Source code for autogen_core.tools._function_tool

import asyncio
import functools
import warnings
from textwrap import dedent
from typing import Any, Callable, Sequence

from pydantic import BaseModel
from typing_extensions import Self

from .. import CancellationToken
from .._component_config import Component
from .._function_utils import (
    args_base_model_from_signature,
    get_typed_signature,
)
from ..code_executor._func_with_reqs import Import, import_to_str, to_code
from ._base import BaseTool


class FunctionToolConfig(BaseModel):
    """Configuration for a function tool."""

    source_code: str
    name: str
    description: str
    global_imports: Sequence[Import]
    has_cancellation_support: bool


[docs] class FunctionTool(BaseTool[BaseModel, BaseModel], Component[FunctionToolConfig]): """ Create custom tools by wrapping standard Python functions. `FunctionTool` offers an interface for executing Python functions either asynchronously or synchronously. Each function must include type annotations for all parameters and its return type. These annotations enable `FunctionTool` to generate a schema necessary for input validation, serialization, and for informing the LLM about expected parameters. When the LLM prepares a function call, it leverages this schema to generate arguments that align with the function's specifications. .. note:: It is the user's responsibility to verify that the tool's output type matches the expected type. Args: func (Callable[..., ReturnT | Awaitable[ReturnT]]): The function to wrap and expose as a tool. description (str): A description to inform the model of the function's purpose, specifying what it does and the context in which it should be called. name (str, optional): An optional custom name for the tool. Defaults to the function's original name if not provided. Example: .. code-block:: python import random from autogen_core import CancellationToken from autogen_core.tools import FunctionTool from typing_extensions import Annotated import asyncio async def get_stock_price(ticker: str, date: Annotated[str, "Date in YYYY/MM/DD"]) -> float: # Simulates a stock price retrieval by returning a random float within a specified range. return random.uniform(10, 200) async def example(): # Initialize a FunctionTool instance for retrieving stock prices. stock_price_tool = FunctionTool(get_stock_price, description="Fetch the stock price for a given ticker.") # Execute the tool with cancellation support. cancellation_token = CancellationToken() result = await stock_price_tool.run_json({"ticker": "AAPL", "date": "2021/01/01"}, cancellation_token) # Output the result as a formatted string. print(stock_price_tool.return_value_as_string(result)) asyncio.run(example()) """ component_provider_override = "autogen_core.tools.FunctionTool" component_config_schema = FunctionToolConfig def __init__( self, func: Callable[..., Any], description: str, name: str | None = None, global_imports: Sequence[Import] = [] ) -> None: self._func = func self._global_imports = global_imports signature = get_typed_signature(func) func_name = name or func.func.__name__ if isinstance(func, functools.partial) else name or func.__name__ args_model = args_base_model_from_signature(func_name + "args", signature) return_type = signature.return_annotation self._has_cancellation_support = "cancellation_token" in signature.parameters super().__init__(args_model, return_type, func_name, description)
[docs] async def run(self, args: BaseModel, cancellation_token: CancellationToken) -> Any: if asyncio.iscoroutinefunction(self._func): if self._has_cancellation_support: result = await self._func(**args.model_dump(), cancellation_token=cancellation_token) else: result = await self._func(**args.model_dump()) else: if self._has_cancellation_support: result = await asyncio.get_event_loop().run_in_executor( None, functools.partial( self._func, **args.model_dump(), cancellation_token=cancellation_token, ), ) else: future = asyncio.get_event_loop().run_in_executor( None, functools.partial(self._func, **args.model_dump()) ) cancellation_token.link_future(future) result = await future return result
[docs] def _to_config(self) -> FunctionToolConfig: return FunctionToolConfig( source_code=dedent(to_code(self._func)), global_imports=self._global_imports, name=self.name, description=self.description, has_cancellation_support=self._has_cancellation_support, )
[docs] @classmethod def _from_config(cls, config: FunctionToolConfig) -> Self: warnings.warn( "\n⚠️ SECURITY WARNING ⚠️\n" "Loading a FunctionTool from config will execute code to import the provided global imports and and function code.\n" "Only load configs from TRUSTED sources to prevent arbitrary code execution.", UserWarning, stacklevel=2, ) exec_globals: dict[str, Any] = {} # Execute imports first for import_stmt in config.global_imports: import_code = import_to_str(import_stmt) try: exec(import_code, exec_globals) except ModuleNotFoundError as e: raise ModuleNotFoundError( f"Failed to import {import_code}: Module not found. Please ensure the module is installed." ) from e except ImportError as e: raise ImportError(f"Failed to import {import_code}: {str(e)}") from e except Exception as e: raise RuntimeError(f"Unexpected error while importing {import_code}: {str(e)}") from e # Execute function code try: exec(config.source_code, exec_globals) func_name = config.source_code.split("def ")[1].split("(")[0] except Exception as e: raise ValueError(f"Could not compile and load function: {e}") from e # Get function and verify it's callable func: Callable[..., Any] = exec_globals[func_name] if not callable(func): raise TypeError(f"Expected function but got {type(func)}") return cls(func, "", None)