Source code for autogen_ext.tools.graphrag._local_search

# mypy: disable-error-code="no-any-unimported,misc"
import os
from pathlib import Path

import pandas as pd
import tiktoken
from autogen_core import CancellationToken
from autogen_core.tools import BaseTool
from graphrag.config.config_file_loader import load_config_from_file
from graphrag.query.indexer_adapters import (
    read_indexer_entities,
    read_indexer_relationships,
    read_indexer_text_units,
)
from graphrag.query.llm.base import BaseLLM, BaseTextEmbedding
from graphrag.query.llm.get_client import get_llm, get_text_embedder
from graphrag.query.structured_search.local_search.mixed_context import LocalSearchMixedContext
from graphrag.query.structured_search.local_search.search import LocalSearch
from graphrag.vector_stores.lancedb import LanceDBVectorStore
from pydantic import BaseModel, Field

from ._config import LocalContextConfig, SearchConfig
from ._config import LocalDataConfig as DataConfig

_default_context_config = LocalContextConfig()
_default_search_config = SearchConfig()


[docs] class LocalSearchToolArgs(BaseModel): query: str = Field(..., description="The user query to perform local search on.")
[docs] class LocalSearchToolReturn(BaseModel): answer: str = Field(..., description="The answer to the user query.")
[docs] class LocalSearchTool(BaseTool[LocalSearchToolArgs, LocalSearchToolReturn]): """Enables running GraphRAG local search queries as an AutoGen tool. This tool allows you to perform semantic search over a corpus of documents using the GraphRAG framework. The search combines local document context with semantic embeddings to find relevant information. .. note:: This tool requires the :code:`graphrag` extra for the :code:`autogen-ext` package. To install: .. code-block:: bash pip install -U "autogen-agentchat" "autogen-ext[graphrag]" Before using this tool, you must complete the GraphRAG setup and indexing process: 1. Follow the GraphRAG documentation to initialize your project and settings 2. Configure and tune your prompts for the specific use case 3. Run the indexing process to generate the required data files 4. Ensure you have the settings.yaml file from the setup process Please refer to the [GraphRAG documentation](https://microsoft.github.io/graphrag/) for detailed instructions on completing these prerequisite steps. Example usage with AssistantAgent: .. code-block:: python import asyncio from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_agentchat.ui import Console from autogen_ext.tools.graphrag import LocalSearchTool from autogen_agentchat.agents import AssistantAgent async def main(): # Initialize the OpenAI client openai_client = OpenAIChatCompletionClient( model="gpt-4o-mini", api_key="<api-key>", ) # Set up local search tool local_tool = LocalSearchTool.from_settings(settings_path="./settings.yaml") # Create assistant agent with the local search tool assistant_agent = AssistantAgent( name="search_assistant", tools=[local_tool], model_client=openai_client, system_message=( "You are a tool selector AI assistant using the GraphRAG framework. " "Your primary task is to determine the appropriate search tool to call based on the user's query. " "For specific, detailed information about particular entities or relationships, call the 'local_search' function." ), ) # Run a sample query query = "What does the station-master say about Dr. Becher?" await Console(assistant_agent.run_stream(task=query)) if __name__ == "__main__": asyncio.run(main()) Args: token_encoder (tiktoken.Encoding): The tokenizer used for text encoding llm (BaseLLM): The language model to use for search embedder (BaseTextEmbedding): The text embedding model to use data_config (DataConfig): Configuration for data source locations and settings context_config (LocalContextConfig, optional): Configuration for context building. Defaults to default config. search_config (SearchConfig, optional): Configuration for search operations. Defaults to default config. """ def __init__( self, token_encoder: tiktoken.Encoding, llm: BaseLLM, embedder: BaseTextEmbedding, data_config: DataConfig, context_config: LocalContextConfig = _default_context_config, search_config: SearchConfig = _default_search_config, ): super().__init__( args_type=LocalSearchToolArgs, return_type=LocalSearchToolReturn, name="local_search_tool", description="Perform a local search with given parameters using graphrag.", ) # Use the adapter self._llm = llm self._embedder = embedder # Load parquet files entity_df: pd.DataFrame = pd.read_parquet(f"{data_config.input_dir}/{data_config.entity_table}.parquet") # type: ignore entity_embedding_df: pd.DataFrame = pd.read_parquet( # type: ignore f"{data_config.input_dir}/{data_config.entity_embedding_table}.parquet" ) relationship_df: pd.DataFrame = pd.read_parquet( # type: ignore f"{data_config.input_dir}/{data_config.relationship_table}.parquet" ) text_unit_df: pd.DataFrame = pd.read_parquet(f"{data_config.input_dir}/{data_config.text_unit_table}.parquet") # type: ignore # Read data using indexer adapters entities = read_indexer_entities(entity_df, entity_embedding_df, data_config.community_level) relationships = read_indexer_relationships(relationship_df) text_units = read_indexer_text_units(text_unit_df) # Set up vector store for entity embeddings description_embedding_store = LanceDBVectorStore( collection_name="default-entity-description", ) description_embedding_store.connect(db_uri=os.path.join(data_config.input_dir, "lancedb")) description_embedding_store = LanceDBVectorStore( collection_name="default-entity-description", ) description_embedding_store.connect(db_uri=f"{data_config.input_dir}/lancedb") # Set up context builder context_builder = LocalSearchMixedContext( entities=entities, entity_text_embeddings=description_embedding_store, text_embedder=self._embedder, text_units=text_units, relationships=relationships, token_encoder=token_encoder, ) context_builder_params = { "text_unit_prop": context_config.text_unit_prop, "community_prop": context_config.community_prop, "include_entity_rank": context_config.include_entity_rank, "rank_description": context_config.rank_description, "include_relationship_weight": context_config.include_relationship_weight, "relationship_ranking_attribute": context_config.relationship_ranking_attribute, "max_tokens": context_config.max_data_tokens, } llm_params = { "max_tokens": search_config.max_tokens, "temperature": search_config.temperature, } self._search_engine = LocalSearch( llm=self._llm, context_builder=context_builder, token_encoder=token_encoder, llm_params=llm_params, context_builder_params=context_builder_params, response_type=search_config.response_type, )
[docs] async def run(self, args: LocalSearchToolArgs, cancellation_token: CancellationToken) -> LocalSearchToolReturn: search_result = await self._search_engine.asearch(args.query) # type: ignore assert isinstance(search_result.response, str), "Expected response to be a string" return LocalSearchToolReturn(answer=search_result.response)
[docs] @classmethod def from_settings(cls, settings_path: str | Path) -> "LocalSearchTool": """Create a LocalSearchTool instance from GraphRAG settings file. Args: settings_path: Path to the GraphRAG settings.yaml file Returns: An initialized LocalSearchTool instance """ # Load GraphRAG config config = load_config_from_file(settings_path) # Initialize token encoder token_encoder = tiktoken.get_encoding(config.encoding_model) # Initialize LLM and embedder using graphrag's get_client functions llm = get_llm(config) embedder = get_text_embedder(config) # Create data config from storage paths data_config = DataConfig( input_dir=str(Path(config.storage.base_dir)), ) return cls( token_encoder=token_encoder, llm=llm, embedder=embedder, data_config=data_config, context_config=_default_context_config, search_config=_default_search_config, )