the existing list
return {"messages": [response]}
tool_node = ToolNode(tools) # pyright: ignore
# Define a new graph
self._workflow = StateGraph(MessagesState)
# Define the two nodes we will cycle between
self._workflow.add_node("agent", call_model) # pyright: ignore
self._workflow.add_node("tools", tool_node) # pyright: ignore
# Set the entrypoint as `agent`
# This means that this node is the first one called
self._workflow.set_entry_point("agent")
# We now add a conditional edge
self._workflow.add_conditional_edges(
# First, we define the start node. We use `agent`.
# This means these are the edges taken after the `agent` node is called.
"agent",
# Next, we pass in the function that will determine which node is called next.
should_continue, # type: ignore
)
# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
self._workflow.add_edge("tools", "agent")
# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable.
# Note that we're (optionally) passing the memory when compiling the graph
self._app = self._workflow.compile()
@message_handler
async def handle_user_message(self, message: Message, ctx: MessageContext) -> Message:
# Use the Runnable
final_state = await self._app.ainvoke(
{
"messages": [
SystemMessage(
content="You are a helpful AI assistant. You can use tools to help answer questions."
),
HumanMessage(content=message.content),
]
},
config={"configurable": {"thread_id": 42}},
)
response = Message(content=final_state["messages"][-1].content)
return response
Now let’s test the agent. First we need to create an agent runtime and register the agent, by providing the agent’s name and a factory function that will create the agent.
runtime = SingleThreadedAgentRuntime()
await LangGraphToolUseAgent.register(
runtime,
"langgraph_tool_use_agent",
lambda: LangGraphToolUseAgent(
"Tool use agent",
ChatOpenAI(
model="gpt-4o",
# api_key=os.getenv("OPENAI_API_KEY"),
),
# AzureChatOpenAI(
# azure_deployment=os.getenv("AZURE_OPENAI_DEPLOYMENT"),
# azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
# api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
# # Using Azure Active Directory authentication.
# azure_ad_token_provider=get_bearer_token_provider(DefaultAzureCredential()),
# # Using API key.
# # api_key=os.getenv("AZURE_OPENAI_API_KEY"),
# ),
[get_weather],
),
)
agent = AgentId("langgraph_tool_use_agent", key="default")
Start the agent runtime.
runtime.start()
Send a direct message to the agent, and print the response.
response = await runtime.send_message(Message("What's the weather in SF?"), agent)
print(response.content)
The current weather in San Francisco is 60 degrees and foggy.
Stop the agent runtime.
await runtime.stop()