Source code for vivainsights.import_query
# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
"""
This function imports a Viva Insights Query from a .csv file and optimizes the
variable classifications for other functions in the package. The function takes in a file path (x)
and an optional encoding parameter (default is 'utf-8'). It checks if the file is a .csv file, reads
in the file using pandas, cleans the column names by removing spaces and special characters, and
returns the resulting data as a pandas dataframe. If there is an error reading the file, the function prints an error message.
"""
import pandas as pd
import re
import os
[docs]
def import_query(x, encoding: str = 'utf-8'):
"""
Name
----
import_query
Description
-----------
The function `import_query` reads a CSV file, removes leading and trailing spaces from column names,
and replaces spaces and special characters with underscores in column names.
Parameters
----------
x : str
The parameter `x` is the input file name or path. It should be a string representing the file name or path of the CSV file you want to import.
encoding : str, optional
The encoding parameter specifies the character encoding to be used when reading the CSV file. The default value is 'utf-8', which is a widely used encoding for text files. However, you can specify a different encoding if needed.
Returns
-------
The variable `data` if the input file is a valid CSV file. If the input file is not a valid CSVfile, the function will print an error message and return `None`.
"""
# in case '.csv' is not all in lower case, make it lower case
if x[-4:].lower() == '.csv':
in_df = x[:-4] + '.csv'
else:
in_df = x
if not os.path.isfile(in_df):
raise ValueError("input file does not exist")
elif not in_df.endswith('.csv'):
raise ValueError("the input must be a .csv file")
else:
try:
# Try to read in csv file, if file can not be read, exception is thrown.
data = pd.read_csv(x, encoding=encoding, delimiter=',')
# Replace mentions of '%' with literal string 'Percent'
data.columns = [re.sub('%', 'Percent', c.strip()) for c in data]
# Remove leading and trailing spaces
# Remove spaces and special characters and replacing them with underscores within column names.
data.columns = [re.sub('[^a-zA-Z0-9,]', '_', c.strip()) for c in data]
return data
except:
raise ValueError('something went wrong when reading the file')