mlos_bench.tunables.tunable
Definitions for Tunable
parameters.
Tunable parameters are one of the core building blocks of the mlos_bench
framework.
Together with TunableGroups
, they
provide a description of a configuration parameter space for a benchmark or an
autotuning optimization task.
Some details about the configuration of an individual Tunable
parameter are available in the Examples docstrings below.
However, Tunables are generally provided as a part of a
TunableGroups
config specified in a
JSON config file.
See also
mlos_bench.tunables
For more information on Tunable parameters and their configuration.
Classes
A Tunable parameter definition and its current value. |
Module Contents
- class mlos_bench.tunables.tunable.Tunable(name: str, config: dict)[source]
A Tunable parameter definition and its current value.
Create an instance of a new Tunable parameter.
- Parameters:
name (str) – Human-readable identifier of the Tunable parameter. NOTE:
!
characters are currently disallowed in Tunable names in order handle “special” values sampling logic. See:mlos_bench.optimizers.convert_configspace
for details.config (dict) – Python dict that represents a Tunable (e.g., deserialized from JSON) NOTE: Must be convertible to a
TunableDict
.
See also
mlos_bench.tunables
For more information on Tunable parameters and their configuration.
- __lt__(other: object) bool [source]
Compare the two Tunable objects.
We mostly need this to create a canonical list of Tunable objects when hashing a
TunableGroups
.
- __repr__() str [source]
Produce a human-readable version of the Tunable (mostly for logging).
- Returns:
string – A human-readable version of the Tunable.
- Return type:
- copy() Tunable [source]
Deep copy of the Tunable object.
- Returns:
tunable – A new Tunable object that is a deep copy of the original one.
- Return type:
- static from_json(name: str, json_str: str) Tunable [source]
Create a Tunable object from a JSON string.
- Parameters:
- Returns:
tunable – A new Tunable object created from the JSON string.
- Return type:
Notes
This is mostly for testing purposes. Generally Tunables will be created as a part of loading
TunableGroups
.
- in_range(value: int | float | str | None) bool [source]
Check if the value is within the range of the Tunable.
Do NOT check for special values. Return False if the Tunable or value is categorical or None.
- is_default() bool [source]
Checks whether the currently assigned value of the Tunable is at its default.
- Return type:
- is_valid(value: mlos_bench.tunables.tunable_types.TunableValue) bool [source]
Check if the value can be assigned to the Tunable.
- update(value: mlos_bench.tunables.tunable_types.TunableValue) bool [source]
Assign the value to the Tunable. Return True if it is a new value, False otherwise.
- property cardinality: int | None[source]
Gets the cardinality of elements in this Tunable, or else None (e.g., when the Tunable is continuous float and not quantized).
If the Tunable has quantization set, this returns the number of quantization bins.
- Returns:
cardinality – Either the number of points in the Tunable or else None.
- Return type:
Examples
>>> json_config = ''' ... { ... "type": "categorical", ... "default": "red", ... "values": ["red", "blue", "green"], ... } ... ''' >>> categorical_tunable = Tunable.from_json("categorical_tunable", json_config) >>> categorical_tunable.cardinality 3
>>> json_config = ''' ... { ... "type": "int", ... "default": 0, ... "range": [0, 10000], ... } ... ''' >>> basic_tunable = Tunable.from_json("basic_tunable", json_config) >>> basic_tunable.cardinality 10001
>>> json_config = ''' ... { ... "type": "int", ... "default": 0, ... "range": [0, 10000], ... // Enable quantization. ... "quantization_bins": 10, ... } ... ''' >>> quantized_tunable = Tunable.from_json("quantized_tunable", json_config) >>> quantized_tunable.cardinality 10
>>> json_config = ''' ... { ... "type": "float", ... "default": 50.0, ... "range": [0, 100], ... } ... ''' >>> float_tunable = Tunable.from_json("float_tunable", json_config) >>> assert float_tunable.cardinality is None
- property categories: list[str | None][source]
Get the list of all possible values of a categorical Tunable. Return None if the Tunable is not categorical.
