Source code for vivainsights.hrvar_count

# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
"""
This module generates a count of the distinct persons in the data population.
Returns a bar plot of the counts by default, with an option to return a summary table.
"""

__all__ = ['hrvar_count_calc', 'hrvar_count_viz', 'hrvar_count_all', 'hrvar_count']

import pandas as pd
import matplotlib.pyplot as plt
from vivainsights.extract_date_range import extract_date_range
from vivainsights.extract_hr import extract_hr

[docs] def hrvar_count_calc(data: pd.DataFrame, hrvar: str): """Calculate the number of distinct persons in the data population, grouped by a selected HR variable.""" data = data.groupby([hrvar]) data = data['PersonId'].nunique().reset_index(name='n') output = data.sort_values(by = 'n', ascending=False) return output
[docs] def hrvar_count_viz(data: pd.DataFrame, hrvar: str, figsize: tuple = None): """Visualise the number of distinct persons in the data population, grouped by a selected HR variable.""" sum_df = hrvar_count_calc(data = data, hrvar = hrvar) cap_str = extract_date_range(data, return_type = 'text') fig, ax = plt.subplots(figsize=figsize if figsize else (8, 6)) # Create grid # Zorder tells it which layer to put it on. We are setting this to 1 and our data to 2 so the grid is behind the data. ax.grid(which="major", axis='x', color='#758D99', alpha=0.6, zorder=1) # Remove splines. Can be done one at a time or can slice with a list. ax.spines[['top','right','bottom']].set_visible(False) # Make left spine slightly thicker ax.spines['left'].set_linewidth(1.1) # Create bar plot ax.barh(sum_df[hrvar], sum_df['n'], color='#1d627e', zorder=2) # Shrink y-lim to make plot a bit tighter # Using length of summary table to make it dynamic ax.set_ylim(-0.5, len(sum_df)-0.5) # Reformat x-axis tick labels ax.xaxis.set_tick_params( labeltop=True, # Put x-axis labels on top labelbottom=False, # Set no x-axis labels on bottom bottom=False, # Set no ticks on bottom labelsize=9, # Set tick label size pad=-1 # Lower tick labels a bit ) # Reformat y-axis tick labels ax.yaxis.set_tick_params( pad=10, # Pad tick labels so they don't go over y-axis labelsize=9, # Set label size bottom=False # Set no ticks on bottom/left ) # Reformat y-axis tick labels ax.set_yticks(range(len(sum_df))) ax.set_yticklabels( sum_df[hrvar], # Set labels again ha = 'right' # Set horizontal alignment to right ) # Add in line and tag ax.plot([-.35, .87], # Set width of line [1.02, 1.02], # Set height of line transform=fig.transFigure, # Set location relative to plot clip_on=False, color='#fe7f4f', linewidth=.6) ax.add_patch(plt.Rectangle((-.35,1.02), # Set location of rectangle by lower left corder 0.12, # Width of rectangle -0.02, # Height of rectangle. Negative so it goes down. facecolor='#fe7f4f', transform=fig.transFigure, clip_on=False, linewidth = 0)) # Add in title, subtitle, and caption ax.text(x=-.35, y=.96, s= f'People by {hrvar}', transform=fig.transFigure, ha='left', fontsize=13, weight='bold', alpha=.8) # ax.text(x=-.35, y=.925, s= sub_title, transform=fig.transFigure, ha='left', fontsize=11, alpha=.8) ax.text(x=-.35, y=.08, s=cap_str, transform=fig.transFigure, ha='left', fontsize=9, alpha=.7) plt.bar_label(ax.containers[0], fmt = '%.0f', label_type='edge', padding = 3) # annotate plt.margins(y=0.3) # pad the spacing between the number and the edge of the figure # return the plot object return fig
[docs] def hrvar_count_all(data: pd.DataFrame, hrvar_list: list = None, max_unique: int = 50): """ Name ---- hrvar_count_all Description ----------- This function creates a summary table to validate organizational data. This table provides a summary of the data found in the Viva Insights Data sources page. This function returns a summary table with the count of distinct fields per HR attribute and the percentage of employees with missing values for that attribute. Parameters --------- data : pandas dataframe person query data hrvar_list : list, optional list of HR variables to analyze. If None, uses `extract_hr()` to dynamically identify organizational attributes from the dataset. max_unique : int, optional The maximum number of unique values a column can have to be considered an HR variable. Only used when `hrvar_list` is None (i.e., when using dynamic detection via `extract_hr()`). Defaults to 50. Returns ------- pandas.DataFrame A summary table containing: - hrvar: name of the HR variable - distinct_values: count of distinct values in the HR variable - missing_count: count of missing/null values - missing_percentage: percentage of employees with missing values Example ------- >>> import vivainsights as vi >>> pq_data = vi.load_pq_data() >>> vi.hrvar_count_all(pq_data) >>> # With custom max_unique threshold >>> vi.hrvar_count_all(pq_data, max_unique=100) """ # Default HR variables if none provided - use extract_hr to dynamically detect if hrvar_list is None: available_hrvars = extract_hr(data, max_unique=max_unique, return_type="suggestion") else: # Filter to only include columns that exist in the data available_hrvars = [var for var in hrvar_list if var in data.columns] if not available_hrvars: raise ValueError("None of the specified HR variables exist in the data. Available columns: " + str(list(data.columns))) # Calculate summary statistics for each HR variable summary_data = [] total_rows = len(data) for hrvar in available_hrvars: distinct_count = data[hrvar].nunique() missing_count = data[hrvar].isna().sum() missing_percentage = (missing_count / total_rows) * 100 summary_data.append({ 'hrvar': hrvar, 'distinct_values': distinct_count, 'missing_count': missing_count, 'missing_percentage': round(missing_percentage, 1) }) # Create DataFrame and sort by missing percentage (descending) to highlight problematic variables first summary_df = pd.DataFrame(summary_data) summary_df = summary_df.sort_values('missing_percentage', ascending=False).reset_index(drop=True) return summary_df
[docs] def hrvar_count(data: pd.DataFrame, hrvar: str = 'Organization', figsize: tuple = None, return_type: str = "plot"): """ Name ---- hrvar_count Description ----------- This function generates a count of the distinct persons in the data population, grouped by a selected HR variable. Parameters --------- data : ppandas dataframe person query data hrvar : str name of the organizational attribute to be used for grouping figsize : tuple, optional The `figsize` parameter is an optional tuple that specifies the size of the figure for the boxplot visualization. It should be in the format `(width, height)`, where `width` and `height` are in inches. If not provided, a default size of `(8, 6)` will be used. return_type : str or optional type of output to return. Defaults to "plot". Example ------- >>> import vivainsights as vi >>> pq_data = vi.load_pq_data() >>> vi.hrvar_count(pq_data, hrvar = "LevelDesignation") """ if return_type == "plot": out = hrvar_count_viz(data=data, hrvar=hrvar, figsize=figsize) elif return_type == "table": out = hrvar_count_calc(data=data, hrvar=hrvar) else: out = "Invalid input. Please check your inputs and try again." return out