References
Francesco Aquilante, Thomas Bondo Pedersen, Alfredo Sánchez de Merás, and Henrik Koch. Fast noniterative orbital localization for large molecules. The Journal of Chemical Physics, 125(17):174101, 11 2006. URL: https://doi.org/10.1063/1.2360264, doi:10.1063/1.2360264.
Katharina Boguslawski and Paweł Tecmer. Orbital entanglement in quantum chemistry. International Journal of Quantum Chemistry, 115(19):1289–1295, 2015. doi:10.1002/qua.24832.
James W. Boughton and Peter Pulay. Comparison of the Boys and Pipek-Mezey localizations in the local correlation approach and automatic virtual basis selection. Journal of Computational Chemistry, 14(6):736–740, 1993. doi:10.1002/jcc.540140615.
Sergey B. Bravyi and Alexei Yu. Kitaev. Fermionic quantum computation. Annals of Physics, 298(1):210–226, 2002. doi:10.1006/aphy.2002.6254.
Clyde Edmiston and Klaus Ruedenberg. Localized atomic and molecular orbitals. Rev. Mod. Phys., 35:457–464, Jul 1963. URL: https://link.aps.org/doi/10.1103/RevModPhys.35.457, doi:10.1103/RevModPhys.35.457.
David Feller. The role of databases in support of computational chemistry calculations. Journal of Computational Chemistry, 17(13):1571–1586, 1996. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-987X%28199610%2917%3A13%3C1571%3A%3AAID-JCC9%3E3.0.CO%3B2-P, doi:10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P.
J. M. Foster and S. F. Boys. Canonical configurational interaction procedure. Rev. Mod. Phys., 32:300–302, Apr 1960. URL: https://link.aps.org/doi/10.1103/RevModPhys.32.300, doi:10.1103/RevModPhys.32.300.
Nicholas J. Higham. The scaling and squaring method for the matrix exponential revisited. SIAM Journal on Matrix Analysis and Applications, 26(4):1179–1193, 2005. doi:10.1137/04061101X.
Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and Matthias Christandl. Quantum circuits for isometries. Physical Review A, 93:032318, 2016. doi:10.1103/PhysRevA.93.032318.
Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and Jay M. Gambetta. Quantum computing with Qiskit. arXiv, 2024. doi:10.48550/arXiv.2405.08810.
P. Jordan and E. Wigner. Über das Paulische Äquivalenzverbot. Zeitschrift für Physik, 47:631–651, 1928. doi:10.1007/BF01331938.
A. Y. Kitaev. Quantum measurements and the Abelian stabilizer problem. arXiv, 1995. URL: https://arxiv.org/abs/quant-ph/9511026.
Mikael Kovtun, Eleftherios Lambros, Aodong Liu, Diandong Tang, David B. Williams–Young, and Xiaosong Li. Accelerating relativistic exact-two-component density functional theory calculations with graphical processing units. Journal of Chemical Theory and Computation, 20(18):7694–7699, 2024. doi:10.1021/acs.jctc.4c00843.
Per-Olov Löwdin and Harrison Shull. Natural orbitals in the quantum theory of two-electron systems. Physical Review, 101:1730–1739, Mar 1956. URL: https://link.aps.org/doi/10.1103/PhysRev.101.1730, doi:10.1103/PhysRev.101.1730.
Susi Lehtola and Hannes Jónsson. Unitary optimization of localized molecular orbitals. Journal of Chemical Theory and Computation, 9(12):5365–5372, 2013. URL: https://doi.org/10.1021/ct400793q, doi:10.1021/ct400793q.
Susi Lehtola, Conrad Steigemann, Micael J. T. Oliveira, and Miguel A. L. Marques. Recent developments in Libxc — a comprehensive library of functionals for density functional theory. SoftwareX, 7:1–5, 2018. doi:10.1016/j.softx.2017.11.002.
Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45:503–528, 1989. doi:10.1007/BF01589116.
