causica.training.evaluation¶
Module Contents¶
Functions¶
|
Calculate the average log-prob of interventional data. |
|
Evaluate the ATEs of a model |
|
Evaluate the ITEs of a model. |
|
Take the mean of a list of torch tensors, they must all have the same shape |
|
Take the logsumexp of a list of torch tensors, they must all have the same shape |
- causica.training.evaluation.eval_intervention_likelihoods(sems: list[causica.sem.structural_equation_model.SEM], intervention_with_effects: causica.datasets.causica_dataset_format.InterventionWithEffects) torch.Tensor[source]¶
Calculate the average log-prob of interventional data.
Specifically we calculate 𝔼_sample[log(𝔼_G[p(sample | G)])]
- Parameters:¶
- sems: list[causica.sem.structural_equation_model.SEM]¶
An iterable of SEMS to evaluate the interventional log prob of
- interventions
True interventional data to use for evaluation.
- Returns:¶
Log-likelihood of the interventional data for each interventional datapoint
-
causica.training.evaluation.eval_ate_rmse(sems: Iterable[causica.sem.structural_equation_model.SEM], intervention: causica.datasets.causica_dataset_format.InterventionWithEffects, samples_per_graph: int =
1000) tensordict.TensorDict[source]¶ Evaluate the ATEs of a model
- Parameters:¶
- sems: Iterable[causica.sem.structural_equation_model.SEM]¶
An iterable of structural equation models to evaluate the ATE RMSE of
- intervention: causica.datasets.causica_dataset_format.InterventionWithEffects¶
True interventional data to use for evaluation.
- samples_per_graph: int =
1000¶ Number of samples to draw per graph to calculate the ATE.
- Returns:¶
Dict of the RMSE of the ATE for each node we’re interested in
- causica.training.evaluation.eval_ite_rmse(sems: Iterable[causica.sem.structural_equation_model.SEM], counterfactual_data: causica.datasets.causica_dataset_format.CounterfactualWithEffects) tensordict.TensorDict[source]¶
Evaluate the ITEs of a model.
- Parameters:¶
- sems: Iterable[causica.sem.structural_equation_model.SEM]¶
An iterable of structural equation models to evaluate the ITE RMSE of
- counterfactual_data: causica.datasets.causica_dataset_format.CounterfactualWithEffects¶
Data of true counterfactuals to use for evaluation.
- Returns:¶
Dict of RMSEs for each effect variable we’re interested in