Options
All
• Public
• Public/Protected
• All

# Class Plane

Represens a plane by the equation ax + by + cz + d = 0

• Plane

## Constructors

### constructor

• new Plane(a: number, b: number, c: number, d: number): Plane
• Creates a Plane object according to the given floats a, b, c, d and the plane equation : ax + by + cz + d = 0

#### Parameters

• ##### a: number

a component of the plane

• ##### b: number

b component of the plane

• ##### c: number

c component of the plane

• ##### d: number

d component of the plane

## Properties

### d

d: number

d component of the plane

### normal

normal: Vector3

Normal of the plane (a,b,c)

## Methods

### asArray

• asArray(): number[]
• #### Returns number[]

the plane coordinates as a new array of 4 elements [a, b, c, d].

### clone

• #### Returns Plane

a new plane copied from the current Plane.

### copyFromPoints

• Updates the current Plane from the plane defined by the three given points.

#### Parameters

• ##### point1: Vector3

one of the points used to contruct the plane

• ##### point2: Vector3

one of the points used to contruct the plane

• ##### point3: Vector3

one of the points used to contruct the plane

#### Returns Plane

the updated Plane.

### dotCoordinate

• dotCoordinate(point: Vector3): number
• Calcualtte the dot product between the point and the plane normal

#### Parameters

• ##### point: Vector3

point to calculate the dot product with

#### Returns number

the dot product (float) of the point coordinates and the plane normal.

### getClassName

• getClassName(): string
• #### Returns string

the string "Plane".

### getHashCode

• getHashCode(): number
• #### Returns number

the Plane hash code.

### isFrontFacingTo

• isFrontFacingTo(direction: Vector3, epsilon: number): boolean
• Checks if the plane is facing a given direction

#### Parameters

• ##### direction: Vector3

the direction to check if the plane is facing

• ##### epsilon: number

value the dot product is compared against (returns true if dot <= epsilon)

#### Returns boolean

True is the vector "direction" is the same side than the plane normal.

### normalize

• Normalize the current Plane in place.

#### Returns Plane

the updated Plane.

### signedDistanceTo

• signedDistanceTo(point: Vector3): number
• Calculates the distance to a point

#### Parameters

• ##### point: Vector3

point to calculate distance to

#### Returns number

the signed distance (float) from the given point to the Plane.

### transform

• Applies a transformation the plane and returns the result

#### Parameters

• ##### transformation: Matrix

the transformation matrix to be applied to the plane

#### Returns Plane

a new Plane as the result of the transformation of the current Plane by the given matrix.

### Static FromArray

• FromArray(array: ArrayLike<number>): Plane
• Creates a plane from an array

#### Parameters

• ##### array: ArrayLike<number>

the array to create a plane from

#### Returns Plane

a new Plane from the given array.

### Static FromPoints

• Creates a plane from three points

#### Parameters

• ##### point1: Vector3

point used to create the plane

• ##### point2: Vector3

point used to create the plane

• ##### point3: Vector3

point used to create the plane

#### Returns Plane

a new Plane defined by the three given points.

### Static FromPositionAndNormal

• Creates a plane from an origin point and a normal

#### Parameters

• ##### origin: Vector3

origin of the plane to be constructed

• ##### normal: Vector3

normal of the plane to be constructed

#### Returns Plane

a new Plane the normal vector to this plane at the given origin point. Note : the vector "normal" is updated because normalized.

### Static SignedDistanceToPlaneFromPositionAndNormal

• Calculates the distance from a plane and a point

#### Parameters

• ##### origin: Vector3

origin of the plane to be constructed

• ##### normal: Vector3

normal of the plane to be constructed

• ##### point: Vector3

point to calculate distance to

#### Returns number

the signed distance between the plane defined by the normal vector at the "origin" point and the given other point.