Source code for vivainsights.import_query

# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
"""
This function imports a Viva Insights Query from a .csv file and optimizes the
variable classifications for other functions in the package. The function takes in a file path (x)
and an optional encoding parameter (default is 'utf-8'). It checks if the file is a .csv file, reads
in the file using pandas, cleans the column names by removing spaces and special characters, and
returns the resulting data as a pandas dataframe. If there is an error reading the file, the function prints an error message.
"""
import pandas as pd
import re 
import os

[docs] def import_query(x, encoding: str = 'utf-8'): """ Name ---- import_query Description ----------- The function `import_query` reads a CSV file, removes leading and trailing spaces from column names, and replaces spaces and special characters with underscores in column names. Parameters ---------- x : str The parameter `x` is the input file name or path. It should be a string representing the file name or path of the CSV file you want to import. encoding : str, optional The encoding parameter specifies the character encoding to be used when reading the CSV file. The default value is 'utf-8', which is a widely used encoding for text files. However, you can specify a different encoding if needed. Returns ------- The variable `data` if the input file is a valid CSV file. If the input file is not a valid CSVfile, the function will print an error message and return `None`. """ # in case '.csv' is not all in lower case, make it lower case if x[-4:].lower() == '.csv': in_df = x[:-4] + '.csv' else: in_df = x if not os.path.isfile(in_df): raise ValueError("input file does not exist") elif not in_df.endswith('.csv'): raise ValueError("the input must be a .csv file") else: try: # Try to read in csv file, if file can not be read, exception is thrown. data = pd.read_csv(x, encoding=encoding, delimiter=',') # Replace mentions of '%' with literal string 'Percent' data.columns = [re.sub('%', 'Percent', c.strip()) for c in data] # Remove leading and trailing spaces # Remove spaces and special characters and replacing them with underscores within column names. data.columns = [re.sub('[^a-zA-Z0-9,]', '_', c.strip()) for c in data] return data except: raise ValueError('something went wrong when reading the file')