Using the Skala functional in PySCF#
The Skala functional can be used in PySCF by creating a new Kohn-Sham calculator based on the SkalaKS constructor.
This allows to perform self-consistent field calculations with most of the features available in PySCF, such as density fitting and Newton’s method.
from pyscf import gto
from skala.pyscf import SkalaKS
/home/runner/micromamba/envs/skala/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
The Kohn-Sham calculator for the Skala functional is created from a regular PySCF molecule object.
By specifying the xc parameter as "skala", the Skala functional is automatically loaded and used for the calculations.
mol = gto.M(
atom="""H 0 0 0; H 0 0 1.4""",
basis="def2-tzvp",
)
ks = SkalaKS(mol, xc="skala")
ks.kernel()
print(ks.dump_scf_summary())
converged SCF energy = -1.07091605077037
**** SCF Summaries ****
Total Energy = -1.070916050770366
Nuclear Repulsion Energy = 0.377654773327513
One-electron Energy = -1.897310625832218
Two-electron Coulomb Energy = 0.997543910495160
DFT Exchange-Correlation Energy = -0.548804108760821
Empirical Dispersion Energy = -0.000328948758201
None
Note that using the Skala functional will automatically enable the D3 dispersion correction, which is a part of the Skala functional.
To disable the D3 correction, you can pass the with_dftd3 parameter as False when creating the Kohn-Sham calculator.
The Skala functional can be used with density fitting by calling the density_fit() method on the Kohn-Sham calculator or by setting the with_density_fit parameter to True when creating the calculator.
This will set up the necessary integrals and approximations for efficient calculations.
mol = gto.M(
atom="""H 0 0 0; H 0 0 1.4""",
basis="def2-tzvp",
)
ks = SkalaKS(mol, xc="skala", with_density_fit=True)
ks.kernel()
print(ks.dump_scf_summary())
converged SCF energy = -1.07106374062215
**** SCF Summaries ****
Total Energy = -1.071063740622152
Nuclear Repulsion Energy = 0.377654773327513
One-electron Energy = -1.897672542527312
Two-electron Coulomb Energy = 0.998071986843154
DFT Exchange-Correlation Energy = -0.549117958265507
Empirical Dispersion Energy = -0.000328948758201
None
Overwritten attributes Gradients nuc_grad_method of <class 'pyscf.df.df_jk.DFSkalaRKS'>
For challenging to converge systems, the Newton’s method can be used by calling the newton() method on the Kohn-Sham calculator.
Note, that you need to call density_fit() before using Newton’s method, to apply the density fitting to the Kohn-Sham calculator.
The calculator will automatically use the density fitting integrals for the Newton’s method if the with_density_fit and with_newton parameters are set to True.
mol = gto.M(
atom="""H 0 0 0; H 0 0 1.4""",
basis="def2-tzvp",
)
ks = SkalaKS(mol, xc="skala", with_density_fit=True, with_newton=True)
ks.kernel()
print(ks.dump_scf_summary())
converged SCF energy = -1.07106373952623
**** SCF Summaries ****
Total Energy = -1.071063739526230
Nuclear Repulsion Energy = 0.377654773327513
One-electron Energy = -1.897671245569782
Two-electron Coulomb Energy = 0.998068851275272
DFT Exchange-Correlation Energy = -0.549116118559232
Empirical Dispersion Energy = -0.000328948758201
None
Overwritten attributes Gradients nuc_grad_method of <class 'pyscf.soscf.newton_ah.SecondOrderDFSkalaRKS'>
Using the Skala functional in GPU4PySCF#
The Skala functional can also be used in GPU4PySCF with an appropriate PyTorch CUDA version by creating a new Kohn-Sham calculator based on the SkalaKS constructor from the skala.gpu4pyscf.
from pyscf import gto
from skala.gpu4pyscf import SkalaKS
mol = gto.M(
atom="""H 0 0 0; H 0 0 1.4""",
basis="def2-tzvp",
)
ks = SkalaKS(mol, xc="skala")
ks.kernel()
print(ks.dump_scf_summary())
---------------------------------------------------------------------------
Skipped Traceback (most recent call last)
Cell In[5], line 3
1 from pyscf import gto
----> 3 from skala.gpu4pyscf import SkalaKS
5 mol = gto.M(
6 atom="""H 0 0 0; H 0 0 1.4""",
7 basis="def2-tzvp",
8 )
9 ks = SkalaKS(mol, xc="skala")
File ~/work/skala/skala/src/skala/gpu4pyscf/__init__.py:18
15 if not torch.cuda.is_available() and find_spec("pytest") is not None:
16 import pytest
---> 18 pytest.skip(
19 "Skipping gpu4pyscf doctests, because CUDA is not available.",
20 allow_module_level=True,
21 )
23 try:
24 import cupy # noqa: F401
File ~/micromamba/envs/skala/lib/python3.12/site-packages/_pytest/outcomes.py:139, in _Skip.__call__(self, reason, allow_module_level)
137 def __call__(self, reason: str = "", allow_module_level: bool = False) -> NoReturn:
138 __tracebackhide__ = True
--> 139 raise Skipped(msg=reason, allow_module_level=allow_module_level)
Skipped: Skipping gpu4pyscf doctests, because CUDA is not available.