mlos_bench.storage.base_experiment_data
Base interface for accessing the stored benchmark experiment data.
An experiment is a collection of trials that are run with a given set of scripts and target system.
Each trial is associated with a configuration (e.g., set of tunable parameters), but multiple trials may use the same config (e.g., for repeat run variability analysis).
See also
ExperimentData.results_df
Retrieves a pandas DataFrame of the Experiment’s trials’ results data.
ExperimentData.trials
Retrieves a dictionary of the Experiment’s trials’ data.
ExperimentData.tunable_configs
Retrieves a dictionary of the Experiment’s sampled configs data.
ExperimentData.tunable_config_trial_groups
Retrieves a dictionary of the Experiment’s trials’ data, grouped by shared tunable config.
mlos_bench.storage.base_trial_data.TrialData
Base interface for accessing the stored benchmark trial data.
Classes
Base interface for accessing the stored experiment benchmark data. |
Module Contents
- class mlos_bench.storage.base_experiment_data.ExperimentData(*, experiment_id: str, description: str, root_env_config: str, git_repo: str, git_commit: str)[source]
Base interface for accessing the stored experiment benchmark data.
An experiment groups together a set of trials that are run with a given set of scripts and mlos_bench configuration files.
- Parameters:
- property default_tunable_config_id: int | None[source]
Retrieves the (tunable) config id for the default tunable values for this experiment.
Note: this is by default the first trial executed for this experiment. However, it is currently possible that the user changed the tunables config in between resumptions of an experiment.
- Return type:
- property objectives: Dict[str, Literal['min', 'max']][source]
- Abstractmethod:
- Return type:
Dict[str, Literal[‘min’, ‘max’]]
Retrieve the experiment’s objectives data from the storage.
- Returns:
objectives – A dictionary of the experiment’s objective names (optimization_targets) and their directions (e.g., min or max).
- Return type:
Dict[str, Literal[“min”, “max”]]
- property results_df: pandas.DataFrame[source]
- Abstractmethod:
- Return type:
Retrieve all experimental results as a single DataFrame.
- Returns:
results – A DataFrame with configurations and results from all trials of the experiment. Has columns [trial_id, tunable_config_id, tunable_config_trial_group_id, ts_start, ts_end, status] followed by tunable config parameters (prefixed with “config.”) and trial results (prefixed with “result.”). The latter can be NULLs if the trial was not successful.
- Return type:
- property trials: Dict[int, mlos_bench.storage.base_trial_data.TrialData][source]
- Abstractmethod:
- Return type:
Retrieve the experiment’s trials’ data from the storage.
- property tunable_config_trial_groups: Dict[int, mlos_bench.storage.base_tunable_config_trial_group_data.TunableConfigTrialGroupData][source]
- Abstractmethod:
- Return type:
Dict[int, mlos_bench.storage.base_tunable_config_trial_group_data.TunableConfigTrialGroupData]
Retrieve the Experiment’s (Tunable) Config Trial Group data from the storage.
- Returns:
trials – A dictionary of the trials’ data, keyed by (tunable) by config id.
- Return type:
Dict[int, TunableConfigTrialGroupData]
- property tunable_configs: Dict[int, mlos_bench.storage.base_tunable_config_data.TunableConfigData][source]
- Abstractmethod:
- Return type:
Dict[int, mlos_bench.storage.base_tunable_config_data.TunableConfigData]
Retrieve the experiment’s (tunable) configs’ data from the storage.
- Returns:
trials – A dictionary of the configs’ data, keyed by (tunable) config id.
- Return type:
Dict[int, TunableConfigData]