Source code for autogen_core.tools._function_tool
import asyncio
import functools
import warnings
from textwrap import dedent
from typing import Any, Callable, Sequence
from pydantic import BaseModel
from typing_extensions import Self
from .. import CancellationToken
from .._component_config import Component
from .._function_utils import (
args_base_model_from_signature,
get_typed_signature,
)
from ..code_executor._func_with_reqs import Import, import_to_str, to_code
from ._base import BaseTool
class FunctionToolConfig(BaseModel):
"""Configuration for a function tool."""
source_code: str
name: str
description: str
global_imports: Sequence[Import]
has_cancellation_support: bool
[docs]
class FunctionTool(BaseTool[BaseModel, BaseModel], Component[FunctionToolConfig]):
"""
Create custom tools by wrapping standard Python functions.
`FunctionTool` offers an interface for executing Python functions either asynchronously or synchronously.
Each function must include type annotations for all parameters and its return type. These annotations
enable `FunctionTool` to generate a schema necessary for input validation, serialization, and for informing
the LLM about expected parameters. When the LLM prepares a function call, it leverages this schema to
generate arguments that align with the function's specifications.
.. note::
It is the user's responsibility to verify that the tool's output type matches the expected type.
Args:
func (Callable[..., ReturnT | Awaitable[ReturnT]]): The function to wrap and expose as a tool.
description (str): A description to inform the model of the function's purpose, specifying what
it does and the context in which it should be called.
name (str, optional): An optional custom name for the tool. Defaults to
the function's original name if not provided.
Example:
.. code-block:: python
import random
from autogen_core import CancellationToken
from autogen_core.tools import FunctionTool
from typing_extensions import Annotated
import asyncio
async def get_stock_price(ticker: str, date: Annotated[str, "Date in YYYY/MM/DD"]) -> float:
# Simulates a stock price retrieval by returning a random float within a specified range.
return random.uniform(10, 200)
async def example():
# Initialize a FunctionTool instance for retrieving stock prices.
stock_price_tool = FunctionTool(get_stock_price, description="Fetch the stock price for a given ticker.")
# Execute the tool with cancellation support.
cancellation_token = CancellationToken()
result = await stock_price_tool.run_json({"ticker": "AAPL", "date": "2021/01/01"}, cancellation_token)
# Output the result as a formatted string.
print(stock_price_tool.return_value_as_string(result))
asyncio.run(example())
"""
component_provider_override = "autogen_core.tools.FunctionTool"
component_config_schema = FunctionToolConfig
def __init__(
self, func: Callable[..., Any], description: str, name: str | None = None, global_imports: Sequence[Import] = []
) -> None:
self._func = func
self._global_imports = global_imports
signature = get_typed_signature(func)
func_name = name or func.func.__name__ if isinstance(func, functools.partial) else name or func.__name__
args_model = args_base_model_from_signature(func_name + "args", signature)
return_type = signature.return_annotation
self._has_cancellation_support = "cancellation_token" in signature.parameters
super().__init__(args_model, return_type, func_name, description)
[docs]
async def run(self, args: BaseModel, cancellation_token: CancellationToken) -> Any:
if asyncio.iscoroutinefunction(self._func):
if self._has_cancellation_support:
result = await self._func(**args.model_dump(), cancellation_token=cancellation_token)
else:
result = await self._func(**args.model_dump())
else:
if self._has_cancellation_support:
result = await asyncio.get_event_loop().run_in_executor(
None,
functools.partial(
self._func,
**args.model_dump(),
cancellation_token=cancellation_token,
),
)
else:
future = asyncio.get_event_loop().run_in_executor(
None, functools.partial(self._func, **args.model_dump())
)
cancellation_token.link_future(future)
result = await future
return result
[docs]
def _to_config(self) -> FunctionToolConfig:
return FunctionToolConfig(
source_code=dedent(to_code(self._func)),
global_imports=self._global_imports,
name=self.name,
description=self.description,
has_cancellation_support=self._has_cancellation_support,
)
[docs]
@classmethod
def _from_config(cls, config: FunctionToolConfig) -> Self:
warnings.warn(
"\n⚠️ SECURITY WARNING ⚠️\n"
"Loading a FunctionTool from config will execute code to import the provided global imports and and function code.\n"
"Only load configs from TRUSTED sources to prevent arbitrary code execution.",
UserWarning,
stacklevel=2,
)
exec_globals: dict[str, Any] = {}
# Execute imports first
for import_stmt in config.global_imports:
import_code = import_to_str(import_stmt)
try:
exec(import_code, exec_globals)
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
f"Failed to import {import_code}: Module not found. Please ensure the module is installed."
) from e
except ImportError as e:
raise ImportError(f"Failed to import {import_code}: {str(e)}") from e
except Exception as e:
raise RuntimeError(f"Unexpected error while importing {import_code}: {str(e)}") from e
# Execute function code
try:
exec(config.source_code, exec_globals)
func_name = config.source_code.split("def ")[1].split("(")[0]
except Exception as e:
raise ValueError(f"Could not compile and load function: {e}") from e
# Get function and verify it's callable
func: Callable[..., Any] = exec_globals[func_name]
if not callable(func):
raise TypeError(f"Expected function but got {type(func)}")
return cls(func, "", None)