autogen_agentchat.base#
- class AndTerminationCondition(*conditions: TerminationCondition)[source]#
Bases:
TerminationCondition
,Component
[AndTerminationConditionConfig
]- component_config_schema#
alias of
AndTerminationConditionConfig
- component_provider_override: ClassVar[str | None] = 'autogen_agentchat.base.AndTerminationCondition'#
Override the provider string for the component. This should be used to prevent internal module names being a part of the module name.
- component_type: ClassVar[ComponentType] = 'termination'#
The logical type of the component.
- class ChatAgent(*args, **kwargs)[source]#
Bases:
ABC
,TaskRunner
,ComponentBase
[BaseModel
]Protocol for a chat agent.
- component_type: ClassVar[ComponentType] = 'agent'#
The logical type of the component.
- abstract property description: str#
The description of the agent. This is used by team to make decisions about which agents to use. The description should describe the agent’s capabilities and how to interact with it.
- abstract property name: str#
The name of the agent. This is used by team to uniquely identify the agent. It should be unique within the team.
- abstract async on_messages(messages: Sequence[Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], cancellation_token: CancellationToken) Response [source]#
Handles incoming messages and returns a response.
- abstract on_messages_stream(messages: Sequence[Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], cancellation_token: CancellationToken) AsyncGenerator[Annotated[ToolCallRequestEvent | ToolCallExecutionEvent | MemoryQueryEvent | UserInputRequestedEvent | ModelClientStreamingChunkEvent | ThoughtEvent, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Response, None] [source]#
Handles incoming messages and returns a stream of inner messages and and the final item is the response.
- abstract async on_pause(cancellation_token: CancellationToken) None [source]#
Called when the agent is paused. The agent may be running in
on_messages()
oron_messages_stream()
when this method is called.
- abstract async on_reset(cancellation_token: CancellationToken) None [source]#
Resets the agent to its initialization state.
- abstract async on_resume(cancellation_token: CancellationToken) None [source]#
Called when the agent is resumed. The agent may be running in
on_messages()
oron_messages_stream()
when this method is called.
- abstract property produced_message_types: Sequence[type[Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]]]#
The types of messages that the agent produces in the
Response.chat_message
field. They must beChatMessage
types.
- pydantic model Handoff[source]#
Bases:
BaseModel
Handoff configuration.
Show JSON schema
{ "title": "Handoff", "description": "Handoff configuration.", "type": "object", "properties": { "target": { "title": "Target", "type": "string" }, "description": { "default": "", "title": "Description", "type": "string" }, "name": { "default": "", "title": "Name", "type": "string" }, "message": { "default": "", "title": "Message", "type": "string" } }, "required": [ "target" ] }
- Fields:
description (str)
message (str)
name (str)
target (str)
- Validators:
set_defaults
»all fields
- field description: str = ''#
The description of the handoff such as the condition under which it should happen and the target agent’s ability. If not provided, it is generated from the target agent’s name.
- Validated by:
set_defaults
- field message: str = ''#
The message to the target agent. If not provided, it is generated from the target agent’s name.
- Validated by:
set_defaults
- field name: str = ''#
The name of this handoff configuration. If not provided, it is generated from the target agent’s name.
- Validated by:
set_defaults
- class OrTerminationCondition(*conditions: TerminationCondition)[source]#
Bases:
TerminationCondition
,Component
[OrTerminationConditionConfig
]- component_config_schema#
alias of
OrTerminationConditionConfig
- component_provider_override: ClassVar[str | None] = 'autogen_agentchat.base.OrTerminationCondition'#
Override the provider string for the component. This should be used to prevent internal module names being a part of the module name.
- component_type: ClassVar[ComponentType] = 'termination'#
The logical type of the component.
- class Response(*, chat_message: Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')], inner_messages: Sequence[Annotated[ToolCallRequestEvent | ToolCallExecutionEvent | MemoryQueryEvent | UserInputRequestedEvent | ModelClientStreamingChunkEvent | ThoughtEvent, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]] | None = None)[source]#
Bases:
object
A response from calling
ChatAgent.on_messages()
.- chat_message: Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]#
A chat message produced by the agent as the response.
- inner_messages: Sequence[Annotated[ToolCallRequestEvent | ToolCallExecutionEvent | MemoryQueryEvent | UserInputRequestedEvent | ModelClientStreamingChunkEvent | ThoughtEvent, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]] | None = None#
Inner messages produced by the agent, they can be
AgentEvent
orChatMessage
.
- class TaskResult(messages: Sequence[Annotated[ToolCallRequestEvent | ToolCallExecutionEvent | MemoryQueryEvent | UserInputRequestedEvent | ModelClientStreamingChunkEvent | ThoughtEvent, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], stop_reason: str | None = None)[source]#
Bases:
object
Result of running a task.
- messages: Sequence[Annotated[ToolCallRequestEvent | ToolCallExecutionEvent | MemoryQueryEvent | UserInputRequestedEvent | ModelClientStreamingChunkEvent | ThoughtEvent, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]]#
Messages produced by the task.
- class TaskRunner(*args, **kwargs)[source]#
Bases:
Protocol
A task runner.
- async run(*, task: str | Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Sequence[Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]] | None = None, cancellation_token: CancellationToken | None = None) TaskResult [source]#
Run the task and return the result.
The task can be a string, a single message, or a sequence of messages.
The runner is stateful and a subsequent call to this method will continue from where the previous call left off. If the task is not specified, the runner will continue with the current task.
- run_stream(*, task: str | Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Sequence[Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]] | None = None, cancellation_token: CancellationToken | None = None) AsyncGenerator[Annotated[ToolCallRequestEvent | ToolCallExecutionEvent | MemoryQueryEvent | UserInputRequestedEvent | ModelClientStreamingChunkEvent | ThoughtEvent, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | TaskResult, None] [source]#
Run the task and produces a stream of messages and the final result
TaskResult
as the last item in the stream.The task can be a string, a single message, or a sequence of messages.
The runner is stateful and a subsequent call to this method will continue from where the previous call left off. If the task is not specified, the runner will continue with the current task.
- class Team(*args, **kwargs)[source]#
Bases:
ABC
,TaskRunner
,ComponentBase
[BaseModel
]- component_type: ClassVar[ComponentType] = 'team'#
The logical type of the component.
- abstract async pause() None [source]#
Pause the team and all its participants. This is useful for pausing the
autogen_agentchat.base.TaskRunner.run()
orautogen_agentchat.base.TaskRunner.run_stream()
methods from concurrently, while keeping them alive.
- exception TerminatedException[source]#
Bases:
BaseException
- class TerminationCondition[source]#
Bases:
ABC
,ComponentBase
[BaseModel
]A stateful condition that determines when a conversation should be terminated.
A termination condition is a callable that takes a sequence of ChatMessage objects since the last time the condition was called, and returns a StopMessage if the conversation should be terminated, or None otherwise. Once a termination condition has been reached, it must be reset before it can be used again.
Termination conditions can be combined using the AND and OR operators.
Example
import asyncio from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination async def main() -> None: # Terminate the conversation after 10 turns or if the text "TERMINATE" is mentioned. cond1 = MaxMessageTermination(10) | TextMentionTermination("TERMINATE") # Terminate the conversation after 10 turns and if the text "TERMINATE" is mentioned. cond2 = MaxMessageTermination(10) & TextMentionTermination("TERMINATE") # ... # Reset the termination condition. await cond1.reset() await cond2.reset() asyncio.run(main())
- component_type: ClassVar[ComponentType] = 'termination'#
The logical type of the component.