opto.optimizers.textgrad.TextGrad

opto.optimizers.textgrad.TextGrad#

class TextGrad[source]#

Attributes

propagator

Return a Propagator object that can be used to propagate feedback in backward.

trace_graph

Aggregate the graphs of all the parameters.

Methods

backward(node, *args, **kwargs)

Propagate the feedback backward.

call_llm(system_prompt, user_prompt[, verbose])

Call the LLM with a prompt and return the response.

default_propagator()

Return the default Propagator object of the optimizer.

propose(*args, **kwargs)

Propose the new data of the parameters based on the feedback.

step(*args, **kwargs)

Update the parameters based on the feedback.

update(update_dict)

Update the trainable parameters given a dictionary of new data.

zero_feedback()

Reset the feedback.

__init__(parameters: List[ParameterNode], llm: AutoGenLLM | None = None, *args, propagator: Propagator | None = None, objective: None | str = None, max_tokens=4096, log=False, **kwargs)[source]#
__new__(**kwargs)#