Quick Start
Prerequisites
Azure SKUs
Non-Azure Systems
NVIDIA A100 GPUs + CUDA >= 11.8
NVIDIA H100 GPUs + CUDA >= 12.0
AMD MI250X GPUs + ROCm >= 5.7
AMD MI300X GPUs + ROCm >= 6.0
OS: tested over Ubuntu 18.04 and 20.04
Libraries
-
sudo apt-get install libnuma-dev
(Optional, for building the Python module) Python >= 3.8 and Python Development Package
sudo apt-get satisfy "python3 (>=3.8), python3-dev (>=3.8)"
If you don’t want to build Python module, you need to set
-DMSCCLPP_BUILD_PYTHON_BINDINGS=OFF
in yourcmake
command (see details in Install from Source (Libraries and Headers)).(Optional, for benchmarks) MPI
-
Others
For NVIDIA platforms,
nvidia_peermem
driver should be loaded on all nodes. Check it via:lsmod | grep nvidia_peermem
For GPU with nvls support, the IMEX channels should be set up (refer cuMemCreate). You can set up the channels manually via:
sudo nvidia-modprobe -s -i <start:number of minors>
Build with Docker Images
We provide docker images which package all prerequisites for MSCCL++. You can setup your dev environment with the following command.
$ docker run -it --privileged --net=host --ipc=host --gpus all ghcr.io/microsoft/mscclpp/mscclpp:base-dev-cuda12.2 mscclpp-dev bash
See all available images here.
Build from Source
CMake 3.25 or later is required.
$ git clone https://github.com/microsoft/mscclpp.git
$ mkdir -p mscclpp/build && cd mscclpp/build
For NVIDIA platforms, build MSCCL++ as follows.
# For NVIDIA platforms
$ cmake -DCMAKE_BUILD_TYPE=Release ..
$ make -j
For AMD platforms, use HIPCC instead of the default C++ compiler. Replace /path/to/hipcc
from the command below into the your HIPCC path.
# For AMD platforms
$ CXX=/path/to/hipcc cmake -DCMAKE_BUILD_TYPE=Release ..
$ make -j
Install from Source (Libraries and Headers)
# Install the generated headers and binaries to /usr/local/mscclpp
$ cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local/mscclpp -DMSCCLPP_BUILD_PYTHON_BINDINGS=OFF ..
$ make -j mscclpp mscclpp_static
$ sudo make install/fast
Install from Source (Python Module)
Python 3.8 or later is required.
# For NVIDIA platforms
$ python -m pip install .
# For AMD platforms
$ CXX=/path/to/hipcc python -m pip install .
Docker Images
Our base image installs all prerequisites for MSCCL++.
$ docker pull ghcr.io/microsoft/mscclpp/mscclpp:base-dev-cuda12.3
See all available images here.
Unit Tests
unit_tests
require one GPU on the system. It only tests operation of basic components.
$ make -j unit_tests
$ ./test/unit_tests
For thorough testing of MSCCL++ features, we need to use mp_unit_tests
that require at least two GPUs on the system. mp_unit_tests
also requires MPI to be installed on the system. For example, the following commands compile and run mp_unit_tests
with two processes (two GPUs). The number of GPUs can be changed by changing the number of processes.
$ make -j mp_unit_tests
$ mpirun -np 2 ./test/mp_unit_tests
To run mp_unit_tests
with more than two nodes, you need to specify the -ip_port
argument that is accessible from all nodes. For example:
$ mpirun -np 16 -npernode 8 -hostfile hostfile ./test/mp_unit_tests -ip_port 10.0.0.5:50000
Performance Benchmark
Python Benchmark
Install the MSCCL++ Python package and run our Python AllReduce benchmark as follows. It requires MPI on the system.
# Choose `requirements_*.txt` according to your CUDA/ROCm version.
$ python3 -m pip install -r ./python/requirements_cuda12.txt
$ mpirun -tag-output -np 8 python3 ./python/mscclpp_benchmark/allreduce_bench.py
C++ Benchmark (mscclpp-test)
NOTE: mscclpp-test will be retired soon and will be maintained only as an example of C++ implementation. If you want to get the latest performance numbers, please use the Python benchmark instead.
mscclpp-test is a set of C++ performance benchmarks. It requires MPI on the system, and the path should be provided via MPI_HOME
environment variable to the CMake build system.
$ MPI_HOME=/path/to/mpi cmake -DCMAKE_BUILD_TYPE=Release ..
$ make -j allgather_test_perf allreduce_test_perf
For example, the following command runs the allreduce5
algorithm with 8 GPUs starting from 3MB to 48MB messages, by doubling the message size in between. You can try different algorithms by changing the -k 5
option to another value (e.g., -k 3
runs allreduce3
). Check all algorithms from the code: allreduce_test.cu and allgather_test.cu.
$ mpirun --bind-to numa -np 8 ./test/mscclpp-test/allreduce_test_perf -b 3m -e 48m -G 100 -n 100 -w 20 -f 2 -k 5
NOTE: a few algorithms set a condition on the total data size, such as to be a multiple of 3. If the condition is unmet, the command will throw a regarding error.
Check the help message for more details.
$ ./test/mscclpp-test/allreduce_test_perf --help
USAGE: allreduce_test_perf
[-b,--minbytes <min size in bytes>]
[-e,--maxbytes <max size in bytes>]
[-i,--stepbytes <increment size>]
[-f,--stepfactor <increment factor>]
[-n,--iters <iteration count>]
[-w,--warmup_iters <warmup iteration count>]
[-c,--check <0/1>]
[-T,--timeout <time in seconds>]
[-G,--cudagraph <num graph launches>]
[-a,--average <0/1/2/3> report average iteration time <0=RANK0/1=AVG/2=MIN/3=MAX>]
[-k,--kernel_num <kernel number of commnication primitive>]
[-o, --output_file <output file name>]
[-h,--help]
NCCL over MSCCL++
We implement NCCL APIs using MSCCL++. How to use:
Replace your
libnccl.so
library withlibmscclpp_nccl.so
, which is compiled under./build/apps/nccl/
directory.
For example, you can run nccl-tests using libmscclpp_nccl.so
as follows, where MSCCLPP_BUILD
is your MSCCL++ build directory.
mpirun -np 8 --bind-to numa --allow-run-as-root -x LD_PRELOAD=$MSCCLPP_BUILD/apps/nccl/libmscclpp_nccl.so ./build/all_reduce_perf -b 1K -e 256M -f 2 -d half -G 20 -w 10 -n 50
If MSCCL++ is built on AMD platforms, libmscclpp_nccl.so
would replace the RCCL library (i.e., librccl.so
).
See limitations of the current NCCL over MSCCL++ from here.