mlos_core.optimizers.bayesian_optimizers.bayesian_optimizer
Contains the wrapper classes for base Bayesian optimizers.
Classes
Abstract base class defining the interface for Bayesian optimization. |
Module Contents
- class mlos_core.optimizers.bayesian_optimizers.bayesian_optimizer.BaseBayesianOptimizer(*, parameter_space: ConfigSpace.ConfigurationSpace, optimization_targets: List[str], objective_weights: List[float] | None = None, space_adapter: mlos_core.spaces.adapters.adapter.BaseSpaceAdapter | None = None)[source]
Bases:
mlos_core.optimizers.optimizer.BaseOptimizer
Abstract base class defining the interface for Bayesian optimization.
Create a new instance of the base optimizer.
- Parameters:
parameter_space (ConfigSpace.ConfigurationSpace) – The parameter space to optimize.
optimization_targets (List[str]) – The names of the optimization targets to minimize. To maximize a target, use the negative of the target when registering scores.
objective_weights (Optional[List[float]]) – Optional list of weights of optimization targets.
space_adapter (BaseSpaceAdapter) – The space adapter class to employ for parameter space transformations.
- abstract acquisition_function(suggestion: mlos_core.data_classes.Suggestion) numpy.typing.NDArray [source]
Invokes the acquisition function from this Bayesian optimizer for the given configuration.
- Parameters:
suggestion (Suggestion) – The suggestion containing the configuration(s) to evaluate.
- Return type:
numpy.typing.NDArray
- abstract surrogate_predict(suggestion: mlos_core.data_classes.Suggestion) numpy.typing.NDArray [source]
Obtain a prediction from this Bayesian optimizer’s surrogate model for the given configuration(s).
- Parameters:
suggestion (Suggestion) – The suggestion containing the configuration(s) to predict.
- Return type:
numpy.typing.NDArray