See also
Tunable.values
For more examples on getting the categorical values of a Tunable.
- property category: str | None[source]
Get the current value of the Tunable as a string.
- Return type:
str | None
- property default: mlos_bench.tunables.tunable_types.TunableValue[source]
Get the default value of the Tunable.
- Return type:
- property description: str | None[source]
Get the description of the Tunable.
- Return type:
str | None
- property distribution: mlos_bench.tunables.tunable_types.DistributionName | None[source]
Get the name of the distribution if specified.
- Returns:
distribution – Name of the distribution or None.
- Return type:
str | None
See also
distribution_params
For more examples on configuring a Tunable with a distribution.
Examples
>>> # Example values of the DistributionName >>> from mlos_bench.tunables.tunable_types import DistributionName >>> DistributionName typing.Literal['uniform', 'normal', 'beta']
- property distribution_params: dict[str, float][source]
Get the parameters of the distribution, if specified.
- Returns:
distribution_params – Parameters of the distribution or None.
- Return type:
Examples
>>> json_config = ''' ... { ... "type": "int", ... "default": 0, ... "range": [0, 10], ... // No distribution specified. ... } ... ''' >>> base_config = json.loads(json_config) >>> basic_tunable = Tunable("basic_tunable", base_config) >>> assert basic_tunable.distribution is None >>> basic_tunable.distribution_params {}
>>> # Example of a uniform distribution (the default if not specified) >>> config_with_dist = base_config | { ... "distribution": { ... "type": "uniform" ... } ... } >>> uniform_tunable = Tunable("uniform_tunable", config_with_dist) >>> uniform_tunable.distribution 'uniform' >>> uniform_tunable.distribution_params {}
>>> # Example of a normal distribution params >>> config_with_dist = base_config | { ... "distribution": { ... "type": "normal", ... "params": { ... "mu": 0.0, ... "sigma": 1.0, ... } ... } ... } >>> normal_tunable = Tunable("normal_tunable", config_with_dist) >>> normal_tunable.distribution 'normal' >>> normal_tunable.distribution_params {'mu': 0.0, 'sigma': 1.0}
>>> # Example of a beta distribution params >>> config_with_dist = base_config | { ... "distribution": { ... "type": "beta", ... "params": { ... "alpha": 1.0, ... "beta": 1.0, ... } ... } ... } >>> beta_tunable = Tunable("beta_tunable", config_with_dist) >>> beta_tunable.distribution 'beta' >>> beta_tunable.distribution_params {'alpha': 1.0, 'beta': 1.0}
- property dtype: mlos_bench.tunables.tunable_types.TunableValueType[source]
Get the actual Python data type of the Tunable.
This is useful for bulk conversions of the input data.
- Returns:
dtype – Data type of the Tunable - one of:
{int, float, str}
- Return type:
Examples
>>> # Example values of the TunableValueType >>> from mlos_bench.tunables.tunable_types import TunableValueType >>> TunableValueType type[int] | type[float] | type[str]
>>> # Example values of the TUNABLE_DTYPE >>> from mlos_bench.tunables.tunable_types import TUNABLE_DTYPE >>> TUNABLE_DTYPE {'int': <class 'int'>, 'float': <class 'float'>, 'categorical': <class 'str'>}
- property is_categorical: bool[source]
Check if the Tunable is categorical.
- Returns:
is_categorical – True if the Tunable is categorical, False otherwise.
- Return type:
- property is_log: bool | None[source]
Check if numeric Tunable is log scale.
- Returns:
log – True if numeric Tunable is log scale, False if linear.
- Return type:
Examples
>>> # Example values of the log scale >>> json_config = ''' ... { ... "type": "int", ... "default": 0, ... "range": [0, 10000], ... // Enable log sampling. ... "log": true, ... } ... ''' >>> tunable = Tunable.from_json("log_tunable", json_config) >>> tunable.is_log True
- property is_numerical: bool[source]
Check if the Tunable is an integer or float.
- Returns:
is_int – True if the Tunable is an integer or float, False otherwise.
