mlos_bench.environments.base_environment
A hierarchy of benchmark environments.
Classes
An abstract base of all benchmark environments. |
Module Contents
- class mlos_bench.environments.base_environment.Environment(*, name: str, config: dict, global_config: dict | None = None, tunables: mlos_bench.tunables.tunable_groups.TunableGroups | None = None, service: mlos_bench.services.base_service.Service | None = None)[source]
An abstract base of all benchmark environments.
Create a new environment with a given config.
- Parameters:
name (str) – Human-readable name of the environment.
config (dict) – Free-format dictionary that contains the benchmark environment configuration. Each config must have at least the “tunable_params” and the “const_args” sections.
global_config (dict) – Free-format dictionary of global parameters (e.g., security credentials) to be mixed in into the “const_args” section of the local config.
tunables (TunableGroups) – A collection of groups of tunable parameters for all environments.
service (Service) – An optional service object (e.g., providing methods to deploy or reboot a VM/Host, etc.).
- __enter__() Environment [source]
Enter the environment’s benchmarking context.
- Return type:
- __exit__(ex_type: Type[BaseException] | None, ex_val: BaseException | None, ex_tb: types.TracebackType | None) Literal[False] [source]
Exit the context of the benchmarking environment.
- Parameters:
ex_type (Optional[Type[BaseException]])
ex_val (Optional[BaseException])
ex_tb (Optional[types.TracebackType])
- Return type:
Literal[False]
- classmethod new(*, env_name: str, class_name: str, config: dict, global_config: dict | None = None, tunables: mlos_bench.tunables.tunable_groups.TunableGroups | None = None, service: mlos_bench.services.base_service.Service | None = None) Environment [source]
Factory method for a new environment with a given config.
- Parameters:
env_name (str) – Human-readable name of the environment.
class_name (str) – FQN of a Python class to instantiate, e.g., “mlos_bench.environments.remote.HostEnv”. Must be derived from the Environment class.
config (dict) – Free-format dictionary that contains the benchmark environment configuration. It will be passed as a constructor parameter of the class specified by name.
global_config (dict) – Free-format dictionary of global parameters (e.g., security credentials) to be mixed in into the “const_args” section of the local config.
tunables (TunableGroups) – A collection of groups of tunable parameters for all environments.
service (Service) – An optional service object (e.g., providing methods to deploy or reboot a VM/Host, etc.).
- Returns:
env – An instance of the Environment class initialized with config.
- Return type:
- pprint(indent: int = 4, level: int = 0) str [source]
Pretty-print the environment configuration. For composite environments, print all children environments as well.
- run() Tuple[mlos_bench.environments.status.Status, datetime.datetime, Dict[str, mlos_bench.tunables.tunable.TunableValue] | None] [source]
Execute the run script for this environment.
For instance, this may start a new experiment, download results, reconfigure the environment, etc. Details are configurable via the environment config.
- Returns:
(status, timestamp, output) – 3-tuple of (Status, timestamp, output) values, where output is a dict with the results or None if the status is not COMPLETED. If run script is a benchmark, then the score is usually expected to be in the score field.
- Return type:
- setup(tunables: mlos_bench.tunables.tunable_groups.TunableGroups, global_config: dict | None = None) bool [source]
Set up a new benchmark environment, if necessary. This method must be idempotent, i.e., calling it several times in a row should be equivalent to a single call.
- Parameters:
tunables (TunableGroups) – A collection of tunable parameters along with their values.
global_config (dict) – Free-format dictionary of global parameters of the environment that are not used in the optimization process.
- Returns:
is_success – True if operation is successful, false otherwise.
- Return type:
- status() Tuple[mlos_bench.environments.status.Status, datetime.datetime, List[Tuple[datetime.datetime, str, Any]]] [source]
Check the status of the benchmark environment.
- Returns:
(benchmark_status, timestamp, telemetry) – 3-tuple of (benchmark status, timestamp, telemetry) values. timestamp is UTC time stamp of the status; it’s current time by default. telemetry is a list (maybe empty) of (timestamp, metric, value) triplets.
- Return type:
- teardown() None [source]
Tear down the benchmark environment.
This method must be idempotent, i.e., calling it several times in a row should be equivalent to a single call.
- Return type:
None
- property parameters: Dict[str, mlos_bench.tunables.tunable.TunableValue][source]
Key/value pairs of all environment parameters (i.e., const_args and tunable_params). Note that before .setup() is called, all tunables will be set to None.
- Returns:
parameters – Key/value pairs of all environment parameters (i.e., const_args and tunable_params).
- Return type:
Dict[str, TunableValue]
- property tunable_params: mlos_bench.tunables.tunable_groups.TunableGroups[source]
Get the configuration space of the given environment.
- Returns:
tunables – A collection of covariant groups of tunable parameters.
- Return type: