causica.data_generation.samplers.noise_dist_sampler¶
Module Contents¶
Classes¶
An interface of a univariate noise sampler |
|
Sampler for JointNoiseModule, given shapes and types of different variables |
|
Sample a UnivariateNormalNoiseModule, with standard deviation given by a distribution. |
|
Sample a UnivariateLaplaceNoiseModule, with standard deviation given by a distribution. |
|
Sample a UnivariateLaplaceNoiseModule, with standard deviation given by a distribution. |
|
Sample a BernoulliNoiseModule, with base_logits given by a distribution. |
|
Sample a CategoricalNoiseModule, with num_classes classes. This does not actually sample but returns the noise. |
- class causica.data_generation.samplers.noise_dist_sampler.NoiseModuleSampler[source]¶
Bases:
causica.data_generation.samplers.sampler.Sampler[causica.distributions.noise.NoiseModule]An interface of a univariate noise sampler
- abstract sample() causica.distributions.noise.NoiseModule[source]¶
Sample a sample type with given shape
- class causica.data_generation.samplers.noise_dist_sampler.JointNoiseModuleSampler(noise_dist_samplers: Mapping[str, NoiseModuleSampler])[source]¶
Bases:
NoiseModuleSamplerSampler for JointNoiseModule, given shapes and types of different variables
- sample() causica.distributions.JointNoiseModule[source]¶
Sample a sample type with given shape
-
class causica.data_generation.samplers.noise_dist_sampler.UnivariateNormalNoiseModuleSampler(std_dist: torch.distributions.Distribution, dim: int =
1)[source]¶ Bases:
NoiseModuleSamplerSample a UnivariateNormalNoiseModule, with standard deviation given by a distribution.
-
class causica.data_generation.samplers.noise_dist_sampler.UnivariateLaplaceNoiseModuleSampler(std_dist: torch.distributions.Distribution, dim: int =
1)[source]¶ Bases:
NoiseModuleSamplerSample a UnivariateLaplaceNoiseModule, with standard deviation given by a distribution.
-
class causica.data_generation.samplers.noise_dist_sampler.UnivariateCauchyNoiseModuleSampler(std_dist: torch.distributions.Distribution, dim: int =
1)[source]¶ Bases:
NoiseModuleSamplerSample a UnivariateLaplaceNoiseModule, with standard deviation given by a distribution.
-
class causica.data_generation.samplers.noise_dist_sampler.BernoulliNoiseModuleSampler(base_logits_dist: torch.distributions.Distribution, dim: int =
1)[source]¶ Bases:
NoiseModuleSamplerSample a BernoulliNoiseModule, with base_logits given by a distribution.
- sample() causica.distributions.noise.NoiseModule[source]¶
Sample a sample type with given shape
-
class causica.data_generation.samplers.noise_dist_sampler.CategoricalNoiseModuleSampler(base_logits_dist: torch.distributions.Distribution | None, num_classes: int =
2)[source]¶ Bases:
NoiseModuleSamplerSample a CategoricalNoiseModule, with num_classes classes. This does not actually sample but returns the noise.
- sample() causica.distributions.noise.NoiseModule[source]¶
Sample a sample type with given shape