nanotune.tuningstages.settings
- class nanotune.tuningstages.settings.Settings[source]
Bases:
object
Base class for settings dataclasses such as DataSettings or SetpointSettings.
- class nanotune.tuningstages.settings.DataSettings(db_name: str = 'experiments.db', db_folder: str = '.', normalization_constants: NormalizationConstants = NormalizationConstants(transport=(0.0, 1.0), sensing=(0.0, 1.0), rf=(0.0, 1.0)), experiment_id: Optional[int] = None, segment_db_name: str = 'segmented_experiments.db', segment_db_folder: str = '.', segment_experiment_id: Optional[int] = None, segment_size: float = 0.05, noise_floor: float = 0.02, dot_signal_threshold: float = 0.1)[source]
Bases:
Settings
Setting sub-class holding data-related information such as where data is saved or how it is normalized.
- Parameters
db_name (str) – database name. Default set to nt.config[‘db_name’].
db_folder (str) – path of folder containing db_name. Default set to nt.config[‘db_folder’].
normalization_constants (NormalizationConstants) – device specific normalization constants.
experiment_id (int) – ID of experiment to which tuning data belongs, optional.
segment_db_name (str) – name of database containing segmented dot data, saved when performing a dot fit.
segment_db_folder (str) – path of folder containing segment_db_name. Default set to nt.config[‘db_folder’].
segment_experiment_id (int) – ID of experiment to which dot segment data belongs, optional.
segment_size (float) – voltage range/span of each dot segment, classified independently.
noise_floor (float) – threshold below which a measured signal is considered noise. Compared to normalized measurements.
dot_signal_threshold (float) – threshold below which a measured signal is considered possibly belong to a few-electron regime and above which a signal is considered open current.
- normalization_constants: NormalizationConstants = NormalizationConstants(transport=(0.0, 1.0), sensing=(0.0, 1.0), rf=(0.0, 1.0))
- class nanotune.tuningstages.settings.SetpointSettings(voltage_precision: float, parameters_to_sweep: ~typing.Sequence[~qcodes.instrument.parameter._BaseParameter] = <factory>, ranges_to_sweep: ~typing.Sequence[~typing.Sequence[float]] = <factory>, safety_voltage_ranges: ~typing.Sequence[~typing.Sequence[float]] = <factory>, setpoint_method: ~typing.Optional[~typing.Callable[[~typing.Any], ~typing.Sequence[~typing.Sequence[float]]]] = None, high_res_precisions: ~typing.Sequence[float] = (0.0005, 0.0001))[source]
Bases:
Settings
Settings sub-class holding setpoint-related information such as voltage precision and parameters to sweep.
- Parameters
voltage_precision (float) – voltage difference between setpoints.
parameters_to_sweep (Sequence[_BaseParameter]) – list of QCoDeS parameters to sweep.
ranges_to_sweep (Sequence[Sequence[float]]) – voltage ranges to sweep, in same order as parameters_to_sweep.
safety_voltage_ranges (Sequence[Sequence[float]]) – safe voltage ranges of parameters_to_sweep, in the same order.
setpoint_method (optional Callable) – optional callable, to be used to calculate setpoints. Default are linearly spaced setpoints.
high_res_precisions (Sequence[float]) – voltage precisions for high resolution data. The first is used for entire/larger diagrams while the second for data segments/smaller ranges.
- class nanotune.tuningstages.settings.Classifiers(pinchoff: Optional[Classifier] = None, singledot: Optional[Classifier] = None, doubledot: Optional[Classifier] = None, dotregime: Optional[Classifier] = None)[source]
Bases:
object
Class grouping binary classifiers required for tuning.
- Parameters
pinchoff (optional nt.Classifier) – pre-trained pinch-off classifier.
singledot (optional nt.Classifier) – pre-trained single dot classifier.
doubledot (optional nt.Classifier) – pre-trained double dot classifier.
dotregime (optional nt.Classifier) – pre-trained dot regime classifier.
- pinchoff: Optional[Classifier] = None
- singledot: Optional[Classifier] = None
- doubledot: Optional[Classifier] = None
- dotregime: Optional[Classifier] = None