- Return type:
- property is_special: bool[source]
Check if the current value of the Tunable is special.
- Returns:
is_special – True if the current value of the Tunable is special, False otherwise.
- Return type:
- property meta: dict[str, Any][source]
Get the Tunable’s metadata.
This is a free-form dictionary that can be used to store any additional information about the Tunable (e.g., the unit information) which can be useful when using the
dump_params_file
anddump_meta_file
properties of theenvironments
config to generate a configuration file for the target system.Examples
>>> json_config = ''' ... { ... "type": "int", ... "range": [0, 10], ... "default": 1, ... "meta": { ... "unit": "seconds", ... }, ... "description": "Time to wait before timing out a request.", ... } ... ''' >>> tunable = Tunable.from_json("timer_tunable", json_config) >>> tunable.meta {'unit': 'seconds'}
- property quantization_bins: int | None[source]
Get the number of quantization bins, if specified.
- Returns:
quantization_bins – Number of quantization bins, or None.
- Return type:
int | None
Examples
>>> json_config = ''' ... { ... "type": "int", ... "default": 0, ... "range": [0, 10000], ... // Enable quantization. ... "quantization_bins": 11, ... } ... ''' >>> quantized_tunable = Tunable.from_json("quantized_tunable", json_config) >>> quantized_tunable.quantization_bins 11 >>> list(quantized_tunable.quantized_values) [0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]
>>> json_config = ''' ... { ... "type": "float", ... "default": 0, ... "range": [0, 1], ... // Enable quantization. ... "quantization_bins": 5, ... } ... ''' >>> quantized_tunable = Tunable.from_json("quantized_tunable", json_config) >>> quantized_tunable.quantization_bins 5 >>> list(quantized_tunable.quantized_values) [0.0, 0.25, 0.5, 0.75, 1.0]
- property quantized_values: collections.abc.Iterable[int] | collections.abc.Iterable[float] | None[source]
Get a sequence of quantized values for this Tunable.
- Returns:
If the Tunable is quantizable, returns a sequence of those elements, else None (e.g., for unquantized float type Tunables).
- Return type:
See also
quantization_bins
For more examples on configuring a Tunable with quantization.
- property range: tuple[int, int] | tuple[float, float][source]
Get the range of the Tunable if it is numerical, None otherwise.
- Returns:
range – A 2-tuple of numbers that represents the range of the Tunable. Numbers can be int or float, depending on the type of the Tunable.
- Return type:
Examples
>>> json_config = ''' ... { ... "type": "int", ... "default": 0, ... "range": [0, 10000], ... } ... ''' >>> int_tunable = Tunable.from_json("int_tunable", json_config) >>> int_tunable.range (0, 10000)
>>> json_config = ''' ... { ... "type": "float", ... "default": 0.0, ... "range": [0.0, 100.0], ... } ... ''' >>> float_tunable = Tunable.from_json("float_tunable", json_config) >>> float_tunable.range (0.0, 100.0)
- property range_weight: float | None[source]
Get weight of the range of the numeric Tunable. Return None if there are no weights or a Tunable is categorical.
- Returns:
weight – Weight of the range or None.
- Return type:
See also
Tunable.weights
For example of range_weight configuration.
- property span: int | float[source]
Gets the span of the range.
Note: this does not take quantization into account.
- property special: list[int] | list[float][source]
Get the special values of the Tunable. Return an empty list if there are none.
Special values are used to mark some values as “special” that need more explicit testing. For example, these might indicate “automatic” or “disabled” behavior for the system being tested instead of an explicit size and hence need more explicit sampling.
Notes
Only numerical Tunable parameters can have special values.
- Returns:
special – A list of special values of the Tunable. Can be empty.
- Return type:
Examples
>>> # Example values of the special values >>> json_config = ''' ... { ... "type": "int", ... "default": 50, ... "range": [1, 100], ... // These are special and sampled ... // Note that the types don't need to match or be in the range. ... "special": [ ... -1, // e.g., auto ... 0, // e.g., disabled ... true, // e.g., enabled ... null, // e.g., unspecified ... ], ... } ... ''' >>> tunable = Tunable.from_json("tunable_with_special", json_config) >>> # JSON values are converted to Python types >>> tunable.special [-1, 0, True, None]
- property type: mlos_bench.tunables.tunable_types.TunableValueTypeName[source]
Get the string name of the data type of the Tunable.
