Releasing SuperBench v0.2
· One min read
SuperBench Team
We are very happy to announce that SuperBench 0.2.0 version is officially released today!
You can install and try superbench by following Getting Started Tutorial.
#
SuperBench 0.2.0 Release Notes#
SuperBench Framework- Implemented a CLI to provide a command line interface.
- Implemented Runner for nodes control and management.
- Implemented Executor.
- Implemented Benchmark framework.
#
Supported Benchmarks- Supported Micro-benchmarks
- GEMM FLOPS (GFLOPS, TensorCore, cuBLAS, cuDNN)
- Kernel Launch Time (Kernel_Launch_Event_Time, Kernel_Launch_Wall_Time)
- Operator Performance (MatMul, Sharding_MatMul)
- Supported Model-benchmarks
- CNN models
(Reference: torchvision models)
- ResNet (ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152)
- DenseNet (DenseNet-161, DenseNet-169, DenseNet-201)
- VGG (VGG-11, VGG-13, VGG-16, VGG-19, VGG11_bn, VGG13_bn, VGG16_bn, VGG19_bn)
- MNASNet (mnasnet0_5, mnasnet0_75, mnasnet1_0, mnasnet1_3)
- AlexNet
- GoogLeNet
- Inception_v3
- mobilenet_v2
- ResNeXt (resnext50_32x4d, resnext101_32x8d)
- Wide ResNet (wide_resnet50_2, wide_resnet101_2)
- ShuffleNet (shufflenet_v2_x0_5, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x2_0)
- SqueezeNet (squeezenet1_0, squeezenet1_1)
- LSTM model
- BERT models (BERT-Base, BERT-Large)
- GPT-2 model (specify which config)
- CNN models
(Reference: torchvision models)
#
Examples and Documents- Added examples to run benchmarks respectively.
- Tutorial Documents (introduction, getting-started, developer-guides, APIs, benchmarks).
- Built SuperBench website.