plugins.hf_ner.sequence_labelling_metrics
Metrics to assess performance on sequence labeling task given prediction
Functions named as *_score return a scalar value to maximize: the higher
the better
get_entities#
Gets entities from sequence.
Arguments:
seqlist - sequence of labels.
Returns:
list- list of (chunk_type, chunk_start, chunk_end).
Example:
from seqeval.metrics.sequence_labeling import get_entities seq = ['B-PER', 'I-PER', 'O', 'B-LOC'] get_entities(seq) [('PER', 0, 1), ('LOC', 3, 3)]
end_of_chunk#
Checks if a chunk ended between the previous and current word.
Arguments:
prev_tag- previous chunk tag.tag- current chunk tag.prev_type- previous type.type_- current type.
Returns:
chunk_end- boolean.
start_of_chunk#
Checks if a chunk started between the previous and current word.
Arguments:
prev_tag- previous chunk tag.tag- current chunk tag.prev_type- previous type.type_- current type.
Returns:
chunk_start- boolean.
f1_score#
Compute the F1 score. The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:: F1 = 2 (precision recall) / (precision + recall)
Arguments:
y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger.
Returns:
score : float.
Example:
from seqeval.metrics import f1_score y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] f1_score(y_true, y_pred) 0.50
accuracy_score#
Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true.
Arguments:
y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger.
Returns:
score : float.
Example:
from seqeval.metrics import accuracy_score y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] accuracy_score(y_true, y_pred) 0.80
precision_score#
Compute the precision.
The precision is the ratio tp / (tp + fp) where tp is the number of
true positives and fp the number of false positives. The precision is
intuitively the ability of the classifier not to label as positive a sample.
The best value is 1 and the worst value is 0.
Arguments:
y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger.
Returns:
score : float.
Example:
from seqeval.metrics import precision_score y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] precision_score(y_true, y_pred) 0.50
recall_score#
Compute the recall.
The recall is the ratio tp / (tp + fn) where tp is the number of
true positives and fn the number of false negatives. The recall is
intuitively the ability of the classifier to find all the positive samples.
The best value is 1 and the worst value is 0.
Arguments:
y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger.
Returns:
score : float.
Example:
from seqeval.metrics import recall_score y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] recall_score(y_true, y_pred) 0.50
performance_measure#
Compute the performance metrics: TP, FP, FN, TN
Arguments:
y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger.
Returns:
performance_dict : dict
Example:
from seqeval.metrics import performance_measure y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'O', 'B-ORG'], ['B-PER', 'I-PER', 'O']] y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'O'], ['B-PER', 'I-PER', 'O']] performance_measure(y_true, y_pred) (3, 3, 1, 4)
classification_report#
Build a text report showing the main classification metrics.
Arguments:
y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a classifier. digits : int. Number of digits for formatting output floating point values.
Returns:
report : string. Text summary of the precision, recall, F1 score for each class.
Examples:
from seqeval.metrics import classification_report y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] print(classification_report(y_true, y_pred)) precision recall f1-score support <BLANKLINE> MISC 0.00 0.00 0.00 1 PER 1.00 1.00 1.00 1 <BLANKLINE> micro avg 0.50 0.50 0.50 2 macro avg 0.50 0.50 0.50 2 <BLANKLINE>