Emanuel Malvetti, Raban Iten, and Roger Colbeck. Quantum circuits for sparse isometries. Quantum, 5:412, 2021. URL: http://arxiv.org/abs/2006.00016, doi:10.22331/q-2021-06-21-412.
Peter J. Mohr, David B. Newell, and Barry N. Taylor. CODATA recommended values of the fundamental physical constants: 2022. Reviews of Modern Physics, 97:025002, 2025. URL: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=958143, doi:10.1103/RevModPhys.97.025002.
Michael A. Nielsen and Isaac L. Chuang. The quantum Fourier transform and its applications, chapter 5.2. Cambridge University Press, Cambridge, UK, 2010. doi:10.1017/CBO9780511976667.
Alessio Petrone, David B. Williams–Young, Shichao Sun, Torin F. Stetina, and Xiaosong Li. An efficient implementation of two-component relativistic density functional theory with torque-free auxiliary variables. The European Physical Journal B, 91(169):169, 2018. doi:10.1140/epjb/e2018-90170-1.
János Pipek and Paul G. Mezey. A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. The Journal of Chemical Physics, 90(9):4916–4926, 05 1989. URL: https://doi.org/10.1063/1.456588, doi:10.1063/1.456588.
Benjamin P. Pritchard, Doaa Altarawy, Brett Didier, Tara D. Gibson, and Theresa L. Windus. New Basis Set Exchange: an open, up-to-date resource for the molecular sciences community. Journal of Chemical Information and Modeling, 59(11):4814–4820, 2019. URL: https://doi.org/10.1021/acs.jcim.9b00725, doi:10.1021/acs.jcim.9b00725.
P. Pulay. Improved SCF convergence acceleration. Journal of Computational Chemistry, 3(4):556–560, 1982. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540030413, doi:https://doi.org/10.1002/jcc.540030413.
Elvira R. Sayfutyarova, Qiming Sun, Garnet Kin-Lic Chan, and Gerald Knizia. Automated construction of molecular active spaces from atomic valence orbitals. Journal of Chemical Theory and Computation, 13(9):4063–4078, 2017. URL: https://arxiv.org/abs/1701.07862, doi:10.1021/acs.jctc.7b00128.
H. B. Schlegel and J. J. W. McDouall. Do you have SCF stability and convergence problems?, pages 167–185. Springer Netherlands, Dordrecht, 1991. URL: https://doi.org/10.1007/978-94-011-3262-6_2, doi:10.1007/978-94-011-3262-6_2.
Karen L. Schuchardt, Brett T. Didier, Todd Elsethagen, Lisong Sun, Vidhya Gurumoorthi, Jared Chase, Jun Li, and Theresa L. Windus. Basis Set Exchange: a community database for computational sciences. Journal of Chemical Information and Modeling, 47(3):1045–1052, 2007. URL: https://doi.org/10.1021/ci600510j, doi:10.1021/ci600510j.
Jacob T. Seeley, Martin J. Richard, and Peter J. Love. The Bravyi-Kitaev transformation for quantum computation of electronic structure. The Journal of Chemical Physics, 137(22):224109, 2012. doi:10.1063/1.4768229.
Robert A. Shaw and J. Grant Hill. Prescreening and efficiency in the evaluation of integrals over ab initio effective core potentials. The Journal of Chemical Physics, 147(7):074108, aug 2017. URL: http://aip.scitation.org/doi/10.1063/1.4986887, doi:10.1063/1.4986887.
Robert A. Shaw and J. Grant Hill. libecpint: a C++ library for the efficient evaluation of integrals over effective core potentials. Journal of Open Source Software, 6(60):3039, 2021. URL: https://doi.org/10.21105/joss.03039, doi:10.21105/joss.03039.
Christopher J. Stein and Markus Reiher. Automated selection of active orbital spaces. Journal of Chemical Theory and Computation, 12(4):1760–1771, 2016. URL: https://arxiv.org/abs/1602.03835, doi:10.1021/acs.jctc.6b00156.
Christopher J. Stein and Markus Reiher. autoCAS: a program for fully automated multiconfigurational calculations. Journal of Computational Chemistry, 40(25):2216–2226, 2019. URL: https://arxiv.org/abs/1904.00097, doi:10.1002/jcc.25869.
Joseph E. Subotnik, Anthony D. Dutoi, and Martin Head-Gordon. Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The Journal of Chemical Physics, 123(11):114108, 09 2005. URL: https://doi.org/10.1063/1.2033687, doi:10.1063/1.2033687.
Norm M. Tubman, C. Daniel Freeman, Daniel S. Levine, Diptarka Hait, Martin Head-Gordon, and K. Birgitta Whaley. Modern approaches to exact diagonalization and selected configuration interaction with the adaptive sampling CI method. Journal of Chemical Theory and Computation, 16(4):2139–2159, 2020. URL: https://doi.org/10.1021/acs.jctc.8b00536, doi:10.1021/acs.jctc.8b00536.
Norm M. Tubman, Joonho Lee, Tyler Y. Takeshita, Martin Head-Gordon, and K. Birgitta Whaley. A deterministic alternative to the full configuration interaction quantum Monte Carlo method. The Journal of Chemical Physics, 145(4):044112, 07 2016. URL: https://doi.org/10.1063/1.4955109, doi:10.1063/1.4955109.
E. F. Valeev. Libint: a library for the evaluation of molecular integrals of many-body operators over Gaussian functions. http://libint.valeyev.net/, 2024. version 2.9.0.
Zhenling Wang, Kevin Ikeda, Hengyuan Shen, Matthias Loipersberger, Alexander Zech, Abdulrahman Aldossary, Teresa Head-Gordon, and Martin Head-Gordon. Second-generation energy decomposition analysis of intermolecular interaction energies from the second-order Mo̷ller–Plesset theory: an extensible, orthogonal formulation with useful basis set convergence for all terms. Journal of Chemical Theory and Computation, 21(3):1163–1178, 2025. URL: https://doi.org/10.1021/acs.jctc.4c01301, doi:10.1021/acs.jctc.4c01301.
David B. Williams–Young, Andrey Asadchev, Doru Thom Popovici, David Clark, Jonathan Waldrop, Theresa L. Windus, Edward F. Valeev, and Wibe A. de Jong. Distributed memory, GPU accelerated Fock construction for hybrid, Gaussian basis density functional theory. The Journal of Chemical Physics, 158(23):234104, 2023. doi:10.1063/5.0151070.
David B. Williams–Young, Abhishek Bagusetty, Wibe A. de Jong, Douglas Doerfler, Hubertus J. J. van Dam, Álvaro Vázquez-Mayagoitia, Theresa L. Windus, and Chao Yang. Achieving performance portability in Gaussian basis set density functional theory on accelerator-based architectures in NWChemEx. Parallel Computing, 108:102829, 2021. doi:10.1016/j.parco.2021.102829.
David B. Williams–Young, Wibe A. de Jong, Hubertus J. J. van Dam, and Chao Yang. On the efficient evaluation of the exchange correlation potential on graphics processing unit clusters. Frontiers in Chemistry, 8:581058, 2020. URL: https://arxiv.org/abs/2007.03143, doi:10.3389/fchem.2020.581058.
David B. Williams-Young, Norm M. Tubman, Carlos Mejuto-Zaera, and Wibe A. de Jong. A parallel, distributed memory implementation of the adaptive sampling configuration interaction method. The Journal of Chemical Physics, 158:214109, 2023. URL: https://arxiv.org/abs/2303.05688, doi:10.1063/5.0148650.
Troy Van Voorhis and Martin Head-Gordon. A geometric approach to direct minimization. Molecular Physics, 100(11):1713–1721, 2002. URL: https://doi.org/10.1080/00268970110103642, doi:10.1080/00268970110103642.