mlos_viz
mlos_viz is a framework to help visualizing, explain, and gain insights from results
from the mlos_bench
framework for benchmarking and optimization automation.
Its main entrypoint is the plot()
function, which can be used to
automatically visualize ExperimentData
from mlos_bench
using
other libraries for automatic data correlation and visualization like
dabl
.
Submodules
Attributes
Classes
What method to use for visualizing the experiment results. |
Functions
|
Suppress some annoying warnings from third-party data visualization packages by |
|
Plots the results of the experiment. |
Package Contents
- class mlos_viz.MlosVizMethod(*args, **kwds)[source]
Bases:
enum.Enum
What method to use for visualizing the experiment results.
- mlos_viz.ignore_plotter_warnings(plotter_method: MlosVizMethod = MlosVizMethod.AUTO) None [source]
Suppress some annoying warnings from third-party data visualization packages by adding them to the warnings filter.
- Parameters:
plotter_method (MlosVizMethod) – The method to use for visualizing the experiment results.
- Return type:
None
- mlos_viz.plot(exp_data: mlos_bench.storage.base_experiment_data.ExperimentData | None = None, *, results_df: pandas.DataFrame | None = None, objectives: Dict[str, Literal['min', 'max']] | None = None, plotter_method: MlosVizMethod = MlosVizMethod.AUTO, filter_warnings: bool = True, **kwargs: Any) None [source]
Plots the results of the experiment.
Intended to be used from a Jupyter notebook.
- Parameters:
exp_data (ExperimentData) – The experiment data to plot.
results_df (Optional[pandas.DataFrame]) – Optional results_df to plot. If not provided, defaults to
ExperimentData.results_df
property.objectives (Optional[Dict[str, Literal["min", "max"]]]) – Optional objectives to plot. If not provided, defaults to
ExperimentData.objectives
property.plotter_method (MlosVizMethod) – The method to use for visualizing the experiment results.
filter_warnings (bool) – Whether or not to filter some warnings from the plotter.
kwargs (dict) – Remaining keyword arguments are passed along to the underlying plotter(s).
- Return type:
None