- Returns:
type – String representation of the data type of the Tunable.
- Return type:
Examples
>>> # Example values of the TunableValueTypeName >>> from mlos_bench.tunables.tunable_types import TunableValueTypeName >>> TunableValueTypeName typing.Literal['int', 'float', 'categorical']
Examples
>>> json_config = ''' ... { ... "type": "categorical", ... "default": "red", ... "values": ["red", "blue", "green"], ... } ... ''' >>> categorical_tunable = Tunable.from_json("categorical_tunable", json_config) >>> categorical_tunable.type 'categorical'
>>> json_config = ''' ... { ... "type": "int", ... "default": 0, ... "range": [0, 10000], ... } ... ''' >>> int_tunable = Tunable.from_json("int_tunable", json_config) >>> int_tunable.type 'int'
>>> json_config = ''' ... { ... "type": "float", ... "default": 0.0, ... "range": [0.0, 10000.0], ... } ... ''' >>> float_tunable = Tunable.from_json("float_tunable", json_config) >>> float_tunable.type 'float'
- property value: mlos_bench.tunables.tunable_types.TunableValue[source]
Get the current value of the Tunable.
- Return type:
- property values: collections.abc.Iterable[str | None] | collections.abc.Iterable[int] | collections.abc.Iterable[float] | None[source]
Gets the
categories
orquantized_values
for this Tunable.- Returns:
Categories or quantized values.
- Return type:
Iterable[str | None] | Iterable[int] | Iterable[float] | None
Examples
>>> # Example values of the Tunable categories >>> json_config = ''' ... { ... "type": "categorical", ... "values": ["red", "blue", "green"], ... "default": "red", ... } ... ''' >>> categorical_tunable = Tunable.from_json("categorical_tunable", json_config) >>> list(categorical_tunable.values) ['red', 'blue', 'green'] >>> assert categorical_tunable.values == categorical_tunable.categories
>>> # Example values of the Tunable int >>> json_config = ''' ... { ... "type": "int", ... "range": [0, 5], ... "default": 1, ... } ... ''' >>> int_tunable = Tunable.from_json("int_tunable", json_config) >>> list(int_tunable.values) [0, 1, 2, 3, 4, 5]
>>> # Example values of the quantized Tunable float >>> json_config = ''' ... { ... "type": "float", ... "range": [0, 1], ... "default": 0.5, ... "quantization_bins": 3, ... } ... ''' >>> float_tunable = Tunable.from_json("float_tunable", json_config) >>> list(float_tunable.values) [0.0, 0.5, 1.0]
- property weights: list[float] | None[source]
Get the weights of the categories or special values of the Tunable. Return None if there are none.
- Returns:
weights – A list of weights or None.
- Return type:
[float]
Examples
>>> json_config = ''' ... { ... "type": "categorical", ... "default": "red", ... "values": ["red", "blue", "green"], ... "values_weights": [0.1, 0.2, 0.7], ... } ... ''' >>> categorical_tunable = Tunable.from_json("categorical_tunable", json_config) >>> categorical_tunable.weights [0.1, 0.2, 0.7] >>> dict(zip(categorical_tunable.values, categorical_tunable.weights)) {'red': 0.1, 'blue': 0.2, 'green': 0.7}
>>> json_config = ''' ... { ... "type": "float", ... "default": 50.0, ... "range": [1, 100], ... "special": [-1, 0], ... "special_weights": [0.1, 0.2], ... "range_weight": 0.7, ... } ... ''' >>> float_tunable = Tunable.from_json("float_tunable", json_config) >>> float_tunable.weights [0.1, 0.2] >>> dict(zip(float_tunable.special, float_tunable.weights)) {-1: 0.1, 0: 0.2}